UiO **Department of Physics** The Faculty of Mathematics and Natural Sciences

Going one up on Dark matter, STRONGLY

Implementing QCD corrections for Dark Matter computations

Parampreet Walia Department of Physics University of Oslo

30/03/16; UiO

UiO **Department of Physics** The Faculty of Mathematics and Natural Sciences

Based on "Leading QCD corrections for indirect dark matter searches: A fresh look" Phys. Rev. D 93, 043529

with Torsten Bringmann and Ahmad Galea

Dark Matter

What we know?

What?

Desired Properties

- 1. Electrically neutral
- 2. No strong interactions
- 3. Massive
- 4. Stable
- 5. Collisionless
- 6. Relic density
- 7. Structure Formation

Standard model particles cannot make the DM

 $\Omega_{\nu}h^2 < 0.0062$

New Particles?

Constituents

- Primordial black holes
 Axions
- 3. Sterile neutrinos
- 4. Weakly interacting Massive Particles (WIMPs)

Theories

 Supersymmetry
 Extra Dimensions
 Non-thermally produced, Axions, FIMPs

And many more!

For this talk we will consider WIMPs in MSSM framework

R-Parity

Neutralinos

Higgs	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	0	H_u
	$\begin{pmatrix} H^0_d & H^d \end{pmatrix}$	0	H_d
W bosons	W^0, W^{\pm}	1	
B boson	B^0	1	

Neutralinos

$$\chi_i^0 = N_{i1}\tilde{B} + N_{i2}\tilde{W}^3 + N_{i3}\tilde{H}_1^0 + N_{i4}\tilde{H}_2^0$$

 $N_{01} \sim 1$, Bino Like $N_{02} \sim 1$, Wino Like $N_{03}(N_{04}) \sim 1$, Higgsino Like

For this talk, the lightest neutralino is DM

Higgs

In MSSM we have two complex doublets, meaning 8 d.o.f.

Higgs	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	0	H_u
	$\begin{pmatrix} H^0_d & H^d \end{pmatrix}$	0	H_d

After EWSB

Pseudoscalar Higgs, ATwo neutral scalar Higgs, h, HTwo charged higgs, H^{\pm}

Now we know that, $m_h \sim 125 \,\, {
m GeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: March 2016

ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV

Model	e, μ, τ, γ	∕ Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
$\begin{array}{c} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \bar{q}\bar{q}, \bar{q} \rightarrow q (\mathcal{E} \ell \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \tilde{\mathcal{K}}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \tilde{\mathcal{K}}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \mathcal{K}_{1}^{2} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \mathcal{K}_{1}^{2} \rightarrow q Q W^{\pm} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \mathcal{K}_{1}^{2} \rightarrow q Q W^{\pm} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q Q \mathcal{K}_{1}^{2} \rightarrow q Q W^{\pm} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q Q \mathcal{K}_{1}^{2} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q Q \mathcal{K}_{1}^{2} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q Q \mathcal{K}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q Q \mathcal{K}_{1}^{2} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q Q \mathcal{K}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \mathcal{K}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \mathcal{K}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \mathcal{K}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \mathcal{K}_{1$	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off-Z) \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0 - 1 \\ 2 \ \gamma \\ P) \qquad \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets ℓ 0-2 jets - 1 b 2 jets 2 jets 2 jets 2 jets - - - - - - - - - - - - -	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 3.2 20.3 3.2 3.3 20 3.2 20.3 20.3 2	\$\bar{q}\$ \$\bar{q}\$ \$\bar{q}\$ \$\bar{g}\$ \$\bar{q}\$ \$\bar{g}\$ \$\bar{q}\$ \$\bar{g}\$ \$\bar{g}\$	$\begin{array}{c c} \textbf{1.85 TeV} & m(\tilde{q}) = m(\tilde{g}) \\ & m(\tilde{\chi}_1^0) = 0 \ \text{GeV}, \ m(1^{st} \ \text{gen.} \ \tilde{q}) = m(2^{nd} \ \text{gen.} \ \tilde{q}) \\ & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ \textbf{1.52 TeV} & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ \textbf{1.6 TeV} & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ \hline \textbf{1.6 TeV} & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ \textbf{1.6 TeV} & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ \hline \textbf{1.6 3 TeV} & m(\tilde{\chi}_1^0) = 100 \ \text{GeV} \\ \hline \textbf{1.63 TeV} & tan\beta > 20 \\ \hline \textbf{34 TeV} & cr(NLSP) < 0.1 \ \text{mm} \\ \textbf{.37 TeV} & m(\tilde{\chi}_1^0) < 850 \ \text{GeV}, \ cr(NLSP) < 0.1 \ \text{mm}, \ \mu < 0 \\ m(\tilde{\chi}_1^0) < 850 \ \text{GeV}, \ cr(NLSP) < 0.1 \ \text{mm}, \ \mu > 0 \\ m(\tilde{\chi}_1^0) < 850 \ \text{GeV}, \ cr(NLSP) < 0.1 \ \text{mm}, \ \mu > 0 \\ m(\tilde{\chi}_1^0) < 850 \ \text{GeV}, \ cr(NLSP) < 0.1 \ \text{mm}, \ \mu > 0 \\ m(\tilde{M} LSP) > 430 \ \text{GeV} \\ m(\tilde{G}) > 1.8 \times 10^{-4} \ \text{eV}, \ m(\tilde{g}) = m(\tilde{g}) = 1.5 \ \text{TeV} \end{array}$	1507.05525 ATLAS-CONF-2015-062 <i>To appear</i> 1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-076 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1503.03290 1502.01518
$\begin{array}{c} \overleftarrow{\mathbf{g}} & \widetilde{g}, \widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0} \\ \overleftarrow{\mathbf{g}} & \widetilde{g}, \widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0} \\ & \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{+} \\ & \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow b \overline{t} \widetilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	\$\vec{g}\$ \$\vec{g}\$ \$\vec{g}\$ \$\vec{g}\$ \$\vec{1}\$ \$\vec{1}\$ <t< td=""><td>1.78 TeV m(ξ₁⁰)-800 GeV 1.76 TeV m(ξ₁⁰)=0 GeV .37 TeV m(ξ₁⁰)<300 GeV</td></t<>	1.78 TeV m(ξ ₁ ⁰)-800 GeV 1.76 TeV m(ξ ₁ ⁰)=0 GeV .37 TeV m(ξ ₁ ⁰)<300 GeV	ATLAS-CONF-2015-067 To appear 1407.0600
$\begin{array}{c} \underbrace{\tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{0}}_{\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{0}}\\ \underline{\tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{+}}_{\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{+}}\\ \underline{\tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{+}}_{\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{0}}\\ \underline{\tilde{b}_{1}\tilde{b}_{1},\tilde{t}_{1}\rightarrow b\tilde{\chi}_{1}^{+}}_{\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{0}}\\ \underline{\tilde{b}_{1}\tilde{b}_{1},\tilde{t}_{1}\rightarrow b\tilde{\chi}_{1}^{+}}_{\tilde{b}_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{\chi}_{1}^{0}\\ \underline{\tilde{b}_{1}\tilde{b}_{1},\tilde{t}_{1}\rightarrow b\tilde{\chi}_{1}^{+}}_{\tilde{b}_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{\chi}_{1}^{0}\\ \underline{\tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{+}}_{\tilde{b}_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{\chi}_{1}^{0}\\ \underline{\tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{0}}_{\tilde{b}_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{\chi}_{1}^{0}) \text{ or } t\tilde{\chi}_{1}^{0}\\ \underline{\tilde{b}_{1}\tilde{b}_{1}\tilde{b}_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{k}_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{k}_{1}\gamma_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{k}_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{k}_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{k}_{1}\gamma_{1}\gamma_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{k}_{1}\gamma_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{k}_{1}\gamma_{1}\gamma_{1}\gamma_{1}} (1+b\tilde{k}_{1}^{0}) \text{ or } t\tilde{k}_{1}\gamma_{1}\gamma_{1}\gamma_{1}\gamma_{1}\gamma_{1}\gamma_{1}\gamma_{1}$	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 0-2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 mono-jet/c-ta 1 b 1 b 6 jets + 2 b	Yes Yes Yes b Yes ag Yes Yes Yes y Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	b1 840 GeV b1 325-540 GeV i117-170 GeV 200-500 GeV i1 90-198 GeV 205-715 GeV i1 90-245 GeV 205-715 GeV i1 90-245 GeV 205-715 GeV i2 290-610 GeV 200-620 GeV	$\begin{split} m(\tilde{\xi}_1^0){\sim}100\text{GeV} \\ m(\tilde{\xi}_1^0){=}50\text{GeV}, m(\tilde{\xi}_1^+){=}m(\tilde{\xi}_1^0){+}100\text{GeV} \\ m(\tilde{\xi}_1^+){=}2\mathfrak{m}(\tilde{\chi}_1^0), \mathfrak{m}(\tilde{\chi}_1^0){=}55\text{GeV} \\ eV & m(\tilde{\xi}_1^0){=}1\text{GeV} & 1506 \\ m(\tilde{t}_1){=}m(\tilde{\chi}_1^0){<}85\text{GeV} \\ m(\tilde{\chi}_1^0){=}150\text{GeV} \\ m(\tilde{\chi}_1^0){=}20\text{GeV} \\ m(\tilde{\chi}_1^0){=}0\text{GeV} \end{split}$	ATLAS-CONF-2015-066 1602.09058 1209.2102, 1407.0583 08616, ATLAS-CONF-2016-1 1407.0608 1403.5222 1403.5222 1506.08616
$\begin{array}{c} \overbrace{\substack{\lambda_{1,R}}}{} \overbrace{\substack{\ell_{1,R}}}{} \overbrace{R}}{} \overbrace{R} \atop GGM (wino NLSP) weak \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ \psi W/\tau \tau / \gamma \\ \psi W/\tau \tau / \gamma \\ 4 \ e, \mu \\ p \ rod. \\ 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\xi}_1^n) = 0 \; \text{GeV} \\ & m(\tilde{\xi}_1^n) = 0 \; \text{GeV} \; m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\ell}_1^n) + m(\tilde{k}_1^n)) \\ & m(\tilde{k}_1^n) = 0 \; \text{GeV}, \; m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{k}_1^n) + m(\tilde{k}_1^n)) \\ & m(\tilde{k}_1^n) = m(\tilde{k}_2^n), \; m(\tilde{k}_1^n) = 0, \; m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{k}_1^n) + m(\tilde{k}_1^n)) \\ & m(\tilde{k}_1^n) = m(\tilde{k}_2^n), \; m(\tilde{k}_1^n) = 0, \; sleptons \; decoupled \\ & m(\tilde{k}_1^n) = m(\tilde{k}_2^n), \; m(\tilde{k}_1^n) = 0, \; sleptons \; decoupled \\ & m(\tilde{k}_2^n) = m(\tilde{k}_2^n), \; m(\tilde{k}_1^n) = 0, \; sleptons \; decoupled \\ & m(\tilde{k}_2^n) = m(\tilde{k}_2^n), \; m(\tilde{k}_1^n) = 0, \; m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{k}_2^n) + m(\tilde{k}_1^n)) \\ & c\tau < 1 \; mm \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Direct $\tilde{x}_{1}^{+}\tilde{x}_{1}^{-}$ prod., long-lip Direct $\tilde{x}_{1}^{+}\tilde{x}_{1}^{-}$ prod., long-lip Direct $\tilde{x}_{1}^{+}\tilde{x}_{1}^{-}$ prod., long-lip Stable, stopped \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable \tilde{r} , $\tilde{x}_{1}^{0} \rightarrow \tilde{r}(\tilde{e}, GMSB, \tilde{x}_{1}^{0} \rightarrow \gamma \tilde{G}, long-live\tilde{g}\tilde{g}, \tilde{x}_{1}^{0} \rightarrow eev(\mu\nu/\mu\nu\nuGGM \tilde{g}\tilde{g}, \tilde{x}_{1}^{0} \rightarrow Z\tilde{G}$	$ \begin{array}{l} \operatorname{ved} \tilde{\chi}_{1}^{\pm} & \operatorname{Disapp. trk} \\ \operatorname{ved} \tilde{\chi}_{1}^{\pm} & \operatorname{dE/dx trk} \\ \operatorname{on} & 0 \\ \operatorname{dE/dx trk} \\ \tilde{\mu})_{+}\tau(e,\mu) & 1{-}2\mu \\ \operatorname{d} \tilde{\chi}_{1}^{0} & 2\gamma \\ \operatorname{displ. ee/e\mu/\mu} \\ \operatorname{displ. vtx + je} \end{array} $	1 jet - 1-5 jets - - - μμ - ets -	Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c c} \ddot{\chi}_{1}^{\pm} & 270 \text{ GeV} \\ \hline \tilde{\chi}_{1}^{\pm} & 495 \text{ GeV} \\ \hline \tilde{g} & 850 \text{ GeV} \\ \hline \tilde{g} & 850 \text{ GeV} \\ \hline \tilde{g} & & & \\ \hline \tilde{\chi}_{1}^{0} & 537 \text{ GeV} \\ \hline \tilde{\chi}_{1}^{0} & & & 1.0 \text{ TeV} \\ \hline \tilde{\chi}_{1}^{0} & & & 1.0 \text{ TeV} \\ \hline \end{array} $	$\begin{array}{c} m(\tilde{k}_1^+)\!-\!m(\tilde{k}_1^0)\!\sim\!160~\text{MeV},~\tau(\tilde{k}_1^+)\!=\!0.2~\text{ns}\\ m(\tilde{k}_1^+)\!-\!m(\tilde{k}_1^0)\!\sim\!160~\text{MeV},~\tau(\tilde{k}_1^+)\!<\!15~\text{ns}\\ m(\tilde{k}_1^0)\!=\!100~\text{GeV},~10~\mu_{S}\!<\!\tau(\tilde{g})\!<\!1000~\text{s}\\ m(\tilde{k}_1^0)\!=\!100~\text{GeV},~\tau\!>\!10~\text{ns}\\ 10\!<\!tan\beta\!<\!50\\ 1\!<\!\tau(\tilde{k}_1^0)\!\!<\!3n,~\text{SPS8}~\text{model}\\ 7\!<\!\epsilon\!\tau(\tilde{k}_1^0)\!\!<\!740~\text{mm},~m(\tilde{g})\!=\!1.3~\text{TeV}\\ 6\!<\!c\tau(\tilde{k}_1^0)\!\!<\!480~\text{mm},~m(\tilde{g})\!=\!1.1~\text{TeV}\\ \end{array}$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162 1504.05162
$ \begin{array}{c} LFV pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e\mu/\alpha \\ Bilinear \ RPV \ CMSSM \\ \tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{\dagger} \rightarrow W \tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow ee\tilde{\nu}_{I} \\ \tilde{X}_{1}^{\dagger}\tilde{X}_{1}, \tilde{X}_{1}^{\dagger} \rightarrow W \tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow \tau r\tilde{\nu} \\ \tilde{g}, \tilde{g} \rightarrow qqq \\ \tilde{g}, \tilde{g} \rightarrow q\bar{q}q \\ \tilde{g}, \tilde{g} \rightarrow q\bar{q}q \\ \tilde{g}, \tilde{g} \rightarrow i_{1}, \tilde{i}_{1} \rightarrow bs \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow b\ell \end{array} $	$\begin{array}{ccc} e\tau / \mu \tau & e\mu, e\tau, \mu \tau \\ & 2 \ e, \mu \ (\text{SS}) \\ \mu, e\mu \tilde{\nu}_e & 4 \ e, \mu \\ e, e \tau \tilde{\nu}_\tau & 3 \ e, \mu + \tau \\ & 0 \\ & 2 \ e, \mu \ (\text{SS}) \\ & 0 \\ & 2 \ e, \mu \end{array}$	- 0-3 b - - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- Yes Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c} \bar{x}_{\tau} & & & \\ \bar{q}, \bar{g} & & & \\ \bar{\chi}_{1}^{\pm} & & 760 \ \text{GeV} \\ \bar{\chi}_{1}^{\pm} & & 450 \ \text{GeV} \\ \bar{g} & & 917 \ \text{GeV} \\ \bar{g} & & 980 \ \text{GeV} \\ \bar{g} & & 980 \ \text{GeV} \\ \bar{g} & & 880 \ \text{GeV} \\ \bar{t}_{1} & & 320 \ \text{GeV} \\ \bar{t}_{1} & & 0.4\text{-}1.0 \ \text{TeV} \\ \end{array} $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.2500 1601.07453 ATLAS-CONF-2015-015

3U/U3/10, UIU

From ATLAS public results, March 2016

P. VValla

Squarks

Doesn't constrain highly degenerate squark scenario!

DM Interactions

Neutralino annihilation to fermions

Gauge boson bremsstrahlung

L. Bergström, Phys. Lett. B 232, 377 (1989)

Tree level diagrams in non-relativistic limit

 H_k^0 H_k^0 $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\boldsymbol{\chi}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ ã, q $\tilde{\boldsymbol{\chi}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\boldsymbol{\chi}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\boldsymbol{\gamma}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ 8 Ĩį ↓ $\tilde{\mathbf{\gamma}}_{1}^{0}$ $\tilde{\boldsymbol{\gamma}}_{1}^{0}$

Figures from B. Herrmann et al., 2009

U N

Non-Relativistic limit

\mathbf{L}	\mathbf{S}	$\mathbf{P} = (-)^{\mathbf{L} + 1}$	$\mathbf{C} = (-)^{\mathbf{L} + \mathbf{S}} \begin{vmatrix} \mathbf{2S} + 1 \mathbf{L}_{\mathbf{J}} \end{vmatrix} \mathbf{J}^{\mathbf{PC}} $ Name		Dirac Op	$\mathbf{v^{2L}}$		
			(C-even s	states	5		
0	0	—	+	${}^{1}S_{0}$	0-+	pseudo-scalar	$i\gamma_5$	v^0
1	1	+	+	${}^{3}P_{0}$	0++	scalar	1	v^2
1	1	+	+	${}^{3}P_{1}$	1++	axial-vector	$\gamma_5\gamma^k$	v^2
0	0	_	+	${}^{1}S_{0}$	0-+		$\gamma_5\gamma^0$	v^0

For Majorana pair

Table from T. Weiler, AIP Conf. Proc. 1534, 165 (2013)

Pseudoscalar approximation

(d)

(e)

Pseudoscalar approximation

NLO result

$$\sigma_{\rm tot}^{\rm simp} \simeq \sigma_0^{\rm simp} \left[1 + \frac{3\alpha_s C_F}{4\pi} \left(3 + 2\log\frac{\mu_q}{4} \right) \right]$$

Resumming the leading logarithms

$$\frac{6\alpha_s C_F}{\pi} \log \frac{\mu_q}{4} \to \left(\frac{\ln(4m_q^2/\Lambda_{QCD}^2)}{\ln(s/\Lambda_{QCD}^2)}\right)^{\frac{24}{33-2N_f}}$$

$$\frac{\overline{m}(\mu)}{\overline{m}(\mu_0)} = \left[\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right]^{\frac{2}{\pi b}} = \left[\frac{\ln(\mu_0/\Lambda_{QCD})}{\ln(\mu/\Lambda_{QCD})}\right]^{\frac{2}{\pi b}}$$

Resummed result

$$\frac{\sigma_{\rm tot}^{\rm simp}}{\sigma_0^{\rm simp}} \simeq \frac{\overline{m}^2(\sqrt{s})}{\overline{m}^2(2m_q)} \left[1 + \frac{9\alpha_s C_F}{4\pi}\right]$$

First derived in

E. Braaten and J. Leveille, Phys.Rev. D22, 715 (1980). M. Drees and K. Hikasa, Phys.Lett. B240, 455 (1990).

Pseudoscalar approximation

30/03/16, UiO

What scale to use?

 H_k^0 H_k^0 $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\boldsymbol{\chi}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ ã; q $\tilde{\boldsymbol{\chi}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\boldsymbol{\chi}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\boldsymbol{\chi}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\boldsymbol{\gamma}}_{1}^{0}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ 8 Ĩį ↓ $\tilde{\mathbf{\gamma}}_{1}^{0}$ $\tilde{\boldsymbol{\gamma}}_{1}^{0}$ $\tilde{\boldsymbol{\gamma}}_{1}^{0}$

Figures from B. Herrmann et al., 2009

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

Counter terms

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

8

 $\tilde{\chi}_1^0$

Figures from B. Herrmann et al., 2009

Figures from B. Herrmann et al., 2009

Figures from B. Herrmann et al., 2009

Virtual Internal Bremsstrahlung

VIB dominates the total cross sections for the case when

1. $m_\chi \gg m_q/\sqrt{lpha_{
m s}/\pi}$

2. Squarks and neutralino are highly degenerate.

For totally degenerate case

 $\sigma_{3\text{body}}/\sigma_{2\text{body}} \sim (\alpha_{\text{em}}/\pi) m_{\chi}^2/m_q^2$

Decreases by a factor of 2(3) for mass differences of 10% (20%)

Error estimation

Models from B. Herrmann et al., 2009

	$m_0[GeV]$	$M_2[GeV]$	$A_0[GeV]$	aneta	$\operatorname{sign}(\mu)$	$m_{H_u}[GeV]$	$m_{H_d}[GeV]$	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{t}}$	$\Delta_{\rm full} \ [112]([55])$	$\Delta_{\rm simp}$ [this work]	Diff. [%]
Ι	500	500	0	10	+	1500	1000	207.2	606.4	-(1.22)	1.22	<1
II	620	580	0	10	+	1020	1020	223.7	923.8	$1.32\ (1.59)$	1.15	-13
III	500	500	-1200	10	+	1250	2290	200.7	259.3	1.26(1.22)	1.25	1
	$m_0[C]$	$\overline{GeV} M_2[G]$	$[eV] A_0[0]$	\overline{GeV}] t	an β sig	$n(\mu) \frac{M_1}{M_1} \frac{M_1}{M_1}$	$\frac{3}{2}$ $m_{\sim 0}$ m	τ Δε	.11 [112	$([55]) \Delta_{simp}$ [th	is work] Difference	e [%]

	$m_0[Gev]$	$M_2[GeV]$	$A_0[Gev]$	$\tan \rho$	$\operatorname{sign}(\mu)$	$\overline{M_2}$	$\overline{M_2}$	$m_{ ilde{\chi}^0_1}$	$m_{ ilde{t}}$	Δ_{full} [112]([55])	Δ_{simp} [this work]	Difference [70]
IV	300	700	-350	10	+	2/3	1/3	183.4	281.9	$1.43\ (1.25)$	1.49	4
V	1500	600	0	10	+	1	4/9	235.6	939.0	1.34(1.55)	1.12	-16

$$\Delta_{\rm full} \equiv \sigma_{\rm tot}^{\rm full} / \sigma_0 \qquad \Delta_{\rm simp} \equiv \sigma_{\rm tot}^{\rm simp} / \sigma_0$$

NOTE: DM@NLO unable to handle zero velocity limit

Model I : A exchange Model II & V: Z exchange Model III & IV: squark exchange

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{eq}^2)$$
$$\Omega_{\chi} h^2 \approx \frac{3 \times 10^{-27} cm^3 / s}{\langle \sigma v \rangle} \sim 0.1$$
$$\langle \sigma v \rangle \simeq 3 \times 10^{-26} cm^3 / s$$
$$\langle \sigma v \rangle \simeq a_0 + a_1 \langle v^2 \rangle + \ldots = a_0 + \frac{3a_1}{2} \frac{T}{m_{\chi}} + \ldots$$

$$\langle \sigma v \rangle \simeq a_0 + a_1 \langle v^2 \rangle + \dots = a_0 + \frac{3a_1}{2} \frac{T}{m_\chi} + \dots$$

Typical decoupling Temperatures $~T \sim m_\chi/25$

Including VIB can make the first term comparable to the second

The suppression is $\alpha_{
m s}/\pi$ rather than m_q^2/m_χ^2

$$\langle \sigma v \rangle \simeq a_0 + a_1 \langle v^2 \rangle + \dots = a_0 + \frac{3a_1}{2} \frac{T}{m_\chi} + \dots$$

The obstacles-

1. For significant VIB contribution $\, m_\chi \gg m_q/\sqrt{lpha_{
m s}/\pi}$

Top and Electroweak boson final states possible, which are "unsuppressed"

2. Small mass splitting between neutralino and squark masses required

Co-annihilations dominate in this parameter region

Variation of Ωh^2 vs m_{χ} for a pure Bino model.

Note: σ^{full} also contains gluon pair contribution, which is unsuppressed. All the sparticle masses other than squarks and neutralino have been set very high.

The plot shows the values of neutralino and squark masses to achieve the correct relic density

Conclusion: Co-annihilations would always dominate over VIB

Indirect detection

Indirect searches

とつ

Antiproton and photon spectrum

Using PYTHIA 8.2, 10⁷ runs

Indirect searches

$$\frac{d\tilde{N}_{\bar{q}qg}}{dT_{\bar{p}}} \simeq y_{\bar{p}} \frac{d\tilde{N}_{\bar{q}qg}^{\text{VIB}}}{dT_{\bar{p}}} + (1 - y_{\bar{p}}) \frac{d\tilde{N}_{\bar{q}qg}^{m_{\tilde{q}} \to \infty}}{dT_{\bar{p}}}$$
$$\frac{d\tilde{N}_{\bar{q}qg}}{dE_{\gamma}} \simeq y_{\gamma} \frac{d\tilde{N}_{\bar{q}qg}^{\text{VIB}}}{dE_{\gamma}} + (1 - y_{\gamma}) \frac{d\tilde{N}_{\bar{q}qg}^{m_{\tilde{q}} \to \infty}}{dE_{\gamma}}$$

Antiproton spectrum

$\bar{q}q$	$g^{ m r}_{ ilde{q}i}$	c_1	c_2	c_3	n_1	n_2	n_3
$\bar{c}c$	$\geq 10^{-4}$	-0.13	5.35	-5.22	0	9.8	9.15
$\bar{s}s$	$\geq 10^{-4}$	-0.4	-9.14	9.54	0	8.1	9.98
$\bar{t}t$	$\geq 10^{-4}$	-0.67	-2.41	3.08	0	0.43	0.27
$\overline{b}b$	$\geq 10^{-4}$	8.1	-8.32	0.22	0	0.02	9.53
$\bar{t}t$	$< 10^{-4}$	0.1	0.21	-0.31	0	8.73	5.53

Gamma-ray spectrum

$$r \equiv \frac{r'_{\text{true}} - r'_{\tilde{m} \to \infty}}{r'_{\text{VIB}} - r'_{\tilde{m} \to \infty}}$$
$$r'_{\text{X}} = dN_{\bar{q}qg}^{\text{X}}(x_{\text{max}})/dx_{g}$$
$$\log_{10}(y) = \log_{10}(r) + \sum_{i} c_{i}r^{n_{i}}$$

$\bar{q}q$	$g^{ m r}_{ ilde{q}i}$	c_1	c_2	c_3	n_1	n_2	n_3
$\overline{c}c$	$\geq 10^{-4}$	0.03	-7.97	7.94	0	8.08	9.83
\overline{ss}	$\geq 10^{-4}$	0.12	-8.24	8.12	0	7.05	9.63
$\left \bar{t}t \right $	$\geq 10^{-4}$	-4.8	6.44	-1.64	0	0.06	0.34
$\overline{b}b$	$\geq 10^{-4}$	0.26	3.89	-4.15	0	2.22	1.63
$\overline{t}t$	$< 10^{-4}$	0.08	1.05	-1.13	0	8.36	7.45

Limits

Bino masses upto 60 GeV are excluded

Summary

- Pseudoscalar approximation is a good approximation and saves computation time significantly.
- Relic density is always dominated by coannihilations for degenerate squark scenario, hence rendering VIB contribution insignificant.
- Cross sections from DM@NLO are not good in zero velocity limit.
- Indirect detection limits improved by a factor of 5 for antiprotons by including VIB contributions.

Takk!