Event Simulation for the Large Hadren Collider

Bryan Webber
Cavendish Laboratory
University of Cambridge

Event Simulation for the Large Hadron Collider

- Monte Carlo event generation:
 - * theoretical status and limitations
- Recent improvements:
 - perturbative and non-perturbative
- Overview of results:
 - W, Z, top, Higgs, ... (+jets)

Monte Carlo Event Generation

Monte Carlo Event Generation

- Aim is to produce simulated (particle-level) datasets like those from real collider events
 - i.e. lists of particle identities, momenta, ...
 - simulate quantum effects by (pseudo)random numbers
- Essential for:
 - Designing new experiments and data analyses
 - Correcting for detector and selection effects
 - Testing the Standard Model and measuring its parameters
 - Estimating new signals and their backgrounds

A high-mass dijet event

CMS Experiment at LHC, CERN, Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32

• $M_{jj} = 5.15 \text{ TeV}$

CMS PAS EXO-12-059

LHC Dijet

LHC Dijet

QCD Factorization

$$\sigma_{pp\to X}(E_{pp}^2) = \int_0^1 dx_1\,dx_2\,f_i(x_1,\mu^2)\,f_j(x_2,\mu^2)\,\hat{\sigma}_{ij\to X}(x_1x_2E_{pp}^2,\mu^2)$$
 momentum parton hard process fractions distributions at scale μ^2

- Jet formation and underlying event take place over a much longer time scale, with unit probability
- Hence they cannot affect the cross section
- Scale dependences of parton distributions and hard process cross section are perturbatively calculable, and cancel order by order

Parton Shower Approximation

- Keep only most singular parts of QCD matrix elements:
- Collinear $d\sigma_{n+1} \approx \frac{\alpha_S}{2\pi} \sum_{i} P_{ii}(z_i, \phi_i) dz_i \frac{d\xi_i}{\xi_i} \frac{d\phi_i}{2\pi} d\sigma_n$ $\xi_i = 1 \cos\theta_i$
- Soft $d\sigma_{n+1} \approx \frac{\alpha_{\mathrm{S}}}{2\pi} \sum_{i,j} (-\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \frac{p_{i} \cdot p_{j}}{p_{i} \cdot k \, p_{j} \cdot k} \omega \, d\omega \, d\xi_{i} \, \frac{d\phi_{i}}{2\pi} d\sigma_{n}$ $= \frac{\alpha_{\mathrm{S}}}{2\pi} \sum_{i,j} (-\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \frac{\xi_{ij}}{\xi_{i} \, \xi_{j}} \frac{d\omega}{\omega} d\xi_{i} \, \frac{d\phi_{i}}{2\pi} d\sigma_{n}$ $\approx \frac{\alpha_{\mathrm{S}}}{2\pi} \sum_{i,j} (-\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \, \Theta(\xi_{ij} \xi_{i}) \frac{d\omega}{\omega} \frac{d\xi_{i}}{\xi_{i}} d\sigma_{n}$

Angular-ordered parton shower (or dipoles)

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales $Q_0 \sim$ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour, flavour and momentum flows are only locally redistributed by hadronization

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales Q_0 ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour, flavour and momentum flows are only locally redistributed by hadronization

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales $Q_0 \sim$ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour flow dictates how to connect hadronic string (width \sim few x Λ_{QCD}) with shower

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales $Q_0 \sim$ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour flow dictates how to connect hadronic string (width \sim few x Λ_{QCD}) with shower

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales Q_0 ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales $Q_0 \sim$ few x Λ_{QCD} , there is universal preconfinement of colour
- Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

Primary Light Clusters

- Mass distribution of preconfined clusters is universal
- Phase-space decay model for most clusters
- High-mass tail decays anisotropically (string-like)

Hadronization Status

- No fundamental progress since 1980s
 - Available non-perturbative methods (lattice, AdS/QCD, ...) are inapplicable
- Less important in some respects in LHC era
 - Jets, leptons and photons are observed objects, not hadrons
- But still important for detector effects
 - Jet response, heavy-flavour tagging, lepton and photon isolation, ...

Underlying Event

- Multiple parton interactions in same collision
 - Depends on density profile of proton
- Assume QCD 2-to-2 secondary collisions
 - Need cutoff at low pt
- Need to model colour flow
 - Colour reconnections are necessary

Underlying Event

Gieseke, Röhr, Siódmok, arXiv: 1206.2205

ATLAS CONF-2012-164

Dijet Mass Distribution

- No significant deviation from Standard Model (yet)
- But ...

Diboson selection

ATLAS, arXiv: I 506.00962

- Each jet selected for hadronic W or Z decay
- WZ,WW and ZZ selections overlap

MC Event Generators

HERWIG

http://projects.hepforge.org/herwig/

- Angular-ordered parton shower, cluster hadronization
- → v6 Fortran; Herwig++
- PYTHIA

http://www.thep.lu.se/~torbjorn/Pythia.html

- → Dipole-type parton shower, string hadronization
- → v6 Fortran; v8 C++
- SHERPA

http://projects.hepforge.org/sherpa/

- Dipole-type parton shower, cluster hadronization
- **→** C++

"General-purpose event generators for LHC physics", A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145

Other relevant software (with apologies for omissions)

- Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia
- Matrix-element generators: MadGraph/MadEvent, CompHep, CalcHep, Helac, Whizard, Sherpa, GoSam, aMC@NLO
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p_{\perp}) spectra: ResBos
- Approximate loops: LoopSim
- Jet finders: anti- k_{\perp} and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
- Standards: PDF identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Sjöstrand, Nobel Symposium, May 2013

Parton Shower Monte Carlo

• Hard subprocess: $q\bar{q} \to Z^0/W^{\pm}$

http://mcplots.cern.ch/

- Leading-order (LO) normalization

 need next-to-LO (NLO)
- Worse for high p_T and/or extra jets \longrightarrow need multijet merging

Matching & Merging

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting
 - MC@NLO

POWHEG

Frixione, BW, 2002

Nason, 2004

- Merging parton showers with LO n-jet matrix elements, minimizing jet resolution dependence
 - * CKKW

Dipole

MLM merging

Catani, Krauss, Kühn, BW, 2001

Lönnblad, 2001

Mangano, 2002

MC@NLO matching

S Frixione & BW, JHEP 06(2002)029

- Compute parton shower contributions (real and virtual) at NLO
 - Generator-dependent
- Subtract these from exact NLO
 - Cancels divergences of exact NLO!
- Generate modified no-emission (LO+virtual) and real-emission hard process configurations
 - Some may have negative weight
- Pass these through parton shower etc.
 - Only shower-generated terms beyond NLO

MC@NLO matching

S Frixione & BW, JHEP 06(2002)029 divergent

finite virtual

$$d\sigma_{\text{NLO}} = \left[B(\Phi_B) + V(\Phi_B) - \int \sum_i C_i (\Phi_B, \Phi_R) d\Phi_R \right] d\Phi_B + R(\Phi_B, \Phi_R) d\Phi_B d\Phi_R$$

$$\equiv \left[B + V - \int C d\Phi_R \right] d\Phi_B + R d\Phi_B d\Phi_R$$

$$d\sigma_{MC} = B(\Phi_B) d\Phi_B \left[\Delta_{MC}(0) + \frac{R_{MC}(\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_{MC}(k_T(\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$\equiv B d\Phi_B \left[\Delta_{MC}(0) + (R_{MC}/B) \Delta_{MC}(k_T) d\Phi_R \right]$$

$$d\sigma_{\text{MC@NLO}} = \begin{bmatrix} B + V + \int (R_{\text{MC}} - C) d\Phi_R \end{bmatrix} d\Phi_B \left[\Delta_{\text{MC}} (0) + (R_{\text{MC}}/B) \Delta_{\text{MC}} (k_T) d\Phi_R \right] + (R - R_{\text{MC}}) \Delta_{\text{MC}} (k_T) d\Phi_B d\Phi_R$$

finite ≥ 0

MC starting from no emission MC starting from one emission

Expanding gives NLO result

POWHEG matching

P Nason, JHEP 11(2004)040

- POsitive Weight Hardest Emission Generator
- Use exact real-emission matrix element to generate hardest (highest relative p_T) emission configurations
 - No-emission probability implicitly modified
 - (Almost) eliminates negative weights
 - Some uncontrolled terms generated beyond NLO
- Pass configurations through parton shower etc

POWHEG matching

P Nason, JHEP 11(2004)040

$$d\sigma_{MC} = B(\Phi_B) d\Phi_B \left[\Delta_{MC}(0) + \frac{R_{MC}(\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_{MC}(k_T(\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$d\sigma_{PH} = \overline{B} (\Phi_B) d\Phi_B \left[\Delta_R (0) + \frac{R (\Phi_B, \Phi_R)}{B (\Phi_B)} \Delta_R (k_T (\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$\overline{B}(\Phi_B) = B(\Phi_B) + V(\Phi_B) + \int \left[R(\Phi_B, \Phi_R) - \sum_i C_i(\Phi_B, \Phi_R) \right] d\Phi_R$$

$$\Delta_{R}(p_{T}) = \exp\left[-\int d\Phi_{R} \frac{R(\Phi_{B}, \Phi_{R})}{B(\Phi_{B})} \theta\left(k_{T}(\Phi_{B}, \Phi_{R}) - p_{T}\right)\right]$$

- NLO with (almost) no negative weights arbitrary NNLO
- High pt always enhanced by $K = \overline{B}/B = 1 + \mathcal{O}(\alpha_{\mathrm{S}})$

Multijet Merging

- Objective: merge LO n-jet matrix elements*
 with parton showers such that:
 - * Multijet rates for jet resolution > Q_{cut} are correct to LO (up to N_{max})
 - Shower generates jet structure below Q_{cut} (and jets above N_{max})
 - Leading (and next) Q_{cut} dependence cancels

39

* ALPGEN or MadGraph, n≤N_{max}

CKKW: Catani et al., JHEP 11(2001)063

-L: Lonnblad, JHEP 05(2002)063

MLM: Mangano et al., NP B632(2002)343

Vector boson production

Z⁰ at 2 TeV (Tevatron)

http://mcplots.cern.ch/

- Absolute normalization:
 LO too low
- POWHEG agrees with rate and distribution

Z⁰ at 7,8 TeV (LHC Run I)

CMS, PRD85(2012)032002

CMS PAS SMP-12-025

- Normalized to data
- Rapidity y=log[(E+p_L)/(E-p_L)]/2
- POWHEG agrees with distribution (and NNLO)

Z⁰ at 13 TeV (LHC Run 2)

- Normalized to data again
- So far, good agreement

Combined matching+merging

Frederix, Frixione, Papaefstathiou, Prestel, Torrielli, arXiv:1511.00847 (today!)

Top quark pair production

Top quark distributions

CMS Preliminary, 12.1 fb¹ at $\sqrt{s} = 8 \text{ TeV}$ 25 $\times 10^{-3}$ e/μ + Jets Combined Data - MadGraph ---- MC@NLO **POWHEG** 250 100 150 200 $p_{\scriptscriptstyle T}^{t\bar{t}}$ [GeV]

CMS Preliminary, 12.1 fb¹ at $\sqrt{s} = 8$ TeV

Leading additional jet lyl

Frixione, Nason, BW, JHEP 08(2003)007

CMS PAS TOP-12-027

ATLAS, arXiv:1203.5015

Alioli, Nason, Oleari, Re, JHEP 06(2010)043

Top mass & hadronization

Mangano, Top LHC WG, July 2012

- Top decay linked to rest of event
- Reconstructed 'top mass' depends on kinematics
- Top mass has non-perturbative ambiguity

Top mass & kinematics

CMS PAS TOP-12-029

- Reconstructed top mass depends on kinematics
- But different generators track data well with a common input mass

LHC Cross Section Summary

- Surprisingly good agreement
- No firm evidence of non-Standard-Model phenomena (in Run I)

Higgs boson production

Higgs Production by Vector Boson Fusion

Higgs Production by Vector Boson Fusion

- Forward jets
- Few central jets
- Central jet veto increases S/B

Higgs Signal and Background Simulation

Process	Generator
ggF, VBF	POWHEG [57, 58]+PYTHIA
$WH, ZH, t\bar{t}H$	PYTHIA
W +jets, Z/γ^* +jets	ALPGEN [59]+HERWIG
$t\overline{t}$, tW , tb	MC@NLO [60]+HERWIG
tqb	AcerMC [61]+PYTHIA
$q\bar{q} o WW$	MC@NLO+HERWIG
$gg \rightarrow WW$	gg2WW [62]+HERWIG
$q\bar{q} o ZZ$	POWHEG [63]+PYTHIA
$gg \rightarrow ZZ$	gg2ZZ [64]+HERWIG
WZ	MadGraph+PYTHIA, HERWIG
$W\gamma$ +jets	ALPGEN+HERWIG
$W\gamma^*$ [65]	MadGraph+PYTHIA
$q\bar{q}/gg o \gamma\gamma$	SHERPA

Discovery paper: ATLAS, Phys.Lett.B716(2012) I

Higgs→4 leptons Signal and Background

ATLAS, Phys.Rev.D91(2015)012006

 m_{4l} [GeV]

500

600

Higgs + Multijets Rates

≥ 3

 N_{iets}

Event Simulation for the LHC

ATLAS, Phys.Rev.Lett. I 15(2015)091801

Higgs Differential Distributions

ATLAS, Phys.Rev.Lett.115(2015)091801

Higgs Decays

No sign of deviations from Standard Model

Beyond Standard Model Simulation

BSM Simulation

- Main generators have some BSM models built in
 - Pythia 6 has the most models
 - Herwig++ has careful treatment of SUSY spin correlations and off-shell effects
- Trend is now towards external matrix element generators: FeynRules + MadGraph, ...
- QCD corrections and matching/merging still needed

Searching for new signals

ATLAS CONF-2013-054

- Dashed = Herwig++ $\tilde{g}\tilde{g}$, $\tilde{g} \rightarrow t + \bar{t} + \tilde{\chi}_1^0$
- Background: mostly Sherpa LO multijet merging

ATLAS SUSY Search

All limits quoted are observed minus 1 or theoretical signal cross section uncertainty:

ATLAS Exotica Search

CMS Exotica Search

Conclusions and Prospects

- Standard Model has (so far) been spectacularly confirmed at the LHC
- Monte Carlo event generation of (SM and BSM) signals and backgrounds plays a big part
- Matched NLO and merged multi-jet generators have proved essential
 - Automation and NLO merging in progress
 - NNLO much more challenging
- Still plenty of scope for new discoveries!

Thanks for listening!

Backup

A high-mass dijet event

W & Z⁰ at Tevatron

- Herwig++ includes W/Z+jet (MEC)
- All agree (tuned) at Tevatron
- Normalized to data

Hamilton, Richardson, Tully JHEP10(2008)015

W+jets at LHC

• Very good agreement with predictions from merged simulations, while parton shower alone starts to fail for $n_{jet} \ge 2$

yy at Tevatron

- Absolute normalization -LO too low
- POWHEG agrees with rate and distribution
- At LHC, important background for Higgs search

3

W asymmetry at LHC

Asymmetry probes parton distributions

$$u\bar{d} \to W^+ \to \mu^+ \nu_\mu$$
 vs $d\bar{u} \to W^- \to \mu^- \bar{\nu}_\mu$

Underlying Event

ATLAS PRD83(2011)112001 Gieseke, Röhr, Siódmok, arXiv:1206.2205

Top pairs at 8 TeV

CMS, 1505.04480

Top+jets

CMS PAS TOP-12-018 (I+jets)
ATLAS-CONF-2012-155 (I+jets)

CMS PAS TOP-12-023

- Matched NLO not adequate for >2 extra jets
- Merged multijets better there (for $d\sigma/\sigma$)

But all is not perfect ...

Dijet flavours versus jet pt

ATLAS, arXiv:1210.0441

Interesting excess of (single) b quark jets

Automatic NLO matching

- MC@NLO-type
 - MadGraph5_aMC@NLO (MadLoop5)

Alwall et al., 1405.0301

Sherpa+OpenLoops

Höche et al., 1111.1220; 1201.5882

Herwig++ Matchbox+OpenLoops/GoSam

Plätzer, Gieseke, 1 109.6256; Bellm et al., 1310.6877

POWHEG-type

Combined matching+merging

- NLO calculations generally refer to inclusive cross sections e.g. $\sigma(W+>n)$ jets)
- Multijet merging does not preserve them, because of mismatch between exact real-emission and approximate (Sudakov) virtual corrections
- When correcting this mismatch, one can simultaneously upgrade them to NLO
- There remains the issue of merging scale dependence beyond NLO (large logs)

Combined matching+merging

- Many competing schemes (pp, under development)
 - MEPS@NLO (SHERPA)
 - * FxFx (aMC@NLO) Frederix & Frixione, arXiv:1209.6215
 - * UNLOPS (Pythia 8) Lönnblad & Prestel, arXiv:1211.7278
 - MatchBox (Herwig++) Plätzer, arXiv:1211.5467
 - * MiNLO (POWHEG) Hamilton et al., arXiv:1212.4504
 - * GENEVA Alioli, Bauer et al., arXiv:1212.4504
- Some key ideas in LoopSim Rubin, Salam & Sapeta, JHEP1009, 084

Combined matching+merging

UNLOPS: Lönnblad & Prestel, arXiv:1211.7278

Scale dependences almost eliminated

MEPS@NLO

W+0,1,2 jets at NLO

Höche et al., 1207.5030

W+3,4 jets at LO

Figure 1: Cross section as a function of the inclusive jet multiplicity (left) and their ratios (right) in W+jets events measured by ATLAS [50].

UNLOPS merging

Merging scale dependence

Lönnblad, Prestel, 1211.7278

Renorm'n/ factor'n scale dependence

NNLO matching

- Fully inclusive NNLO, one extra jet NLO
- So far, limited to Drell-Yan & Higgs production (DY/H)
 - MiNLO-NNLOPS

Hamilton et al., 1309.0017, 1407.3773

UN²LOPS

Höche, Li, Prestel, 1405.3607, 1407.3773

Achievable Precision?

Figure 1: Capabilities of LHC for model-independent measurements of Higgs boson couplings. The plot shows 1 σ confidence intervals for LHC at 14 TeV with 300 fb⁻¹. No error is estimated for g(hcc). The marked horizontal band represents a 5% deviation from the Standard Model prediction for the coupling.

M Peskin, arXiv: 1207.2516

Achievable Precision?

Figure 2: Comparison of the capabilities of LHC and ILC for model-independent measurements of Higgs boson couplings. The plot shows (from left to right in each set of error bars) 1 σ confidence intervals for LHC at 14 TeV with 300 fb⁻¹, for ILC at 250 GeV and 250 fb⁻¹ ('ILC1'), for the full ILC program up to 500 GeV with 500 fb⁻¹ ('ILC'), and for a program with 1000 fb⁻¹ for an upgraded ILC at 1 TeV ('ILCTeV'). The marked horizontal band represents a 5% deviation from the Standard Model prediction for the coupling.

M Peskin, arXiv:1207.2516