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TOP 3 REASONS
WHY DARK MATTER IS SO FASCINATING
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1. We know it is there waiting for us, 
but we still don’t know what it is

3. It may be better to spot them first, 
before they can spot us

2. It might help us solve some of the 
mysteries of physics at the 
fundamental level (Higgs mass stability, 
baryogengesis, neutrino masses, strong CP, 
pretty-much-everything, …)

DM

vide A. Lipniacka talk last Friday



RELIC DENSITY  
STANDARD APPROACH
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time evolution of         in kinetic theory: 

freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling time

assumptions for using Boltzmann eq: classical limit, molecular chaos,...
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E (@t �H~p ·r~p) f� = C[f�]
dn�

dt
+ 3Hn� = C

the collision term integra
tedLiouville operator in 

FRW background



RELIC DENSITY  
THE LO COLLISION TERM
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assuming kinetic equilibrium at chemical decoupling:

for               CP invariant process:

where the thermally averaged cross section:

note: added ”by hand”2 $ 2

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)]

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�

h���̄!ijvrelieq = �
h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄

f� ⇠ a(µ)f eq
�

crucial point: 
in Maxwell approx.

p� + p�̄ = pi + pj ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j



RELIC DENSITY  
BOLTZMANN EQ.

Re-written for the comoving number density:

Recipe: 
compute LO annihilation cross-section, 
take a thermal bath average, 
plug in to BE… and voilà

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
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� neq
�̄
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2
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x!0

Y = Yeq lim

x!1
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1. Co-annihilations

2. Annihilation to forbidden channels

3. Annihilation near poles

RELIC DENSITY  
THREE EXCEPTIONS
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⟨σeffv⟩ =
∑

ij

⟨σijvij⟩
n
eq
i n

eq
j

n
2
eq

σij =
∑

X

σ(χiχj → X)with:

if more than one state share a 
conserved quantum number 

making DM stable

if DM is slightly below mass 
threshold for annihilation 

e.g., SUSY

recent e.g., 1505.07107

„forbidden” channel can still be 
accessible in thermal bath)

Griest & Seckel PRD’91

expansion in velocity 
(s-wave, p-wave, etc.) not safe (more historical issue: 

these days most people 
use numerical codes)



EXCEPTION IV: 
NLO EFFECTS



DARK MATTER AT NLO

<1.5% uncertainty!
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Relic density computation at NLO from first principles

December 9, 2013

1 Introduction

Observations at astrophysical and cosmological scales indicate existence of yet unknown, non-baryonic particle
dark matter (DM) component with the present day energy density [1]:

⌦DMh2 = 0.1187 ± 0.0017. (1)

Observations based on purely gravitational e↵ects cannot however provide an answer to the question of its origin,
therefore after several decades it still remains open. One of the most natural and widely studied possibility is that
dark matter arises as a thermal relic, i.e., it is produced thermally in the Early Universe and freezes-out when
the temperature of the plasma is not high enough to keep the dark matter component in chemical equilibrium.
The moment when it happens is determined by physical processes involving three di↵erent energy scales: the
Hubble expansion rate H, the interaction (annihilation) rate � and the scale of inhomogeneity of the system. The
latter is usually neglected as one assumes that before the freeze-out the whole system is in thermal equilibrium
(having infinite inhomogeneity length) and the process of chemical decoupling of dark matter component does not
introduce large departure of equilibrium of the background plasma. Additionally, if one assumes that the Compton
wavelength of DM particles is small with respect to inhomogeneity scale (the quasi-particle approximation) and
that one can neglect all memory e↵ects, one arrives in semi-classical description of the evolution of phase space
density functions f(p). In this case, the transport is governed by the Boltzmann equation. For the relic density
computation it is typically written in the Friedmann-Robertson-Walker background and as an equation for the
number density of given species i:

ni(t) =
hi

(2⇡)3

Z
d3pfi(p), (2)

with the hi being the number of internal degrees of freedom, as follows

dn�

dt
+ 3Hn� = �

Z
d⇧�d⇧ad⇧b...d⇧id⇧j ...|M�ab...!ij...|2(2⇡)4�(4)(p� + pa + pb + ... � pi � pj � ...) ⇥

[f�fafb...(1 ± fi)(1 ± fj)... � fifj ...(1 ± f�)(1 ± fa)(1 ± fb)...] , (3)

for a process �ab... ! ij... and where we assumed CP invariance resulting in |M�ab...!ij...|2 = |Mij...!�ab...|2.
In recent years there has been an increasing interest in higher order corrections to scattering and annihilation

processes involving DM particles. The main phenomenological importance of such corrections is in the possibly
large modification of the annihilation spectra [?] and in the scattering rates in the direct detection experiments [?].
It has been also noted recently that in some cases the corrections to the annihilation rate � at early times
can be significant and can lead to a non-negligible e↵ect in the relic density computation [2–6]. Few projects
aiming in providing numerical codes including the higher order corrections have been started and are under
developement [?, ?]. Moreover, the increasing precision of the observational data will require even more precise
computations on the theoretical side, in some cases at full next to leading order (NLO) in the coupling constant.

However, using in the standard relic density computation the scattering matrix elements at NLO gives rise
to two questions: i) whether the transport equation itself receives quantum corrections and ii) how does the
cancellation of possible (soft and/or collinear) IR divergences take place? The first point was studied in detail
in [7] in the context of electroweak baryogenesis (see also [?]), and we will discuss it in section 3. Now we will
illustrate the second issue.

1
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RELIC DENSITY AT NLO 
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Recall at LO:

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)]

crucial point: 

in Maxwell approx.

p� + p�̄ = pi + pj ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j

p� + p�̄ = pi + pj ± p� )

at NLO both virtual one-loop and 3-body processes contribute:

photon can be 
arbitrarily soft
f� ⇠ !�1

Creal = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ij�vrel [f�f�̄(1± fi)(1± fj)(1 + f�)�fifjf�(1± f�)(1± f�̄)]

C
1�loop

= �h2

�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

�1�loop

��̄!ij vrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)]

Maxwell approx. not valid anymore...
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...problem:  T-dependend IR divergence!

RELIC DENSITY AT NLO 

it sounds scary - but somehow we all know there has to be a happy-end 



RELIC DENSITY  
WHAT REALLY HAPPENS AT NLO?
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only this used in NLO literature so far

E (@t �H~p ·r~p) f = C[f ]. (0.1)

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)] , (0.2)

���̄!ijvrel =
1

4E�E�̄

Z
d3~pi

(2⇡)32Ei

d3~pj
(2⇡)32Ej

|M��̄!ij |2(2⇡)4�(p�+p�̄�pi�pj). (0.3)

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�
, (0.4)

h���̄!ijvrelieq = � h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄ . (0.5)

E� + E�̄ = Ei + Ej ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j (0.6)

CNLO ⇠
Z
d⇧��̄ij f�f�̄

⇢
|MLO

��̄!ij |2 + |MNLO T=0
��̄!ij |2 +

Z
d⇧� |M��̄!ij� |2 +

|MNLO T 6=0
��̄!ij |2 +

Z
d⇧�

⇥
f�

�|M��̄!ij� |2 + |M��̄�!ij |2
�

�fi
�|M��̄!ij� |2 + |M��̄i!j� |2

�� fj
�|M��̄!ij� |2 + |M��̄j!i� |2

�⇤�

�fifj

⇢
|MLO

ij!��̄|2 + |MNLO T=0
ij!��̄ |2 +

Z
d⇧� |Mij!��̄� |2 +

|MNLO T 6=0
ij!��̄ |2 +

Z
d⇧�

⇥
f�

�|Mij!��̄� |2 + |Mij�!��̄|2
�

�f�
�|Mij!��̄� |2 + |Mij�!�� |2

�� f�̄
�|Mij!��̄� |2 + |Mij�̄!�̄� |2

�⇤�

CNLO = � ⇥h�NLO
ann vrelieq n�n�̄ � h�NLO

prod vrelieq neq
� neq

�̄

⇤
, (0.7)

i�(x, y) = hTC�(x)�
†
(y)i, (0.8)

and for the fermion

iS↵�(x, y) = hTC ↵(x) ¯ �(y)i, (0.9)

where here TC denotes the time ordering operation along the contour. They correspond to four

Green’s functions with real time arguments each:

i�>
(x, y) ⌘ h�(x)�†(y)i i�<

(x, y) ⌘ h�†(y)�(x)i (0.10)

i�c
(x, y) ⌘ hT c�(x)�†(y)i i�a

(x, y) ⌘ hT a�(x)�†(y)i, (0.11)

for scalars and

iS>
↵�(x, y) ⌘ h ↵(x) ¯ �(y)i iS<

↵�(x, y) ⌘ �h ¯ ↵(y) �(x)i (0.12)

iSc
↵�(x, y) ⌘ hT c ↵(x) ¯ �(y)i iSa

↵�(x, y) ⌘ hT a ↵(x) ¯ �(y)i, (0.13)

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (0.14)

1

thermal 
1-loop

photon 
emission

photon 
absorption

SM fermions 
emission

SM fermions 
absorption

Beneke, Dighera, AH, 1409.3049



1. how the (soft and collinear) IR divergence cancellation 
happen?

2. does Boltzmann equation itself receive quantum corrections?

3. how large are the remaining finite T corrections?

QUESTIONS:

Program: develop a method for relic density calculation 
directly from QFT and free from IR problems

framework exists: non-equilibrium thermal field theory 

14



CLOSED TIME PATH
FORMALISM

contour Green’s functions obey Dyson-Schwinger eqs:

C tmax

tmin

t

Figure 1. The contour C in the complex time plane. The value t
max

can be taken to be +1 for practical
computations.

dependence di↵erent than on the relative coordinate. Therefore, for systems not far from equilib-
rium it is useful to perform the Wigner transform and define the Green’s functions (and analogically
self-energies) in the Wigner space

G(X, p) ⌘
Z

t

max

t

min

d4ueipuG (X � u/2, X + u/2) . (3.7)

The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the
other hand describes large scale fluctuations, i.e. inhomogeneities. In the equilibrium in the Wigner
space all Green’s functions are described only by the dependence on the momentum G

eq

(p).
The contour Green’s functions obey the Dyson-Schwinger equation:

�(x, y) = �0(x, y) �
Z

C

d4z

Z

C

d4z0�0(x, z)⇧(z, z0)�(z0, y), (3.8)

S
↵�

(x, y) = S0
↵�

(x, y) �
Z

C

d4z

Z

C

d4z0S0
↵�

(x, z)⌃
�⇢

(z, z0)S
⇢�

(z0, y), (3.9)

where the superscript ‘0’ denotes the free Green’s functions, and ⇧,⌃ are the self-energies. These can
be rewritten in the form of Kadano↵-Baym equations [19]:

(�@2 �m2
�

)�
<>(x, y) �

Z
d4z

⇣
⇧

h

(x, z)�
<>(z, y) � ⇧

<>(x, z)�
h

(z, y)
⌘

= C
�

, (3.10)

for the scalars and

(i/@ �m
�

)S
<>(x, y) �

Z
d4z

⇣
⌃

h

(x, z)S
<>(z, y) � ⌃

<>(x, z)S
h

(z, y)
⌘

= C
�

, (3.11)

for fermions, where the collision terms are defined as:

C
�

=
1

2

Z
d4z

�
⇧>(x, z)�<(z, y) � ⇧<(x, z)�>(z, y)

�
, (3.12)

C
�

=
1

2

Z
d4z

�
⌃>(x, z)S<(z, y) � ⌃<(x, z)S>(z, y)

�
, (3.13)

and where the subscript h denotes the hermitian part, ⇧
h

= ⇧c� 1
2 (⇧> � ⇧<) and analogously for ⌃

and the Green’s functions. These equations for the Green’s functions are exact functional equations,
which are however very non-trivial to solve. At this point we will use the approximations described
in the introduction. Firstly we go to the Wigner space. This is not an approximation in itself, but we
will additionally assume that one can take the tmin = �1, which results in discarding any memory
e↵ect. Next we perform the gradient expansion up to the first order in gradients. The equations

– 5 –

e.g. [16? ]). The proof of cancellation of all divergences in general case is not completed, however
partial results exist in the literature [17? , 18]. The known results show the physical reason for the
thermal divergence cancellation: the photons in the plasma contribute not only to the soft/collinear
emission but also to the virtual processes of the two-body amplitude.

The same physical reason holds in the case of the chemical decoupling. In the next section we
present a framework of computing the relic density, based on deriving the Boltzmann equation from the
Kadano↵-Baym equations [19]. This derivation is a well known procedure in non-equilibrium thermal
field theory and gives a prescription for the computation of the collision term which consistently takes
into account all the thermal corrections leading to IR divergence cancellation and also automatically
gives the finite temperature-dependent correction.

In the example model we will consider, we can directly observe the cancellation of both soft
and collinear divergences. As we will show, the IR finiteness of the collision term boils down to the
finiteness of the DM self-energies in the thermal background. We find that the standard procedure
of computing the scattering amplitudes at zero temperature and plugging it into the semi-classical
Boltzmann equation give IR finite result, which is correct with a very good accuracy; in the low
temperature regime, i.e. ⌧ ⌘ T

m�
⌧ 1 which is the case of the freeze-out process, neglecting the

thermal e↵ect gives an error which is of order O(↵⌧2), with ↵ being the fine structure constant.

3 Derivation of the quantum Boltzmann equation

The aim of this section is to shortly review the procedure of obtaining the transport equation for
the phase space density functions, and then after performing Wigner transformation and gradient
expansion recovering the Boltzmann equation []. We will work in the Closed Time Path (CTP)
formulation of thermal QFT (for a review see e.g. [20]), where all the Green’s functions are defined
on a complex time plane along the contour C, see fig.1. In particular the contour Green’s function
for the complex scalar is

i�(x, y) = hT
C

�(x)�†(y)i, (3.1)

and for the fermion
iS

↵�

(x, y) = hT
C

 
↵

(x) ̄
�

(y)i, (3.2)

where here T
C

denotes the time ordering operation along the contour. They correspond to four
Green’s functions with real time arguments each:

i�>(x, y) ⌘ h�(x)�†(y)i i�<(x, y) ⌘ h�†(y)�(x)i (3.3)

i�c(x, y) ⌘ hT c�(x)�†(y)i i�a(x, y) ⌘ hT a�(x)�†(y)i, (3.4)

for scalars and

iS>

↵�

(x, y) ⌘ h 
↵

(x) ̄
�

(y)i iS<

↵�

(x, y) ⌘ �h ̄
↵

(y) 
�

(x)i (3.5)

iSc

↵�

(x, y) ⌘ hT c 
↵

(x) ̄
�

(y)i iSa

↵�

(x, y) ⌘ hT a 
↵

(x) ̄
�

(y)i, (3.6)

for fermions, where T c(T a) denotes chronological (anti-chronological) time ordering along the real
time.3 The h. . .i denotes the averaging over an ensemble at time tmin.

This formalism therefore describes a general non-equilibrium system, where all the physical
macroscopic observables are averages over an ensemble. The CTP formulation originates from the
periodicity of the boundary conditions of the partition function in path integral formalism. The
introduction of additional Green’s functions leads to the need of doubling of the degrees of freedom
of the theory by including ghosts, which are defined on the lower branch of the contour. These states
do not appear as external one, but result in modification of the Feynman rules (see Appendix A).

In a general non-equilibrium system all these functions depend on both space-time coordinates.
This can be rephrased that they depend on both the relative coordinate r = x � y and the aver-
aged (macroscopic) one X = x+y

2 . In equilibrium, however, the system cannot have any space-time

3Often the upper branch is called ‘1’ and lower ‘2’ and the propagators are denoted as �> = �
21

, �< = �
12

,
�c = �

11

and �a = �
22

and similarly for the fermions.
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C tmax

tmin

t

Figure 2: The contour C in the complex time plane. The value t
max

can be taken to be +1 for practical
computations.

(essentially the Fourier transform in r) and define the Green’s functions (and analogically self-energies) in the
Winger space

G(X, p) ⌘
Z t

max

t
min
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The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the other hand
describes large scale fluctuations, i.e. inhomogeneities. In the equilibrium in the Wigner space all Green’s functions
are described only by the dependence on the momentum Geq(p).
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where the superscript ‘0’ denotes the free Green’s functions, and ⇧, ⌃ are the self energies. After short derivation
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Assumptions:
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weak inhomogeneity

BoltzmannKadanoff-Baym

E (@t �H~p ·r~p) f = C[f ]. (0.1)

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)] , (0.2)

���̄!ijvrel =
1

4E�E�̄

Z
d3~pi

(2⇡)32Ei

d3~pj
(2⇡)32Ej

|M��̄!ij |2(2⇡)4�(p�+p�̄�pi�pj). (0.3)

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�
, (0.4)

h���̄!ijvrelieq = �
"

h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄

#
�
n�n�̄ � neq

� neq
�̄

�
. (0.5)

CNLO ⇠
Z

d⇧��̄ij f�f�̄

⇢
|MLO

��̄!ij |2 + |MNLO T=0
��̄!ij |2 +

Z
d⇧� |M��̄!ij� |2 +

|MNLO T 6=0
��̄!ij |2 +

Z
d⇧�

⇥
f�

�|M��̄!ij� |2 + |M��̄�!ij |2
�

�fi
�|M��̄!ij� |2 + |M��̄i!j� |2

�� fj
�|M��̄!ij� |2 + |M��̄j!i� |2

�⇤�

�fifj

⇢
|MLO

ij!��̄|2 + |MNLO T=0
ij!��̄ |2 +

Z
d⇧� |Mij!��̄� |2 +

|MNLO T 6=0
ij!��̄ |2 +

Z
d⇧�

⇥
f�

�|Mij!��̄� |2 + |Mij�!��̄|2
�

�f�
�|Mij!��̄� |2 + |Mij�!�� |2

�� f�̄
�|Mij!��̄� |2 + |Mij�̄!�̄� |2

�⇤�
,(0.6)

CNLO = � ⇥h�NLO
ann vrelieq n�n�̄ � h�NLO

prod vrelieq neq
� neq

�̄

⇤
, (0.7)

i�(x, y) = hTC�(x)�
†
(y)i, (0.8)

and for the fermion

iS↵�(x, y) = hTC ↵(x) ¯ �(y)i, (0.9)

where here TC denotes the time ordering operation along the contour. They correspond to four

Green’s functions with real time arguments each:

i�>
(x, y) ⌘ h�(x)�†(y)i i�<

(x, y) ⌘ h�†(y)�(x)i (0.10)

i�c
(x, y) ⌘ hT c�(x)�†(y)i i�a

(x, y) ⌘ hT a�(x)�†(y)i, (0.11)

for scalars and

iS>
↵�(x, y) ⌘ h ↵(x) ¯ �(y)i iS<

↵�(x, y) ⌘ �h ¯ ↵(y) �(x)i (0.12)

iSc
↵�(x, y) ⌘ hT c ↵(x) ¯ �(y)i iSa

↵�(x, y) ⌘ hT a ↵(x) ¯ �(y)i, (0.13)

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (0.14)

1

collision term derived from thermal QFT

weak interactions

gradient expansion

freeze-out happens
close to equilibrium 

)

quasi-particle approx.

@ ⌧ k

inhomogeneity
plasma excitation

momenta

Justification:



CLOSED TIME PATH
FORMALISM: COLLISION TERM

the fermion collision terms is defined as:

17

self-energies

�(x, y) = �0(x, y)�
Z

C
d4z

Z

C
d4z0�0(x, z)⇧(z, z

0
)�(z0, y), (0.15)

S↵�(x, y) = S0
↵�(x, y)�

Z

C
d4z

Z

C
d4z0S0

↵�(x, z)⌃�⇢(z, z
0
)S⇢�(z

0, y), (0.16)
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Z
d4z

⇣
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<>
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<>
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⌘
= C�, (0.17)
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d4z

⇣
⌃h(x, z)S
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<>
(x, z)Sh(z, y)

⌘
= C�, (0.18)

C� =

1

2

Z
d4z

�
⇧

>
(x, z)�<

(z, y)�⇧

<
(x, z)�>

(z, y)
�
, (0.19)
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1

2
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d4z

�
⌃

>
(x, z)S<

(z, y)� ⌃

<
(x, z)S>

(z, y)
�
, (0.20)

✓
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@2
+ ip@ �m2

�

◆
�

<> �⇧h�
<> �⇧

<>
�h + i{⇧h,�

<>}+ i{⇧<>,�h}+O(r2
) = C�, (0.21)

✓
/p� i

2

/@ �m�

◆
S

<> � ⌃hS
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<>Sh + i{⌃h, S
<>}+ i{⌃<>, Sh}+O(r2

) = C� , (0.22)
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1

2

�
⇧

>
�
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<
�

>
�� i

2

�{⇧>,�<}� {⇧<,�>}�+O(r2
), (0.23)
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�� i
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). (0.24)
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(t)PLiS
21

(k1)PRiS
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.(0.25)
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⇥
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2

propagators

the presence of distribution functions inside propagators          known collision term structure

where the propagators:
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scale hierarchy: m� & m� � T � mf
+

+

$

$

+

+

Mtree

Mtree

(Mtree)⇤

(Mexc
tree)

⇤ Mexc
tree

(Mexc
tree)
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tree

(Mtree)⇤Ac.c.
IIIAIII

BII Bc.c.
II

Figure 5. Tree level annihilation diagrams for a Majorana fermion and the matching with the two loop
self-energies. Note the correspondence between reversing the arrows flow and crossing the external legs.

In the fermion part F both the T = 0 and the thermal parts contribute, giving
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⇥
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, (4.4)

where the trace arise since the self-energy and the propagator at the l.h.s. of eq.(4.2) are contracted
as ⌃>

↵�

S<

�↵

. Note that, as explained in the introduction, we assume the background plasma to be in
equilibrium and therefore take the Fermi-Dirac distribution function f eq

f

for the SM fermions. Now
we write the �-functions by using

�
�
p2 �m2

�
=

1

2p0
�
�
�
p0 � E

p

�
+ �

�
p0 + E

p

��
, (4.5)

and integrate over dk01 and dk02. The negative energy solutions can be related via crossing symmetry
to di↵erent scattering processes by interpreting a negative energy particle in the initial (final) state
as a positive energy one in the final (initial) state. In this case all of these processes are kinematically
forbidden, so we get
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As we anticipated, the structure of the result is now manifestly as in eq.(2.3), namely those of a
thermally averaged cross-section times velocity multiplied by the statistical factors corresponding to
the process �1 (q)�2 (t) ! f (k1) f̄ (k2). Note that an integration in d4q is missing, the overall
sign is di↵erent and the d.o.f. factors h

�

h
�̄

are missing. The matrix element squared can be
recognized as the interference term between the two tree level diagrams for the annihilation process
�� ! ff̄ , as shown on fig.5.
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A
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|2 = (�1)�4 S Tr [· · ·]
= �Mtree (Mexc

tree)
⇤
. (4.7)

The same procedure applied to the diagram B in fig.3 and to the corresponding diagrams with
reversed arrows leads to the identifications
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, (4.9)
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tree|2, (4.10)
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In the fermion part F both the T = 0 and the thermal parts contribute, giving
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where the trace arise since the self-energy and the propagator at the l.h.s. of eq.(4.2) are contracted
as ⌃>
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. Note that, as explained in the introduction, we assume the background plasma to be in
equilibrium and therefore take the Fermi-Dirac distribution function f eq
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for the SM fermions. Now
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, (4.5)

and integrate over dk01 and dk02. The negative energy solutions can be related via crossing symmetry
to di↵erent scattering processes by interpreting a negative energy particle in the initial (final) state
as a positive energy one in the final (initial) state. In this case all of these processes are kinematically
forbidden, so we get
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As we anticipated, the structure of the result is now manifestly as in eq.(2.3), namely those of a
thermally averaged cross-section times velocity multiplied by the statistical factors corresponding to
the process �1 (q)�2 (t) ! f (k1) f̄ (k2). Note that an integration in d4q is missing, the overall
sign is di↵erent and the d.o.f. factors h

�

h
�̄

are missing. The matrix element squared can be
recognized as the interference term between the two tree level diagrams for the annihilation process
�� ! ff̄ , as shown on fig.5.

|M
A

III

|2 = (�1)�4 S Tr [· · ·]
= �Mtree (Mexc

tree)
⇤
. (4.7)

The same procedure applied to the diagram B in fig.3 and to the corresponding diagrams with
reversed arrows leads to the identifications

|M
B

II

|2 = |Mtree|2, (4.8)

|Mrev

A

III

|2 = �Mexc
tree (Mtree)

⇤
, (4.9)

|Mrev

B

II

|2 = |Mexc
tree|2, (4.10)
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A as given by the finite temperature cutting rules. Uncircled and circled vertices denote

respectively type ‘1’ and type ‘2’. vertices.

We start from the calculation at leading order to show the correspondence between the self-energy
diagrams and the scattering (annihilation) ones. The self energy at one loop, fig.2, describes 1 $ 2
processes, which are not relevant for the relic density computation. Therefore, the LO annihilation
process is given by the two loop self-energies on fig.3. We will now show that they encode the amplitude
squared of the tree level annihilation process �� $ ff̄ . The self energies ⌃<,> are computed from
the diagrams discussed above by applying the finite temperature Feynman rules (see Appendix A),
with the proper treatment of the fermion number violating interactions of Majorana fermion as in
[25].

Let’s start by computing the contribution to ⌃>(q) from diagram A. In this case the left vertex
is of the type ‘1’ and the right ‘2’, while one has to sum over both types of internal vertices. This
leads to the sum of the four diagrams in fig.4, where uncircled and circled vertices denote type ‘1’
and type ‘2’ vertices, respectively. Note that the only diagram that we have to compute is AIII, since
the other three contain the only thermal part of the sfermion propagator, which for m

�

> m
�

� T
is exponentially suppressed. Fixing the fermion flow and assigning the momenta as in fig.3, once all
the kinematically forbidden terms are dropped, the result reads
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. (4.2)

In the scalar part S we can take only the T = 0 part of the propagators, therefore

S =
i

(k1 � q)2 �m2
�

· �i

(k1 � t)2 �m2
�

. (4.3)

for transport phenomena at finite temperature it has no physical meaning to separate production from annihilation
processes, since they both concur to the determination of the phase space distribution functions of the various species,
in which the physical information is contained.
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the other three contain the only thermal part of the sfermion propagator, which for m

�

> m
�

� T
is exponentially suppressed. Fixing the fermion flow and assigning the momenta as in fig.3, once all
the kinematically forbidden terms are dropped, the result reads

⌃>

A

III

(q)S< (q) = ��4

Z
d4t

(2⇡)4
d4k1

(2⇡)4
d4k2

(2⇡)4
(2⇡)4 � (q + t� k1 � k2)

i�11 (k1 � q) i�22 (k1 � t)| {z }
⌘S

PRiS
21 (k2)PLiS

12 (t)PLiS
21 (k1)PRiS

12 (q)| {z }
⌘F

. (4.2)

In the scalar part S we can take only the T = 0 part of the propagators, therefore

S =
i

(k1 � q)2 �m2
�

· �i

(k1 � t)2 �m2
�

. (4.3)

for transport phenomena at finite temperature it has no physical meaning to separate production from annihilation
processes, since they both concur to the determination of the phase space distribution functions of the various species,
in which the physical information is contained.

– 8 –

Figure 2. The DM self-energy at one loop. The same diagram with reversed arrows is not shown for simplicity,
but it is also consistently taken into account.

++

A CB

t
q

k2k1 � q

k1 k1 � t

q

Figure 3. The DM self-energy at two loops. The same diagrams with reversed arrows are not shown for
simplicity, but they are also consistently taken into account and denoted by a superscript rev in the following.

+ + +i⌃>
A =

AI AII AIII AIV

Figure 4. i⌃>
A as given by the finite temperature cutting rules. Uncircled and circled vertices denote

respectively type ‘1’ and type ‘2’. vertices.

We start from the calculation at leading order to show the correspondence between the self-energy
diagrams and the scattering (annihilation) ones. The self energy at one loop, fig.2, describes 1 $ 2
processes, which are not relevant for the relic density computation. Therefore, the LO annihilation
process is given by the two loop self-energies on fig.3. We will now show that they encode the amplitude
squared of the tree level annihilation process �� $ ff̄ . The self energies ⌃<,> are computed from
the diagrams discussed above by applying the finite temperature Feynman rules (see Appendix A),
with the proper treatment of the fermion number violating interactions of Majorana fermion as in
[25].

Let’s start by computing the contribution to ⌃>(q) from diagram A. In this case the left vertex
is of the type ‘1’ and the right ‘2’, while one has to sum over both types of internal vertices. This
leads to the sum of the four diagrams in fig.4, where uncircled and circled vertices denote type ‘1’
and type ‘2’ vertices, respectively. Note that the only diagram that we have to compute is AIII, since
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self-energies. Note the correspondence between reversing the arrows flow and crossing the external legs.

In the fermion part F both the T = 0 and the thermal parts contribute, giving

F = Tr
⇥
PR (/k2 + m

f

)PL

�
/t + m

�

�
PL (/k1 + m

f

)PR

�
/q + m

�

�⇤
⇥�2⇡ �

�
q2 �m2

�

�
"
�
q0
�
f
�

(q)
⇤ ⇥�2⇡ �

�
t2 �m2

�

�
"
�
t0
�
f
�

(t)
⇤

h
2⇡ �

�
k21 �m2

f

�
"
�
k01

� ⇣
1 � f eq

f

�
k01

�⌘i h
2⇡ �

�
k22 �m2

f

�
"
�
k02

� ⇣
1 � f eq

f

�
k02

�⌘i
, (4.4)

where the trace arise since the self-energy and the propagator at the l.h.s. of eq.(4.2) are contracted
as ⌃>

↵�

S<

�↵

. Note that, as explained in the introduction, we assume the background plasma to be in
equilibrium and therefore take the Fermi-Dirac distribution function f eq

f

for the SM fermions. Now
we write the �-functions by using

�
�
p2 �m2

�
=

1

2p0
�
�
�
p0 � E

p

�
+ �

�
p0 + E

p

��
, (4.5)

and integrate over dk01 and dk02. The negative energy solutions can be related via crossing symmetry
to di↵erent scattering processes by interpreting a negative energy particle in the initial (final) state
as a positive energy one in the final (initial) state. In this case all of these processes are kinematically
forbidden, so we get

⌃>

A

III

(q)S< (q) =
1

2E
�

1

(2⇡) �
�
q0 � E

�

1

� Z d4t

(2⇡)3 2E
�

2

�
�
t0 � E

�

2

�

Z
d3~k1

(2⇡)3 2E
f

1

d3~k2

(2⇡)3 2E
f

2

(2⇡)4 � (q + t� k1 � k2)

|M
A

|2
h
f
�

(q) f
�

(t)
⇣
1 � f eq

f

�
k01

�⌘⇣
1 � f eq

f

�
k02

�⌘i
. (4.6)

As we anticipated, the structure of the result is now manifestly as in eq.(2.3), namely those of a
thermally averaged cross-section times velocity multiplied by the statistical factors corresponding to
the process �1 (q)�2 (t) ! f (k1) f̄ (k2). Note that an integration in d4q is missing, the overall
sign is di↵erent and the d.o.f. factors h

�

h
�̄

are missing. The matrix element squared can be
recognized as the interference term between the two tree level diagrams for the annihilation process
�� ! ff̄ , as shown on fig.5.

|M
A

III

|2 = (�1)�4 S Tr [· · ·]
= �Mtree (Mexc

tree)
⇤
. (4.7)

The same procedure applied to the diagram B in fig.3 and to the corresponding diagrams with
reversed arrows leads to the identifications

|M
B

II

|2 = |Mtree|2, (4.8)

|Mrev

A

III

|2 = �Mexc
tree (Mtree)

⇤
, (4.9)

|Mrev

B

II

|2 = |Mexc
tree|2, (4.10)
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(part of) tree level |M|2

after inserting the propagators:

⌃>
AIII

(q)S< (q) =
1

2E�1

(2⇡) �
�
q0 � E�1

� Z d4t

(2⇡)3 2E�2

�
�
t0 � E�2

�

Z
d3~k1

(2⇡)3 2Ef1

d3~k2

(2⇡)3 2Ef2

(2⇡)4 � (q + t� k1 � k2) |MA|2
h
f� (q) f� (t)

⇣
1� f eq

f

�
k01

�⌘⇣
1� f eq

f

�
k02

�⌘i

⇥

one indeed recovers the known collision term and)

|MA|2 =

tree level annihilation 
contribution to the collision term

i⌃> $

repeating the same for B type diagrams the bottom line:

20
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M4 (Mtree)
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Figure 6. An example three-loop self-energy diagram decomposed as a sum over di↵erent cuts to extract
⌃<, and the matching of the cut diagrams into scattering ones. ⌃< is obtained by taking the sum over the
possible diagrams in which the vertex attached to the external line on the left (right) is of type ‘1’ (‘2’). The
matching with scattering diagrams in the second line follows as explained for the LO case in section 4.2. In
particular the correspondence between reversing the arrows flow and crossing the external legs is the same as
displayed in fig.5, so for simplicity, from this figure on, we will denote with a single diagram with no arrows
the sum of the two corresponding diagrams.

where we can already observe that the momentum conservation delta function refers to a 2 ! 3
process �(q)�(t) ! f(k1)f̄(k2)�(s). To see that the considered diagram indeed encodes the cross-
section for the photon emission process, note that in the scalar part S we again take only the T = 0
part of the propagators, while the vector V and fermion F1, F2 parts, leaving understood the trace
over the Dirac matrices that can be factorized, are given by

V = �g
µ⌫

2⇡ �(s2)"(s0)
�
1 + f eq

�

(s0)
�
, (4.15)

F1 /
"
� i

(k2 + s)2 �m2
f

+ 2⇡ �
�
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f

�
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�
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� ⇣
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f

�
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�
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�
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⇤

(4.16)

F1 /
"
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f

� 2⇡ �
�
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�
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�
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h
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�
k21 �m2
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�
"
�
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� ⇣
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f

(k01)
⌘i ⇥�2⇡ �

�
q2 �m2

�

�
"
�
q0
�
f
�

(q0)
⇤
. (4.17)

Note that the distribution functions accompanied by the on-shell delta functions can be used to read
out the corresponding scattering process, since (1 ± f

B,F

) denotes an outgoing particle, while ±f
B,F

an ingoing one. Finally the thermal part of the two diagonal fermion propagators give vanishing
contributions, since the corresponding processes are kinematically forbidden. In F1 one can see that

�
⇣
(k2 + s)2 �m2

f

⌘
is not compatible with �

⇣
k22 �m2

f

⌘
, and in F2 the same combination appears

with k2 ! k1. The result is then

⌃>
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.(4.18)

In the remaining part of this section we describe the method of performing calculations empha-
sizing the di↵erence with respect to the T = 0 case. The results and its discussion will follow in
section 5.
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Z 1
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a = atree (1 +�a) +O(⌧4) with �a =
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RESULTS

IR divergence in separate terms:

5 Results

The result for the NLO correction to the collision term, after performing the integrations over the phase
space of final particles, depends on five physical quantities: m

�

, E
�

, m
f

, m
�

and T (or equivalently
m

�

setting the energy scale and dimensionless parameters e
�

, ✏, ⇠ and ⌧). Every contribution can be
expressed in a form: Z 1

0

d!f(!)S(!, e
�

, ✏, ⇠), (5.1)

where S is the properly normalized matrix element squared integrated over angles and energies of the
SM fermions and does not depend on the T , and the distribution function is f

B

for bosons and f
D

for
fermions. The temperature dependence is only via f(!), where ! is the energy of the thermal particle.
The integral over ! arises due to integration over the phase space (in emission and absorption) or
the virtual four-momentum (virtual corrections). In the model we studied there exist no closed form
expression for the total S(!, e

�

, ✏, ⇠) and therefore we will present the results in the non-relativistic
expansion for the lowest partial waves.8

The distribution function is vanishing exponentially for large !, therefore up to terms of the
order O(e�1/⌧ ), we can expand in ! around zero. Then one can easily isolate the soft IR divergent
contributions in S(!, e

�

, ✏, ⇠), since

J
n

⌘
Z 1

0

f
B

(!)!nd! =

⇢
div n  0

⇠ ⌧n+1 n > 0
, I

n

⌘
Z 1

0

f
D

(!)!nd! =

⇢
div n  �1

⇠ ⌧n+1 n > �1
. (5.2)

In both cases of thermal photons and fermions the finite NLO correction of the order O(↵⌧2) is
encoded in the linear term in ! of the function S. Note again that the integral I

n

appears only in the
massless fermions case, while otherwise the lower extreme of integration is m

f

and and the integral
cannot be solved analytically.

5.1 IR divergence cancellation

In zero temperature the structure of the IR divergence cancellation between the virtual and real
corrections in a given process can be understood by looking at the structure of the corresponding
self-energy diagram. Namely, all the IR divergent terms cancel out after summing of all the possible
cuts []. We have found that it is also true in finite temperature, with the additional cuts related to
the thermal parts of the propagators. This ensures that the collision term is finite, since it is directly
built out of self-energies ⌃<,>.

In order to show how the cancellation takes place, let’s discuss in detail the s-wave case for
the correction coming from thermal photons; the same discussion holds for higher partial waves and
analogous one for the corrections from thermal massless fermions.

At the one-loop level the amplitude can have divergent terms at most of the order O(!�1),
which at T = 0 leads to the logarithmic divergence in the soft limit. In finite temperature, this
results in the expansion of the function S having non-vanishing orders O(!n), with n � �1. Because
of the distribution function f

B

(!) this leads to two first orders in expansion being proportional to
J�1 and J0, respectively. As already pointed out, the latter one vanishes when both the emission
and absorption of thermal photons are included, due to the di↵erent sign of these contributions for
even orders in !. The results for the remaining part proportional to J�1 are given for all separate
self-energy diagrams in the table 3, where the tree level atree has been factorized.9

One can see that indeed the cancellation holds not only after summing all the contributions, but
also for every self-energy separately. The logarithm present in the last row is defined in table 6 and it

8Additionally, for the full energy dependence we have performed computations expanded in the scalar mediator
mass, up to the order O(⇠�10). Typically the scalar mediator of the hard interaction process is significantly heavier
than the DM (however one can also consider quasi-degenerate scenarios [3]). Nevertheless, excluding extremely fine
tuned scenarios, the expansion in ⇠ captures all the physics properties of the model, though one needs to retain up to
the order O(⇠�8) to see the helicity suppression lifting of the non-thermal NLO contribution.

9The fact that the divergence can be factorized from the tree level is related to the fact that it comes from the soft
region. The same structure of the divergence was found for the hard photon scattering in the thermal plasma [17].
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coming back to our example...

every contribution can be written in a form:

photon energy

Z 1

0
d!f�(!)S(!, e�, ✏, ⇠) f�(!) =

1

1� e!/T

expand in!

S =
1X

i=�1

sn!
n

note:

J�1 $ T = 0 soft div

J0 $ T = 0 soft eikonal

finite T corrections: J1 $ O(⌧2) …
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The divergent part J�1

Type A Real Virtual External Type B Real Virtual External
↵(1�2✏2)
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� ↵
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↵
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2

↵(1�2✏2)
⇡✏

2

�↵(1�2✏2)
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2

� ↵

⇡✏

2

↵
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2

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

2↵(1�2✏2)2

⇡✏

2

p
1�4✏2

L � 2↵(1�2✏2)2

⇡✏

2

p
1�4✏2

L
2↵(1�2✏2)
⇡✏

2

p
1�4✏2

L � 2↵(1�2✏2)
⇡✏

2

p
1�4✏2

L

Table 3. The divergent part coe�cients multiplying the tree level result a
tree

. For both diagrams of type
A and B the sum over di↵erent contributions, i.e. the CTP cuts, vanishes. When both types of diagrams
are added, the result gets helicity suppressed, i.e. terms with the ✏2 in the denominator cancel. The “Real”
includes both the emission and absorption. Empty space stands for no corresponding cut, while 0 when the
diagram exists, but gives no divergent part. The L denotes the logarithm as defined in table 6.

5.2 The finite T correction from thermal photons

After the divergent J�1 and J0 contributions are cancelled out, the remaining finite correction is
necessarily of the order of at least O(⌧2). Again, we will show first the explicit results for the s-wave,
which can be found in tables 4 and 5, where we have factorized ↵

⇡✏

2

atree. One can immediately see that
the separate contributions are significantly more complex, but simplify considerably after summing
over di↵erent cuts for a given self-energy. It is also worth noting that all the logarithms vanish already
at single self-energy level, which is a sign of cancellation of the collinear divergence. What seems even
more remarkable is that after adding all of the contributions together the result is extremely simple.
It can be written as:

a = atree (1 + �
a

) + O(⌧4) with �
a

=
8⇡

3
↵⌧2

1

1 � 4✏2 + ⇠2
. (5.2)

It is worth noticing that the leading thermal correction is suppressed not only by ↵⌧2 but also one
power of ⇠2. This is true not only in the case of s-wave, but also for a generic partial wave. In fact,
it turns out that the total O(⌧2) correction coming from thermal photons can be computed directly
from the tree level. The full result can be written as:

�v = �vtree � 4

3
⇡↵⌧2

@

@⇠2
�vtree + O(⌧4), (5.3)

which we found in both s- and p-wave. For generic partial wave the computation of the phase space
integrals is more involved and no closed form can be obtained without resorting to any additional
expansion. Therefore, we computed the corrections in the limit of ⇠ � 1, i.e. up to the order
O(⌧2, ⇠�10), retaining full dependence on e

�

and ✏. We found that the same formula holds, allowing
us to conjecture that it is valid even beyond the non-relativistic approximation.
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cancels in 
every row
separately

) every CTP self-energy is IR finite
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The finite part J1
Type A Real Virtual External
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Table 4. The finite O(⌧2) part coe�cients multiplying the ⇡
6

↵⌧2 a
tree

✏2
for diagrams of type A. The factors D,

D⇠ and polynomials pi and fi are defined in table 6.

This observed property of the leading correction seems accidental, however it is not the only
example of some “universality” in the temperature corrections. In the charged particle decay [16] the
finite correction was also found to be factorizable from the tree level and reads �⇡

3↵⌧
2, while in the

neutral Higgs decay to two fermions it vanishes [? ]. This strongly suggests that the correction is
related to the coupling to the multipole expansions of the initial or final state. In our case the charge
itself is zero, but higher moments are not, which might be the reason for the ⇠ suppression.

Moreover, we see that the thermal e↵ects do not lift the helicity suppression at the leading order,
even though the NLO T = 0 correction does. This is easy to understand, since it is the hard photon
emission from virtual internal bremsstrahlung (VIB) that changes the momentum structure of the
final state and lifts the helicity suppression in T = 0 case, while here such contributions are strongly
suppressed. In fact, next order in temperature already gives helicity braking contribution, which
expanded in the limit of ✏ ! 0 is:

�a✏=0
⌧

4

=
8⇡2�4↵⌧4

45

1

(1 + ⇠2)4
=

4⇡

45
↵⌧4

1

(1 + ⇠2)2
atree
✏2

���
✏=0

. (5.4)

The thermal correction can dominate over the tree level contribution to s-wave when ✏ is very small
(e.g., for SM leptons), but it nevertheless is parametrically smaller than both the p-wave and the
correction of order O(↵), because ⌧ ⇠ v2 as the distribution of DM particles is thermal. Also the
lifting of the helicity suppression is parametrically less important that its T = 0 counterpart, due to
⌧4, while both come from VIB and have the same order ⇠�8 suppression.

Finally, we would like to comment that the same relation (5.3) holds also for the Dirac fermion
case, as can be also expected from the structure of the final correction in table 5. Namely, for both self-
energy types A and B, the corresponding tree level factorizes from the correction, and the di↵erence
between the Majorana and Dirac cases is only in the existence of diagrams of type A in the former.
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for diagrams of type A. The factors D,
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This observed property of the leading correction seems accidental, however it is not the only
example of some “universality” in the temperature corrections. In the charged particle decay [16] the
finite correction was also found to be factorizable from the tree level and reads �⇡

3↵⌧
2, while in the

neutral Higgs decay to two fermions it vanishes [? ]. This strongly suggests that the correction is
related to the coupling to the multipole expansions of the initial or final state. In our case the charge
itself is zero, but higher moments are not, which might be the reason for the ⇠ suppression.

Moreover, we see that the thermal e↵ects do not lift the helicity suppression at the leading order,
even though the NLO T = 0 correction does. This is easy to understand, since it is the hard photon
emission from virtual internal bremsstrahlung (VIB) that changes the momentum structure of the
final state and lifts the helicity suppression in T = 0 case, while here such contributions are strongly
suppressed. In fact, next order in temperature already gives helicity braking contribution, which
expanded in the limit of ✏ ! 0 is:

�a✏=0
⌧

4

=
8⇡2�4↵⌧4

45

1

(1 + ⇠2)4
=

4⇡

45
↵⌧4

1

(1 + ⇠2)2
atree
✏2

���
✏=0

. (5.4)

The thermal correction can dominate over the tree level contribution to s-wave when ✏ is very small
(e.g., for SM leptons), but it nevertheless is parametrically smaller than both the p-wave and the
correction of order O(↵), because ⌧ ⇠ v2 as the distribution of DM particles is thermal. Also the
lifting of the helicity suppression is parametrically less important that its T = 0 counterpart, due to
⌧4, while both come from VIB and have the same order ⇠�8 suppression.

Finally, we would like to comment that the same relation (5.3) holds also for the Dirac fermion
case, as can be also expected from the structure of the final correction in table 5. Namely, for both self-
energy types A and B, the corresponding tree level factorizes from the correction, and the di↵erence
between the Majorana and Dirac cases is only in the existence of diagrams of type A in the former.
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factorized

Log terms
cancels in 

every row
separately)

no collinear
divergence!

separate contributions complicated, but when summed up...

strongly suppressed as at kinetic equilibrium

The finite part J1
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This observed property of the leading correction seems accidental, however it is not the only
example of some “universality” in the temperature corrections. In the charged particle decay [16] the
finite correction was also found to be factorizable from the tree level and reads �⇡
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2, while in the

neutral Higgs decay to two fermions it vanishes [? ]. This strongly suggests that the correction is
related to the coupling to the multipole expansions of the initial or final state. In our case the charge
itself is zero, but higher moments are not, which might be the reason for the ⇠ suppression.

Moreover, we see that the thermal e↵ects do not lift the helicity suppression at the leading order,
even though the NLO T = 0 correction does. This is easy to understand, since it is the hard photon
emission from virtual internal bremsstrahlung (VIB) that changes the momentum structure of the
final state and lifts the helicity suppression in T = 0 case, while here such contributions are strongly
suppressed. In fact, next order in temperature already gives helicity braking contribution, which
expanded in the limit of ✏ ! 0 is:
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The thermal correction can dominate over the tree level contribution to s-wave when ✏ is very small
(e.g., for SM leptons), but it nevertheless is parametrically smaller than both the p-wave and the
correction of order O(↵), because ⌧ ⇠ v2 as the distribution of DM particles is thermal. Also the
lifting of the helicity suppression is parametrically less important that its T = 0 counterpart, due to
⌧4, while both come from VIB and have the same order ⇠�8 suppression.

Finally, we would like to comment that the same relation (5.3) holds also for the Dirac fermion
case, as can be also expected from the structure of the final correction in table 5. Namely, for both self-
energy types A and B, the corresponding tree level factorizes from the correction, and the di↵erence
between the Majorana and Dirac cases is only in the existence of diagrams of type A in the former.

– 19 –

⌧ ⇠ v2

✏ =
mf

2m�
⌧ ⌧

⌧ =
T

m�
⌧ 1

⇠ =
m�

m�
& 1



1. how the (soft and collinear) IR divergence cancellation 
happen?                                                                       
automatic in thermal QFT formalism, cancellation at the level 
of every CTP self-energy

2. does Boltzmann equation itself receive quantum corrections?   
no, not at NLO                                                   

3. how large are the remaining finite T corrections?                  
strongly suppressed, of order 
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SUMMARY: PART I

Exception IV:  
LO sometimes is not enough 

(and then in principle          QFT needed)
 ...but in practice one can safely use BE with NLO cross-section

O(↵T 4)

T 6= 0



EXCEPTION V: 
V-DEPENDENT INTERACTIONS AND 

NON-PERTURBATIVE EFFECTS



VELOCITY-DEPENDENT      
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(Note: the 3rd exception from Griest&Seckel 
is actually of this type as well)

The annihilation cross-section is always velocity dependent… but typically 5
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FIG. 4: The effect of kinetic decoupling on the evolution of
the relic particle abundance for the case of s-wave annihilation
for a 500 GeV mass particle with σ0 = 3× 10−26 cm3 s−1, in
the limit where the Sommerfeld enhancement scales as 1/v.
Horizontal lines give our analytic estimates of the final relic
abundances.

nihilations at Tcutoff . We find

Y (k)
∞

Y∞
= (Tf/Tk)

1/2(

√

Tf

Tk
− 1 +

1

2
ln(Tk/Tcutoff))

−1.

(22)
The effect of kinetic decoupling with Sommerfeld-

enhanced annihilations is illustrated numerically in Figs.
4 and 5. In Fig. 4, we show the evolution of the parti-
cle abundance for the case we have just considered (1/v
enhancement), while Fig. 5 shows the case α = 0.01 (of
course, our analytic estimate, equation (22), does not ap-
ply in the latter case.) Fig. 5 illustrates the fact that a
value of the coupling for Sommerfeld enhancement can
be small enough to produce a negligible change in the
relic abundance without kinetic decoupling, but it can
have a large effect once kinetic decoupling occurs.

III. DISCUSSION

We have confirmed that the standard analytic approx-
imation for the relic particle abundances can be applied,
with the appropriate modification, to the case of s-wave
relic abundances in the presence of a Sommerfeld en-
hanced interaction, although the error in applying this
approximation to the case of Sommerfeld-enhanced s-
wave annihilations (∼ 10%) is significantly larger than
in the s-wave case without Sommerfeld enhancement (<
1%). We have also determined the range of the coupling
α over which Sommerfeld annihilation can be either ne-
glected in the calculation of relic densities (as suggested
in [15]) or treated purely as a 1/v enhancement to the
annihilation rate (as in [14]).

When kinetic decoupling occurs, it affects the
relic abundances for both p-wave annihilations and
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FIG. 5: As Fig. 4, for Sommerfeld-enhancement coupling of
α = 0.01, a value for which the Sommerfeld effect by itself is
negligible without kinetic decoupling. Note the strong effect
of kinetic decoupling upon the relic particle abundances.

Sommerfeld-enhanced s-wave annihilations. In the for-
mer case, the effect is generally very small unless kinetic
decoupling occurs at nearly the same epoch as chemi-
cal decoupling. For Sommerfeld-enhanced s-wave decou-
pling, the effect is quite large, and we have provided an
analytic estimate of this effect.

Finally, we note that another, quite different mecha-
nism to produce a velocity-dependent cross section is for
a pole to lie near twice the mass of the annihilating par-
ticle [12]. The effect is most striking when the pole lies
slightly below twice the particle mass [24]. In this case,
just as for Sommerfeld-enhanced annihilation following
kinetic decoupling, the annihilations do not freeze out
until the velocity drops below a cut-off scale in the model.
Since the relic abundance in his model is set by this cut-
off scale, one would not expect a large change in the final
relic abundance if the annihilating particles also kinet-
ically decoupled. However, a more detailed calculation
likes outside the scope of this paper.
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σv ≈ a+ bv
2

O(few %)

What if for a given model

Are there any real physical situations in which this can happen?

well… not much as long as DM 
is in kinetic equilibrium

but if it the kinetic decoupling (KD) 
happens relatively early then

)
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1

mφ
!

1

αmχ

mχv
2 ! α

2
mχ

one-loop ∝ α

mχ

mφre-summation

kinetic 
energy

Bohr 
energy

force
range

Bohr 
radius

in a special case of Coulomb force: S(v) =
πα/v

1− e−πα/v
≈ π

α

v

σSE = S(v)σ0

THE SOMMERFELD EFFECT

29



THE SOMMERFELD EFFECT 
WITH A DARK FORCE

present day: 
indirect 

detection freeze-out: relic density

Coulomb resonance
1

mφ
≈

1

αmχ
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SOMMERFELD EFFECT AND KD
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FIG. 3: For a parameter set where the Sommerfeld enhancement is not near a resonance (m� = 1 TeV, m� = 5 GeV, ↵ = 0.03
and g` = 10�7), we show the evolution of the quantities Y as defined in Eq. (10), and y as defined in Eq. (16). We show the
solution to the full set of coupled Boltzmann equations (black) as well as for two approximations described in more detail in
the text, assuming sudden kinetic decoupling (red; not visible in left plot) and no coupling between the Boltzmann equations
for y and Y (blue), respectively. Di↵erent approximations to the Sommerfeld enhancement are shown according to Fig. 2 by
dotted, dashed, or solid lines. Additionally, the solution without Sommerfeld enhancement is shown in the left panel (green,
dash-dotted).
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FIG. 4: Same as Fig. 3, but now for a parameter set where the Sommerfeld enhancement is resonant (m� = 1 TeV, m� = 1
GeV, ↵ = 0.00168 and g` = 4.6 ⇥ 10�5). It can be seen that annihilations continue even until after matter-radiation equality
(denoted as a dash-dotted line).

the full solution gives the right relic density today (within
3�): the uncoupled solution (both with and without
including the full Sommerfeld factor) actually overesti-
mates Y

0

by a factor of ⇠ 400. Sudden decoupling be-
comes a very bad approximation to y in the case of res-
onances, at least for x & 107 where it simply follows the
uncoupled solution. However, it catches the overall be-
havior of a large decrease in Y rather well – though it
underestimates the final relic density by at least a factor
of 2. The di↵erent approximations to the Sommerfeld en-
hancement, on the other hand, give comparable results.

C. Range of decoupling temperatures and the mass
of the smallest protohalos

Having discussed in some detail the situation for two
particular parameter sets, let us now explore the ther-
mal history of DM, and in particular the consequences
of our improved treatment, for the full possible range of
our model parameters. For this purpose, we adjusted
the coupling ↵ in all calculations in such a way that the
relic density obtained by solving the full, coupled Boltz-
mann equations is within 3� of the observed value today,
0.184  ⌦

DM

 0.274, leaving thus the lepton coupling
g
`

as the only other free parameter besides m
�

and m
�

.

Let us start by showing in Fig. 5 the kinetic decoupling
temperature T

kd

as a function of the coupling constant g
`

.

5

III. EVOLUTION OF DARK MATTER
DENSITY AFTER KINETIC DECOUPLING

In the conventional WIMP scenario, the collision term
in Eq. (1) can be completely neglected by the time
of kinetic decoupling, i.e. the further evolution of f
is only governed by the expansion of the universe –
at least until the tiny primordial density fluctuations
have grown large enough to trigger structure formation
and self-annihilation may start again. For the case of
Sommerfeld-enhanced annihilation rates, as we will dis-
cuss now in some detail, this part of the evolution history
is qualitatively di↵erent and much more complex.

A. A new era of annihilation

Let us focus on the standard situation where x
kd

�
x
cd

; around and after kinetic decoupling, we thus have
Y � Y

eq

. Therefore, the formal solution to Eq. (11) is
given by:

Y (x)�1 = Y (x
i

)�1 +

Z

x

xi

✓

1� x

3

g0⇤S
g⇤S

◆

sh�v
rel

i
Hx

dx , (24)

for any x
i

� x
cd

. In order to gain some qualitative un-
derstanding of this expression, let us again assume that
�v

rel

/ v2n. As discussed in the previous Section, we
roughly have v ' p/m

�

/ x�1/2 before kinetic decou-
pling and v / x�1 afterwards; as a consequence, we ex-
pect h�v

rel

i / x�ñ, where

ñ =

⇢

n forx . x
kd

2n forx & x
kd

. (25)

Approximating � given in Eq. (13) to be constant, we
can now integrate Eq. (24) and find

Y (x)�1�Y (x
i

)�1 ' �

(

1

1+ñ

⇣

1

x

1+ñ
i

� 1

x

1+ñ

⌘

for ñ 6= �1

ln(x/x
i

) for ñ = �1
.

(26)
Clearly, an appreciable change in Y for x > x

i

is only
possible for ñ  �1; in fact, taken at face value, annihi-
lations would never cease in that case. For the standard
WIMP scenario, this is impossible to achieve since s-wave
annihilation implies n = ñ=0 and higher partial waves
are even more strongly suppressed (e.g. n=1 for the p-
wave). For a Sommerfeld-like 1/v enhancement of s-wave
annihilations, however, the situation looks very di↵erent
and WIMPs may re-enter an era of annihilation [17]: in
this case, we do have ñ = �1 after kinetic decoupling.
On resonances, we could actually have h�v

rel

i / v�2,
i.e. ñ = �2 (see Appendix A); note that this would im-
ply a non-negligible annihilation rate even before kinetic
decoupling (with n = ñ = �1).

Let us now have a more detailed and quantitative look
at this e↵ect. Assuming that the DM velocity distribu-
tion stays Maxwellian even after kinetic decoupling (see

the following Section III B), we can use Eqs. (6,20) to
calculate h�v

rel

i
(2)

simply by replacing T ! T
�

. For a
Sommerfeld enhanced s-wave annihilation, e.g., we then
have

h�v
rel

i = hS(v)�
0

i|
T=T�

' 2
r

m
�

⇡T
�

�
0

, (27)

where the last step is valid if velocities of the order of
v ⇠ v̄ ⌘ p

3T
�

/m
�

fall into the Coulomb regime where

S(v) / v�1; this is exactly the T�1/2

�

/ x1/2 scaling men-
tioned above. For a full understanding of the evolution
of the WIMP number density and ”temperature” in this
regime, however, we need to solve the following coupled
system of di↵erential equations for y and Y that follows
from Eqs. (11, 17):

Y 0

Y
= �

1� x

3

g

0
⇤S

g⇤S

Hx
sY h�v

rel

i|
x=m

2
�/(s

2/3
y)

(28)
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3
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2m
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c(T )

✓

1� y
eq
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(29)

�sY
⇣

h�v
rel

i � h�v
rel

i
2

⌘

x=m

2
�/(s

2/3
y)

#

.

This set of equations provides one of our central results;
it clearly demonstrates that kinetic and chemical decou-
pling cannot, in general, be treated separately.
Some insight in the asymptotic behavior of these cou-

pled equations is achieved by considering the limit where
x � x

kd

, i.e. where the scattering term proportional to
c(T ) can be neglected. Assuming again �v

rel

/ v2n, and
using Eq. (22), we then find

y0

y
' n

3

Y 0

Y
=

ñ

6

Y 0

Y
. (30)

For n < 0, a decreasing Y will thus have the e↵ect of
increasing y even after kinetic decoupling; this simply
reflects the fact that the DM phase-space density is de-
pleted of low velocity particles, thereby increasing the
average velocity.
In the remainder of this Section, we will continue our

discussion of the further evolution of Y and y on a rather
general level; in Section IV, we will then consider a con-
crete class of WIMP DM models and show that the ef-
fects discussed here can, indeed, be quantitatively quite
important in determining the relic density or the small-
scale cut-o↵ in the mass-distribution of DM subhalos.

B. Dark matter self-scattering

In the presence of a Sommerfeld-enhanced annihilation
rate, also the DM self-scattering rate is enhanced (see Ap-
pendix A2); as a result, WIMPs can have a Maxwellian
velocity distribution even after kinetic decoupling has

van den Aarssen, Bringmann, Goedecke ’12  

If on the dark side of the Universe a „dark force” awakens…

… one has to be prepared with a more sophisticated formalism



Hisano et al. ’04,’06force carriers in the MSSM:

γ, W±, Z0, h0

1, h
0

2, H
±

W+

χ0

χ0
χ−

χ+ χ0 χ0 χ+ χ0

Z0, h0 · · ·
W+ W+

γ

H+ H+
Z0

h0

χ+χ+

δm ≪ mχ

mχ ≫ mW

)at TeV scale generically effect of O(1� 100%)

on top of that resonance structure

effect of O(few)
for the relic density

Note: for ID the enhancement is significantly stronger!
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WHAT IS KNOWN

• pure wino, pure higgsino

• mixed wino-higgsino (with everything else decoupled)

• stop and stau co-annihilations

• gluino co-annihilation

• Minimal DM model

AH, Iengo, Ullio, ’11, Beneke et al. ’14

Freitas ’07, AH ’11, Klasen et al. ’14

Hisano et al. ’04,’06

Cirelli et al. ’07,’08,’09

Currently only available tool for the MSSM: 
DarkSE package extending the relic density by SE in DarkSUSY

AH, ’11

Ellis et al. ’15

WITH THE SOMMERFELD ENHANCEMENT
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not present in DarkSE

1. the Sommerfeld effect for P- and O(v2) S-wave

2. off-diagonal annihilation matrices

New code (to be public):

Based on a framework by Beneke,Hellmann,Ruiz-Femenia ’12, ’13, ’14:

• suitable for full MSSM
• using EFT computation of annihilation matrices
• one-loop on-shell mass splittings and running couplings
• possibility of including thermal corrections
• present day annihilation in the halo (for ID)
• accuracy at O(%), dominated by theoretical uncertinities of EFT

caveat: still no NLO effects…

total effect up to O(10%)

…AND WHAT WAS IMPROVED
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RESULTS 
AT THE BORN LEVEL

As the sfermion mass decreases 
the effective annihilation rate is 

suppressed due to t-channel 
interference - the correct relic 

abundance is obtained for masses 
of around 1.4 TeV*

Higgsino and bino annihilate less 
strongly - dilute the wino 

annihilation and reduce the mass 
to 1.7 and 1.5 TeV respectively*

*for the chosen set of parameters

Beneke, Bharucha, Dighera, Hellmann, 
AH, Recksiegel, Ruiz-Femenia; 1601.04718
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RESULTS 
PURE WINO WITH NON-DECOUPLED SFERMIONS

The correct relic density is moved 
from 1.5-2.1 TeV up to 2.4-2.8 TeV

At 2.4 TeV resonance occurs, 
for low sfermion masses region 

with correct RD is resonant
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RESULTS 
WINO-HIGGSINO ADMIXTURE

The correct relic density 
is moved from 1.7-2.2 TeV 

up to 1.9-3.3 TeV

The position of the resonance 
is strongly    dependentµ

force
range

Bohr 
radius

1

mW
' 1

↵m�
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RESULTS 
WINO-BINO ADMIXTURE

The correct relic density 
is moved from 1.5-1.8 TeV 

up to 1.8-2.9 TeV

The position of the 
resonance is strongly M1 

dependent
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1.8 TeV42 2.4 3.32.81.7

lig
ht s

f.

co-annihilations?
resonance

mix. >O(10%) resonance

”pure wino”
heav

y s
f.

co-annihilations? pure wino
wino-like (higgsino)
wino-like (bino)

E.g. for the wino-like neutralino in MSSM correct relic 
density is obtained for wide range of masses:

see e.g. Roszkowski et al. ’14

Public code including full SE in the MSSM with accuracy for relic 
density O(%) and running time O(min) to become available

SUMMARY: PART II
Velocity dependence and non-perturbative effects on 

the cross-section can lead to significant modification of 
the relic density
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TAKEAWAY MESSAGE
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”Everything should be made as simple as possible, but no simpler.”

*The published quote reads:
”It can scarcely be denied that the supreme goal of all theory is to make the 
irreducible basic elements as simple and as few as possible without having to 
surrender the adequate representation of a single datum of experience.” 
„On the Method of Theoretical Physics" ,The Herbert Spencer Lecture, delivered at 
Oxford (10 June 1933); also published in Philosophy of Science, Vol. 1, No. 2 (April 
1934), pp. 163-169., p. 165

Albert Einsteinattributed to*

We do have the tools to 
calculate DM relic reliably; 
it is worth the effort to use 

them!


