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ABSTRACT: The effect of stabilizing selection on quantitative variables is
to reduce variances whilst leaving means more or less unchanged. In this paper
some statistical methods for detecting and measuring stabilizing selection are
discussed. A generalization of Levene's test is suggested for seeing whether one
sample is significantly more variable than another. A plotting technique is
described which shows graphically how selection is related to the extent to which
individuals deviate from the average. Models are proposed for relating selection
to the amount of deviation. Methods are illustrated on Bumpus' well-known data

on moribund sparrows picked up after a severe storm.
* * *

1. INTRODUCTION

In discussions of natural selection a distinction is often made between
stabilizing and directional selection. In terms of the distribution of quantita-
tive variables within a population, the effect of stabilizing selection is to
reduce variances while leaving means unchanged. This can be contrasted with
directional selection, which has the effect of changing means while variances may
remain fairly constant.

It was found in the early days of evolutionary studies that selection acting
on natural populations within one generation is often stabilizing. For example,
Bumpus (1898) compared various measurements on the survivors and non-survivors in
a sample of moribund sparrows (Passer domesticus) picked up after a harsh storm
and reached the conclusion that '"the process of selective elimination is most
severe with extremely variable individuals, no matter in what direction the
variations may occur". Similar conclusions were reached at about the same time
by Weldon (1901, 1903), Di Cesnola (1906) and Thomson et gl. (1911) from studies
of other species.

Clearly there is a need for reliable statistical techniques for detecting
and measuring stabilizing selection. However, in practice deciding on these
techniques is not a simple matter. Directional selection is much easier to
handle, particularly when several variables are being considered together.

There are two particular problems. First, tests to compare variances before
and after selection are well known to be sensitive to anomalous observations and
errors in assumptions. For example, the standard F-test to compare two sample
variances depends heavily on the assumption that samples are fromnormal distri-
butions. Second, in the multivariate context the number of parameters needed
to describe stabilizing selection may be excessively large. Thus with op
variables, p + 1 parameters can be used to model directional selection. However,
most models for stabilizing selection require p(p + 3)/2 + 1 parameters. For
example, Lande and Arnold (1983) suggested the use of a quadratic regression
model but were not able to fit it to all of Bumpus' (1898) data because it had
45 parameters to be estimated from the survival of only 49 female and 87 male
birds. They restricted their attention to only the first two principal components
in order to overcome this difficulty.

The purpose of the present paper is to suggest a practical approach for the
analysis of data on stabilizing selection that circumvents these difficulties. To
be more precise, a three part approach is suggested involving (a) testing to see
whether survivors are significantly less variable than non-survivors, (b) plot-
ting the data to show how the probability of survival is related to the deviation
of individuals from the population mean, and (c) estimating fitness functions for
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which the probability of an individual surviving selection is a function of its
distance from the population mean.

2. TYPES OF DATA

There are two quite different types of data that have to be considered. The
first will be referred to as survival data. In this case there is an initial
group of individuals that are subjected to stress so that some of them die.
Variable values are known for the survivors and the non-survivors. The second
type of data will be referred to as two sample data. In this case a large pop-
ulation is envisaged with one sample being taken from this before selection and
a second sample taken of the survivors after selection.

In practice two sample data is often obtained by taking a single sample from
a population and classifying the individuals as juveniles or adults. The juveniles
then provide the "sample" before selection and the adults provide the "sample"
after selection, This procedure is valid providing that (1) there is no genetic
evolution of the characters in the population, (2) the environment does not change
in any way that affects individual development of characters, (3) the effects of
emigration and immigration are negligible, and (4) there are no ontogenetic
changes in the characters under study between the juvenile and adult stage (Lande
and Arnold, 1983).

The difference between survival and two sample data is not of great import-
ance when it comes to testing for stabilizing selection or plotting data. The
same methods can be used. However different types of fitness function are
appropriate for the two types of data.

3. TESTING FOR STABILIZING SELECTION

With survival data there is an initial group of n individuals, of which n,
die and n, survive. The non-survivors can then be thought of as providing sample
1 and the survivors as providing sample 2. The question to be considered in this
situationis then whether there is any evidence that sample 1 is more variable than
sample 2.

On the other hand, with two sample data there is a sample of size n; taken
before selection and a sample of n, taken after selection. Again the question
to be considered is whether sample 1 is more variable than sample 2. Hence the
same tests for stabilizing selection can be used on survival and two sample data.

Suppose that p variables X; , X, ,..., Xp are measured for each individ-
ual. An obvious strategy is then to test each variable separately for less
variation in sample 2 than in sample 1, and also test all the variables together.
For a single variable there is a wide choice of tests (Van Valen, 1978; Conover
et al., 198l; Schultz, 1983). Notwithstanding the advice of Van Valen (1978),
most people would probably do an F-test to begin with because this test is well
known and simple. This is reasonable providing that is is accepted that a signi-
ficant result may occur because of non-normality of the distribution of a variable
rather than because of different variances before and after selection.

Actually, it is better to use a test that is not so sensitive to non-normal
data and yet reasonably powerful in detecting real differences in variances. For
reasons discussed by Schultz (1983), Levene's (1960) test is a good choice pro-
viding that the variation in samples is measured from medians. Thus, let xjjk
denote the value of Xj for the ith individual in the sample k , and let
Mjk be the median for this variable in the sample. Levene's test then involves
transforming the data values for variable Xj to

I (1)
and testing to see whether the sample means
n n
1 2
iy = izl Yip/my and ¥, = 151 ¥i52/7, (2)

are significantly different using a t-test. The test statistic is
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t5 = (yj1 yjz)/{sj/(lln1 + 1/n2)} , (3)
where s2 is the pooled within sample variance for the transformed data. Because
of the nature of stabilizing selection a one sided test is needed to see whether

tj is significantly large.

A potential problem here is that if the variance of X; 1is different for
samples 1 and 2 then the within sample variances of the transformed data are also
liable to differ. One of the assumptions of the ordinary t-test to compare two
means is then not valid. However, simulation studies suggest that this is not an
important problem in practice (Schultz, 1983).

When all p variables are considered together a test for more variation in
sample 1 than in sample 2 is obviously more complicated. A large-sample likeli-
hood ratio test based upon the assumption of multivariate normality is well known
(Srivastava and Carter, 1983, p.333). However this test is also well known to be
sensitive to the normality assumption. Furthermore, it relies on measuring variat-
ion using the determinants of the sample covariance matrices which is not altogether
satisfactory (Van Valen, 1978).

Alternative procedures based upon generalizing the principle behind Levene's
test are likely to be more reliable. Thus the original data values =xjjk can be
converted to absolute deviation from sample medians using equation (1). There are
then two multivariate samples of y values and stabilizing selection is indicated
if the means of the y values are significantly larger in sample 1 than they are
in sample 2.

Following Van Valen (1978) one possibility involves taking

{5y 4
Pix ~ {J,Zl yijk} ()
as the distance of individual i in group k from the median centre of that group.
To ensure that all p variables contribute equally to this distance, the original
X wvariables should all be standardized to have equal variances before the y
values are determined by equation (1). Having calculated Dik values, a t-test
can be carried out to see whether the mean for sample 1 (D; , say) is significant-
ly larger than the mean for sample 2 (D, , say). The test statistic is then

ty = (ﬁl - ﬁz)/{sD/(l/n1 + l/nz)} R (5)

where sé is the pooled within sample variance of the D wvalues.

Another possibility 1is to compare the two groups of y values using a T
test (Srivastava and Carter, 1983, pp.47 and 53). However some results given below
suggest that this will not provide a better test.

In discussing tests of significanceit is worth stressing the value of random-
ization tests. The general principles behind these are reviewed by Edgington
(1980). In the present context they involve randomly allocating the n individ-
uals in the data to samples of size n; and n, and determining the resulting
values of test statistics. By doing the randomization a large number of times
the randomization distributions of the test statistics can be determined. An
observed test statistic is then significant at the oaZ level if it exceeds
(100¢%) of the values in the corresponding randomized distribution. The advantage
of this approach is that no particular distribution assumptioms have to be made.

It relies entirely on the observed data.

2

4. EXAMPLES OF TESTS

Two sets of data will be used to illustrate the testing procedures described
in the previous section. As an example of survival data, Bumpus' (1898) results
for female birds will be used. Here there are 28 non-survivors and 21 sur-
vivors. Table 1 shows the means and standard deviations for these two samples for
the eight morphological variables measured by Bumpus and also the results of some
tests on these variables. None of the mean values differ significantly between
survivors and non-survivors, An F-test and Levene's test show non-survivors to
be significantly more variable than survivors for the lengths of the humerus and
tibio-tarsus. 1In addition a significant result is found for the F-test on the
length of the keel of the sternum.
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Taking all eight variables together, the likelihood ratio test (assuming
multivariate normality) for the equality of the covariance matrices for survivors
and non-survivors (Srivastava and Carter, 1983, p.333) provides a test statistic
of X2 = 69,37 which has to be compared with the chi-squared distribution with 36
degrees of freedom., This is significant at the 1% 1level. There is no indication
from the test statistic as to the directions of differences between the covariance
matrices although it is clear from Table 1 that the non-survivors tend to be more
variable. As mentioned before, the problem with this test is that the significant
result could be due to non-normal distributions.

: If the eight variables are used to calculate the t, test statisticof equation

(5) then the value obtained is 1.97 . Treated as a t statistic with 47 degrees

of freedom this is significantly large at the 5% level but not the 1% level.

When 1000 tp values were generated by randomizing the data it was found that

29 of these values were 1,97 or more. Consequently, the observed tp value

is 31gnificant at about the 2,97 level on a randomization test.

When a T? test (Srivastava and Carter, 1983, p.47) is used to compare the
two multivariate samples of y wvalues for survivors and non-survivors a non-
significant result is obtained. The reason for this result is that the % test
has very low power in the particular situation being considered. This is demon-
strated nicely by a randomization experiment that will not be described.

The following procedure was carried out 1000 times:-

(a) A sample of 28 'non-survivors" was chosen at random from Bumpus' 49
female birds and the remaining 21 birds were taken as "survivors".

(b) Let x5, denote the value of variable Xj for the ith of the "non-
survivors". This was modified to xj4i, + ejj where ejj was a random
variable with mean zero and standard %eviation As:| . where S3 denotes the
standard deviation of Xj for all 49 birds.

(c) The statistic tp was calculated from equation (5) and T? was calculated
as described by Srivastava and Carter (1983).

Values used for A were 0, 0.125, 0.25, 0.5 and 1.0 .

With A = 0 the original data values were unchanged. This corresponds to a
situation where the null hypothesis that sample 1 and sample 2 are equally variable
must be true., At the other extreme, taking A = 1 amounted to doubling the
standard deviations of all variables Xy Xy seees X8 in sample 1. The other A
values provide situations somewhere between these extremes.

It is quite clear that increasin§ A should lead to an increasing proportion
of significant values for tp and T° . This is exactly what happens with tp
but it does not happen with T? . Table 2 shows the number of significant values
 for tests at the 5% and 1% 1levels of significance. The T2 test gives very
poor results. There is no doubt that the ¢ty test is far better for detecting
stabilizing selection at least with this type of data.

As an example of two sample data, Bumpus' male data can be considered with
the 28 young males being regarded as a sample before selection and the 59 adult
males being regarded as a sample after selection. Table 3 shows the sample means
and standard deviations and tests on individual variables. There are no signifi-
cant differences between the means for young and adult birds. The F test and
Levene's test show significantly more variation in the young birds for the alar
extent. Levene's test also gives significantly more variation in the young birds
for the total length.

The likelihood ratio test for equality of the covariance matrices before and
after selection assuming multlvariate normal samples (Srivastava and Carter, 1983,
p.333) gives a test statistic of X? = 42.91 for the eight variables taken to-
gether. Compared to the chi-squared distribution with 36 degrees of freedom
this is not significant at the 57 level. The test statistic of equation (5) is
tp = 1.65 which is not quite significantly large in comparison to the t-distribu-
tion with 85 degrees of freedom.

It seems that overall there is mno clear evidence that the young males were
more variable than the adults even though the standard deviations of the individual
variables were larger for the young males for seven out of the eight variables.
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Table 2

Comparison of the tp test and the TZ test for detecting different amounts
of stabilizing selection on data generated from Bumpus' female data. The para-
meter A indicates the proportional amount by which the standard deviation is
made larger for sample 1 than for sample 2 and ranges from A = 0 (equal stamdard
deviations) to A = 1 (sample 1 standard deviations are twice those of sample 2).
For tp , critical values for significance have been determined from the t dis-
tribution with 47 degrees of freedom. For T? , the usual critical values based
on the F distribution are not satisfactory. For this test the critical values
have therefore been chosen so as to give the correct proportions of significant
results with A =0 .

Percentage of significant Percentage of significant
results on the results on the
tD test T test

A 5% test 17 test 5% test 17 test

0 4.5 1.1 5.0 1.0
0.125 5.4 1.2 5.7 0.9
0.25 8.6 2.1 6.7 0.7
0.5 28.0 9.3 7.0 1.5
1.0 97.0 84 .4 41.8 18.3

* * * * * * * * * * * % * * * % %* * * * *

A randomization experiment was carried out with the male data using the pro-
cedure described above for the female data. Details will not be given since the
results obtained were essentially the same for the males as for the females
(Table 2).

To sum up the two examples, it appears that stabilizing selection did take
place with the storm survival of the females. However there is no real evidence
of stabilizing selection on the males between the juvenile and adult ages.

5. FURTHER POWER COMPARISONS OF TESTS

More extensive comparisons of the power of the tp , T2 and likelihood ratio
tests are provided elsewhere (Manly, 1985) based upon simulating samples from
multivariate normal and non-normal distributions. These comparisons show that the
T2 test is generally inferior to the tp test for detecting stabilizing selection.
The tp test is also superior to the standard likelihood ratio test for detecting
this type of effect unless the variables being tested have correlations of the
order of +0.9 .

6. PLOTTING DATA

It is obviously useful to have some way of plotting data to indicate the
manner in which selection depends upon the extent to which individual are abnormal.
A technique proposed by Copas (1983) is useful in this respect.

As before it will be assumed that there are two samples, of sizes n; and
ny , the first of which is expected to be more variable when stabilizing selection
takes place. The extent to which an individual is abnormal can conveniently be
measured by its Euclidean distance from the mean for all n = nj + np individuals
in terms of variables standardized to have a variance of unitv. Standardization
is required to ensure that all p variables contribute equally to the distance.
The abnormality of individual i in sample k is then

- .2, 2
where X; 1is the mean and s% is the variance of Xj for all n individuals.
Other measures of distance could obviously be used, However, the Euclidean
distance is relatively simple and it is frequently used in other contexts.
Copas' technique involves plotting the function
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"2 (d -d. )° 2 "k (d - d,)°
A iz ik
P(d) = ] exp {- ————— exp |- ———F—— (7)
i=1 2h k=1 i=1 2h

against d , over the range of values of d in the data. This may appear a
strange procedure at first but it becomes more understandable when it is noted that
the numerator of P(d) recelves a contribution from each individual in sample 2
while the denominator receives a contribution from the individuals in. both samples.
Also, the contributions to ?(d) are greatest from the individuals with distances
close to d . Any individual with a distance equal to d will contribute +1 ,
this being the maximum possible contribution. Individuals with distances very
Qifferent to d will make almost no contribution. From the way it is calculated,
P(d) can be thought of as an estimate of the probability of an individual with a
distance d being in sample 2, given that it is in one of the samples.

The parameter h in equation (7) is a smoothing constant that is at choice.
If h is small then P(d) has important contributions only from individuals with
distances close to d . On the other hand, a large value of h allows individuals
with distances rather different from d to have an effect. Copas suggests trying
a range of values of h , starting with about ten times the average spacing between
d values in the data.

See Copas' (1983) paper for a more rigorous justification of his method of
plotting data. An approximate equation for the standard error of P(d) can be

obtained from the same source.
* * * % * * * * * * * * * * * * % * * * *

0.54
B(a)
0.4

0.3

0.2

0.1 1

Figure 1. Plot of P(d) , the estimated probability of survival for a female
sparrow distance d from the mean, with three values of the smoothing

constant h .
* * * * * * * * * * * * * * * * * * * * *
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For Bumpus' female data the first sample consists of 28 non-survivors and
the second sample consists of 21 survivors. In this case P(d) will provide
an estimate of the probability of survival for birds with a Euclidean distance of
d from the mean bird. The distances in the data range from 1.0l to 6.09
Ten times the average spacing between these is therefore 10(6.09 - 1.01)/48
= 1.06 . A suitable initial choice for h 1is therefore 1,06 . Figure 1 shows
plots for h = 0.53 , 1.06 and 2.12 .

.The effect of varying the smoothing constant is very pronounced in this
example., However it must be remembered that Bd) is subject to sampling var-
iation. Even with h = 2,12 the standard error of P(d) as calculated from the
equation given by Copas (1983) is about 0.2 . Under the circumstances it seems
best to regard h = 2.12 as providing the best plot of the data. It then appears
that the survival probability of the birds varied from about 0.5 for "average"
birds to 0.3 for the most unusual birds.

For Bumpus' male data, the first sample consists of 28 juveniles and the
second sample consists of 59 adults. A plot using equation (7) then indicates
how the proportion of adults varies with different values of d . Stabilizing
selection is indicated if P(d) decreases with increasing d . For this data the
minimum value of d is 1.03 and the maximum is 6,10 . Ten times the average
spacing between d values is therefore 10(6.10 - 1.03)/86 = 0.59 . Figure 2
shows the plots of P(d) for h equal to 0.59 and also half and twice this

value.
* % * * * * * * * * * * * * * * * * * * *

0.8+
0.7
B(d)

0.64

0.54

0.34

0.24

d

Figure 2. Plot of B(d) , the estimated proportion of adult birds for males
distance d from the mean, with three values for the smoothing

constant h .
* * * * * * * * * * * % * * * * * * * % *
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The plot with h = 0,30 is very erratic, indicating a clear lack of
sufficient smoothing of the data. Even with h = 1.18 the standard error of
P(d) wvalues is about 0.2 . It therefore seems best to accept this value of h
as best. It then appears that the proportion of adults was about 0.7 for
"average' birds but declined to about 0.4 for the most unusual birds. This
indication of stabilizing selection must be treated with some reservations because
of the fact that the tests for stabilizing selection described above g1ve non-
significant results with these data.

7. MODELS FOR STABILIZING SELECTION FOR SURVIVAL DATA

For reasons discussed by Manly (1976), a function of the form
¢ = exp {- exp(B, + B, D)} (8)

in appropriate for representing the relationship between ¢ , the probability of
surviving selection, and d , the extent to which an individual deviates from the
mean phenotype. For stabilizing selection B; must be positive so that large
values of d correspond to low values of ¢ .
If By, = 0 then the relationship reduces to
¢ = exp {- exp(Bg)} . (9)

This model, which will be referred to as Model 0, gives the probability of
survival to be the same for all individuals. The maximum likelihood estimator of
By 1is

By = log {-log(n,/n)} , (10)

where ns/n is the observed proportion dying.

A simple measure for d 1is the Euclidean distance function (6) that has
already been suggested for use with Copas' plotting technique. The model of
equation (8) with d determined in this way will be referred to here as Model 1.
It can be estimated from data by the principle of maximum likelihood using the
computer program GLIM (Nelder, 1974; Dobson, 1983, Chapter 8).

A great advantage of Model 1 over other models for stabilizing selection is
that it only needs the single parameter f; to describe this selection. However,
the price paid for this advantage is a model that may be unrealistic because it
treats deviations from means as being equivalent for all variables. Another model
which may be more realistic whilst still involving an acceptable number of para-
meters is

b = exp (- exp(Bg + By} (11)
j=1
where d; = /T(x - X ) /ss 2} is the standardised deviation from the mean for
variable X; for an individual with the value x5 for this variable. This model
allows deviations from the mean to have different effects for different variables.
It will be referred to as Model 2. Like Model 1, it can be estimated from data
using GLIM.

If GLIM is used to fit Models 0 , I and 2 then the relative goodness of
fit of the models can be compared in terms of their deviances. If the deviances
are Dg , Dy and Dj , respectively, them Dy — D; can be compared to the chi-
squared distribution with one degree of freedom. A significantly large value is
evidence of stabilizing selection. Also D; - Dy can be compared to the chi-
square distribution with p - 1 degrees of freedom, A significantly large value
is evidence of a different effect for deviations from the mean for different
variables.

Another plausible model is Model 3, for which

¢ = exp [- exp[B + B, v{ Z (x, - a,)?/s2} 1. (12)
j=1 J ] J , :
Here the optimum value of X3 1s aj rather than the overall observed mean,
where 0j has to be estimated from the data. Fitting this model may present some
problems. It does not fall within the scope of GLIM. However a general maximum
likelihood estimation computer program could be used to fit it.
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Finally, it is worth noting that the most general model for stabilizing
selection that could be entertained would be one something like
d = exp {- exp (BO + E B Xy + E Z Bleix ) (13)

- j=1 i=1 j=1
This allows any optimum values for the variables Xy s Xy 5eees Xp " and varying
effects for deviations from the optimum for each of the variables. Unfortunately,
the number of parameters, 1 + p(p + 3)/2 , makes this model impossible to fit
unless either p 1is small or there is a large amount of data.

To illustrate the use of Models 0 , 1 and 2 , consider yet again Bumpus'
female data. For these data the no selectlon Model 0 of equation (9) is estimated
as

¢ = exp {- exp(- O. 1657)} = 0.4286 ,
which gives a GLIM deviation of Dy = 66.92 . Model 1 of equation (8) is
estimated as

¢ = exp {- exp(-~ 1.249 + 0.430d)} , (14)
with a deviance of D} = 62,00 . The difference in deviance, Do - Dy = 4.92 ,
with one degree of freedom, is significantly large at the 5% level when compared
to the chi-squared distribution. Model 1 is therefore a significantly better fit
than Model 4.

Model 2 was also fitted to the data using GLIM. The deviance was found to be
= 59.15 . This is hardly any smaller than the deviance of Model 1. The

difference in deviance, Dy - D; = 2,85 , with seven degrees of freedom, is not at
all significant. It seems therefore that equation (14) best describes the stabil-
izing selection that seems to have taken place. According to this model, an
average female, with d = 0 , had a probability of about ¢ = 0.75 of surviving
the storm, while the most unusual female, with d = 6.09 , had a survival probabil-
ity of only 0.02 .,

8. MODELS FOR STABILIZING SELECTION FOR TWO SAMPLE DATA.

One approach to modelling two sample data involves assuming that the distri-
bution of the distance of individuals from the mean is f(d) before selection and
¢(d)f(d) after selection. Then ¢(d) is a fitness function which reflects the
increase or decrease in the frequency of deviations of d as a result of selection.
In that case the probability of an individual with deviation d appearing in the
sample before selection, given that it is either in this sample or in the sample
after selection, is

Prob(sample 1|d) = £(d)/{£(d) + ¢(d)f(d)}
= 1/{1 + ¢(d)} ,
which does not depend on f(d) . A simple assumption is that ¢(d) = exp(B, + 8,d) ,
in which case
Prob(sample 1|d) = 1/{1 + exp(By + B1d)} . ~(15)

The same approach can now be used as suggested in the previous section for
survival data. Thus three models in particular can be entertained. Model 0 is the
no selection model for which ¢(d) = exp(By) so that

Prob(sample 1|d) = 1/{l + exp(Bg)} . . (16)
The maximum likelihood estimator of Rg can then be shown to be Bo =
loge (n2/ny) , where ny 1is the size of the ith sample. Model 1 allows Ry of
equation (15) to be non-zero. It should be negative for stabilizing selection.

Finally, for Model 2, ¢(d) = exp(B + E B d ) , where dj

j=1
= /{(x - %.)? /s 2} , the standardized deviation from the mean for variable X5
This leads %o
Prob(sample 1]|d) = 1/{1 + exp(B, + E Bjdj)} . (17)

j=1
All these models can be fitted to data using the logistic fitting capacity of

the computer GLIM. If the deviance of Model 7 is D, then D, - D1 , with one
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degree of freedom, measures the improvement in fit of Model 1 over Model 0.
Similarly, D; - Dy , with p - 1 degrees of freedom, measures the improvement of
fit of Model 2 over Model 1. Significant improvements can be tested for using the
chi-squareddistribution.

Another plausible model is Model 3, for which

¢ = exp[B + B, v{ E (x - oy )2 /S 21, (18)

. where a3 is the optimum value of the variable X5 , whlch has  to be estimated
from the data. Fitting this model is not straightiorward. It does not fall with-
in the usual scope of GLIM. However, it can be fitted using a general maximum
likelihood estimation computer program.

Finally, note the completely general exponential quadratic model for stabil-
izing selection, for which

¢ = exp(B + E B x, + § B X,) .
h| 11:].2_.1 iJi
Here p(p + 3)/2 parameters are required to describe selection,

The example that is being used for two sample data involves the 28 juvenile
and 59 adult males in Bumpus' data. Tests have already shown that there is no
real evidence of stabilizing selection in this case. Nevertheless, Models 0 , 1
and 2 have been fitted to the data for illustrative purposes.

The no selection Model 0 is estimated as

¢(d) = exp(0.7453) ,
with a deviance of Dy = 109.3 . Model 1 is estimated as

¢$(d) = exp(l.2258 - 0.0584d) ,
with a deviance of D; = 105.4 . The difference in deviance is Dg - D; = 3.9 ,
with one degree of freedom. As expected, this is not significant.

When Model 2 is fitted the deviance is Dy = 100.9 . The difference D; - Dy
= 4.5 , with seven degrees of freedom, is not significant. There is therefore no
evidence of any improvement over Model I.

The model fitting calculations have confirmed the test results. A no select-
ion model describes these data about as well as either of the selection models.

9. DISCUSSION

The approaches to studying stabilizing selection that have been proposed in
this paper have a number of limitations. To begin with, the test procedure based
upon equations (4) and (5) is somewhat arbitrary. However the test statistic does
emphasize the sample differences that are important. The randomization results
shown in Table 2 indicate that the test does have reasonable power for the types
of data likely to occur in practice and this is confirmed by simulation studies
reported elsewhere (Manly, 1985)., Also, accurate critical values are available
from the t-—distribution. Thus the test is simple and reliable.

For plotting data it has been suggested that the deviation of individuals from
average be measured by the standardized Euclidean distance function of equation (6).
This implies that deviations from the mean are equally important for all variables
when they are measured in units of standard deviations. This is unlikely to be
exactly true. Nevertheless, it may serve as a useful approximation. There seems
no point in using a more complicated distance function that takes into account the
correlation between variables such as, for example, the Mahalanobis distance
(Srivastava and Carter, 1983, p.232). A selection process may select against
extreme individuals but it is difficult to see how it could allow for correlations.

Models for which optimum character values are not equal to means have been
suggested (equations (12) and (18)) but fitting procedures have not been dis-
cussed. These models have, in fact, been estimated for Bumpus' data and they fit
very little better than the other models discussed in Sections 7 and 8. Of course,
if optimum values are not equal to means then directiornal selection will occur as
well as stabilizing selection. It may then be appropriate to adopt one of the
estimation procedures proposed by Lande and Arnold (1983) and Manly (1976, 1981).
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