Dark Matter and Sterile Neutrinos with Astrophysical Connections

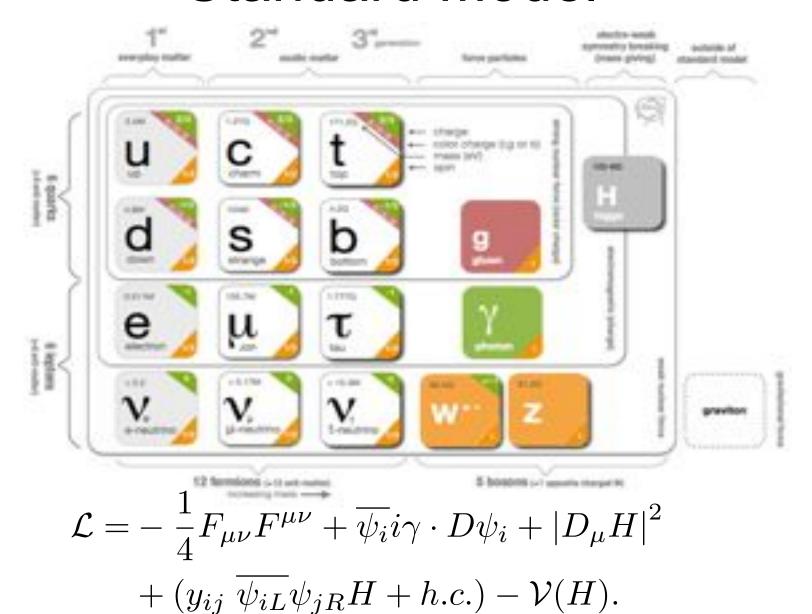
TANG, Yong(汤勇) Korea Institute for Advanced Study

Theory Seminar, Department of Physics, University of Oslo, Aug 19, 2015

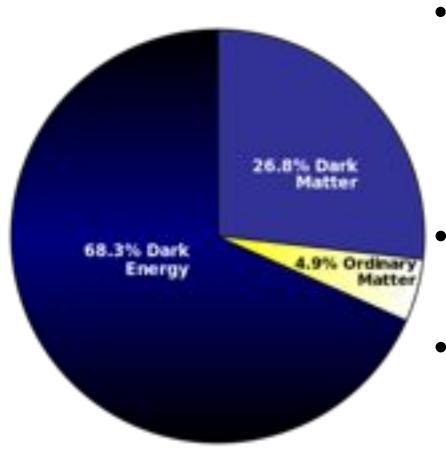
Outline

- Introduction
 - DM evidence
 - cold dark matter controversies
- Self-Interacting DM
- Sterile Neutrinos
- Summary

Standard Model



Cosmic Pie



- "Ordinary Matter": baryon, photon, neutrino, mostly described by particle physics standard model
- Dark Energy: cosmological constant?
- Dark Matter:
 WIMP, (sterile) neutrino,
 axion, ...

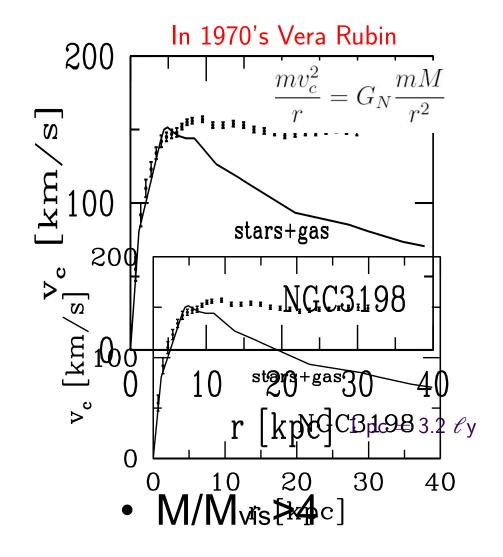
Pre-history

- Fritz Zwicky, 1933, coma cluster
- galaxies were moving too fast,
- extra invisible mass is needed, Dark Matter

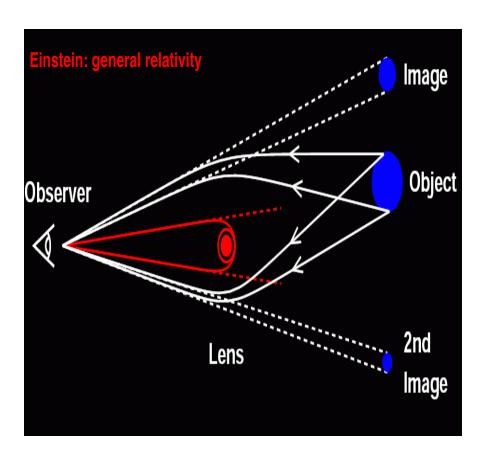
Rotational Curve

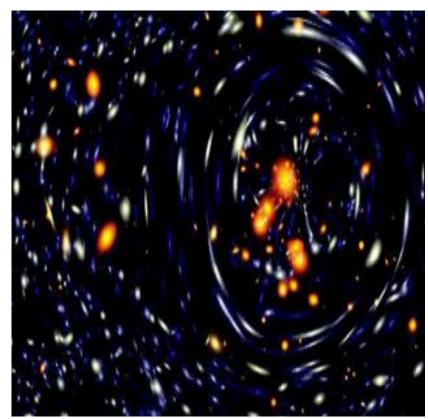
$$\frac{GMm}{r^2} = m\frac{v^2}{r} \Rightarrow v = \sqrt{\frac{GM(r)}{r}}$$

$$v = const. \Rightarrow M(r) \sim r$$



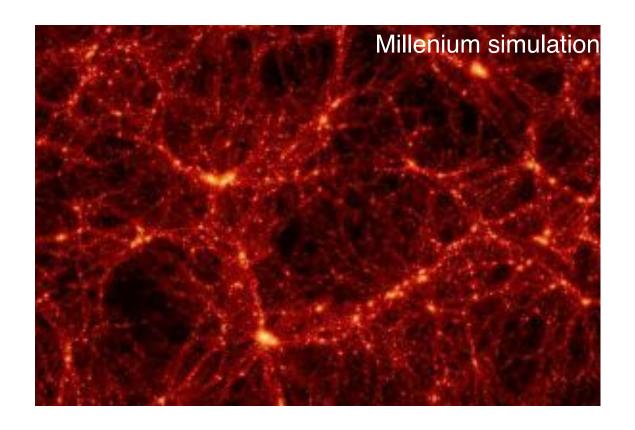
Gravitational Lensing





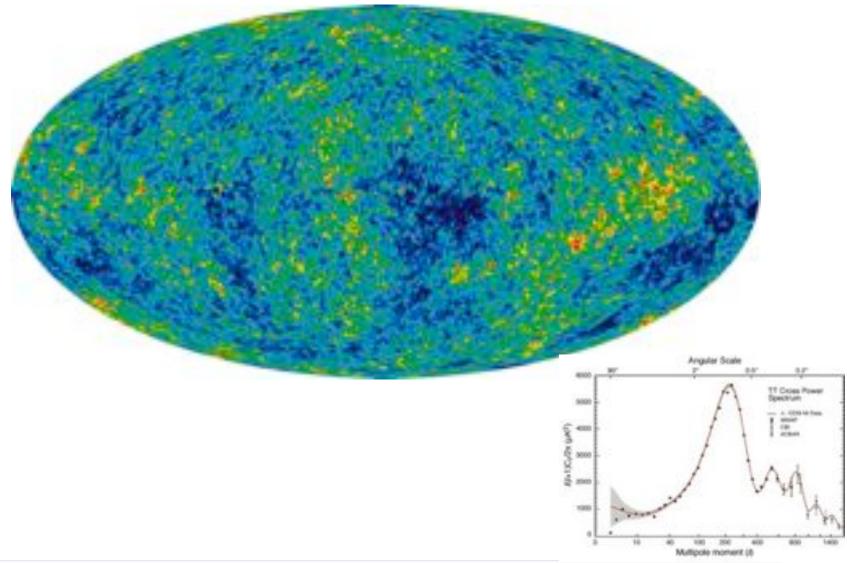
determine the total mas

Large Scale Structure

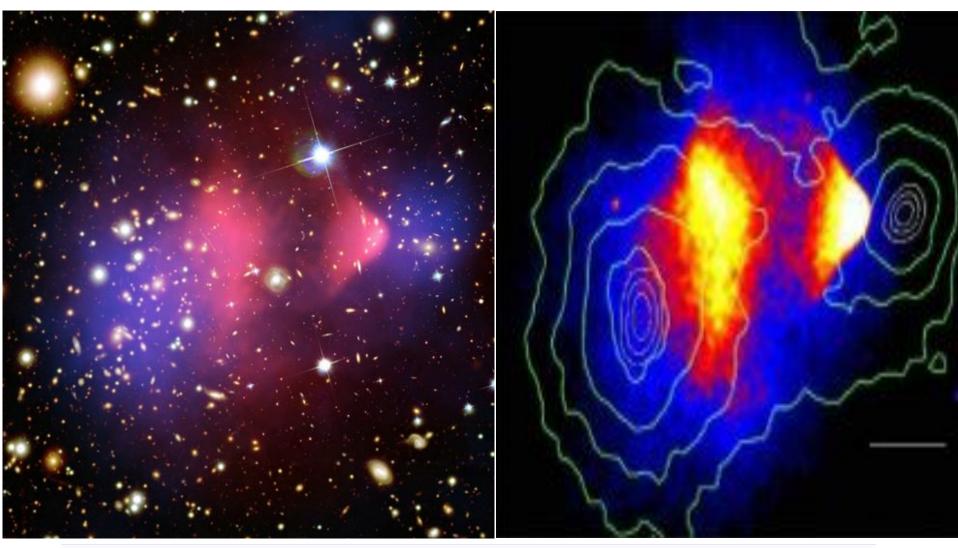


 if only visible matter, matter power spectrum does not match; matched if dark matter included

CMB anisotropy



Bullet Clus



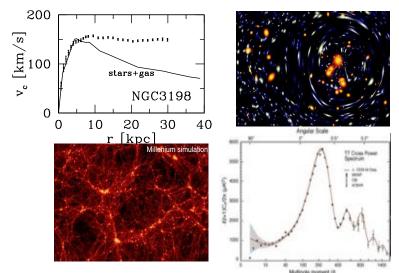
Yong Tang(KIAS)

Self-Interacting DM and Sterile Neutrinos

Dark Matter Scenario

- Rotation Curves of Galaxies
- Gravitational Lensing
- Large Scale Structure
- CMB anisotropies, ...

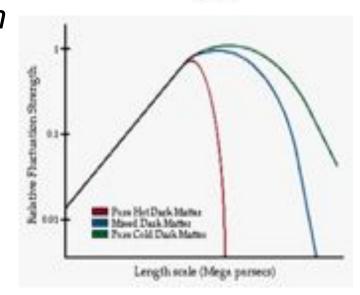
HDM: active neutrino



All confirmed evidence comes from gravitational interaction

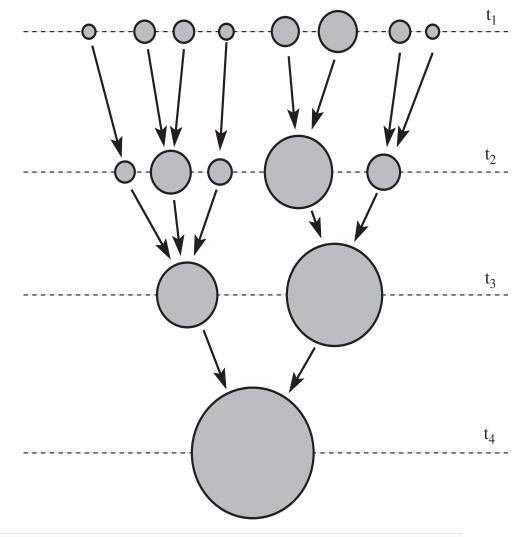
CDM: velocity dispersion is negligible for structure formation, a popular candidate, WIMP

WDM: keV sterile neutrino

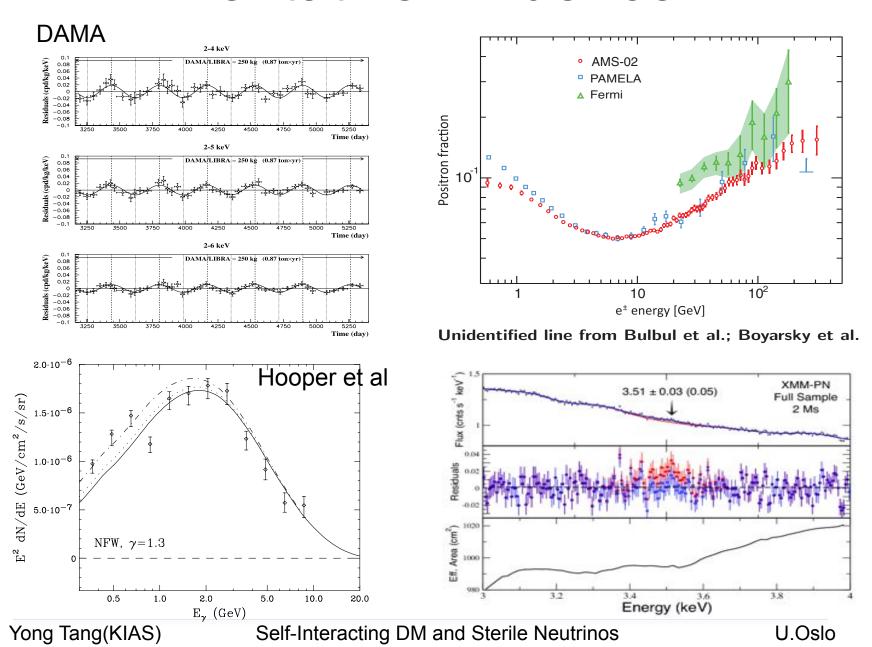


Merger History of Dark Halo

- standard picture
- DM halo grow hierarchically
- first small scale structures form
- then merge into larger halo

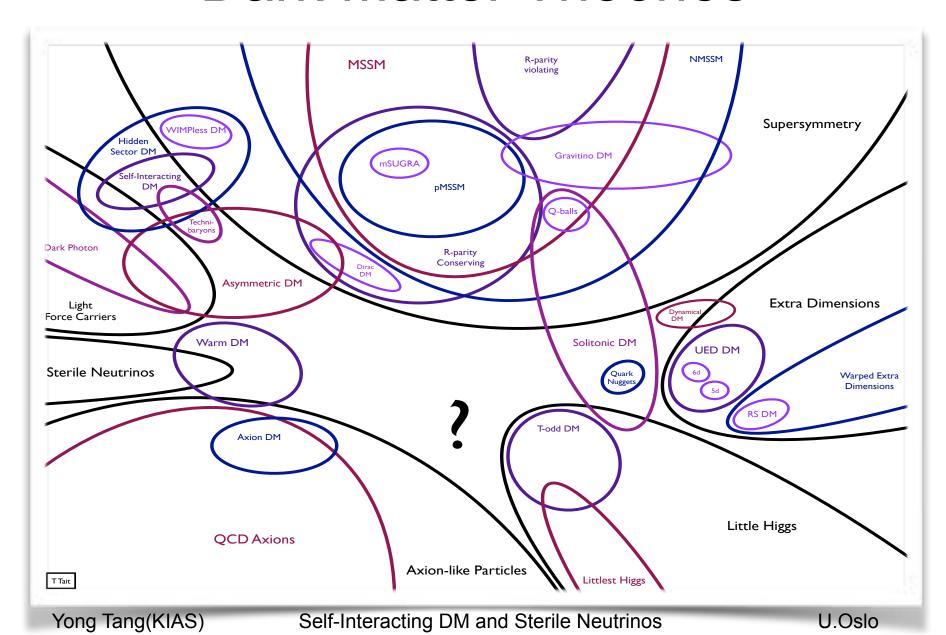


Tentative Evidence



20.0

Dark Matter Theories



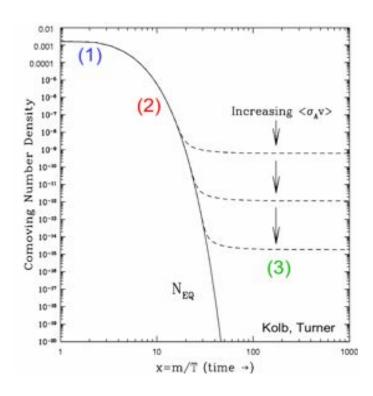
The WIMP Miracle

- WIMPs have masses O(100 GeV)
- miracle:
 <u>~</u> correct abundance:
- 1) Assume a new (heavy) particle χ is initially in thermal equilibrium:

2) Universe cools: $\begin{array}{ccc} \chi\chi & \longleftrightarrow & ff \\ \chi\chi & \rightleftarrows & ff \end{array}$

3) "freeze out" $\chi\chi \not = ff$

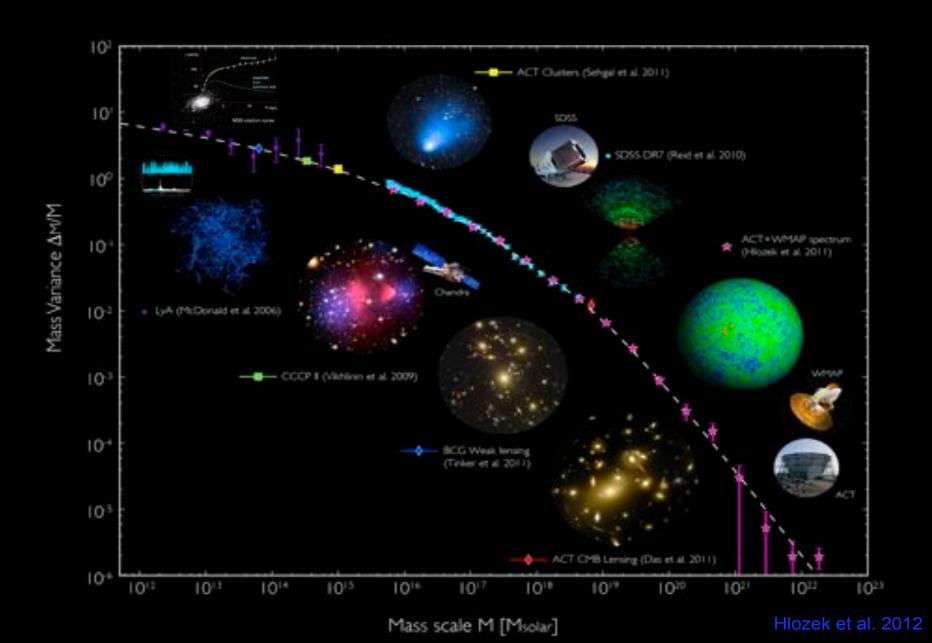
Natural x-section ~ 1/m²
 → abundance fixed by EW scale



- \rightarrow remarkable coincidence: $\Omega_{\rm DM} \sim 0.2$ for $m_{\rm WIMP} \sim 100\text{-}1000$ GeV
- → BSM AND correct abundance point towards WIMPs

 $\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle \sigma_A v \rangle_T \left[(n_\chi)^2 - (n_\chi^{eq})^2 \right]$ dilution by Universe thermally averaged expansion annihilation cross section $\chi \bar{\chi} \to P\bar{P}$

ACDM: successful at large scales



CDM Controversies on small scales?

Weinberg, Bullock, Governato, de Naray, Peter, 1306.0913

- Cusp-vs-Core problem
- Missing satellites problem
- To-big-to-fail problem

Be cautious!

No consensus, simulations are very complicated when including baryon effects.

Cusp vs. Core

DM density profiles

NFW:
$$\rho_{NFW}(r) = \rho_s \frac{r_s}{r} \left(1 + \frac{r}{r_s} \right)^{-2}$$

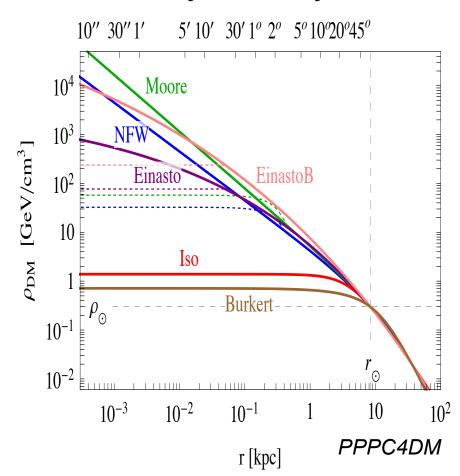
Einasto:
$$\rho_{\text{Ein}}(r) = \rho_s \exp \left\{ -\frac{2}{\alpha} \left[\left(\frac{r}{r_s} \right)^{\alpha} - 1 \right] \right\}$$

Isothermal:
$$\rho_{\rm Iso}(r) = \frac{\rho_s}{1 + (r/r_s)^2}$$

Burkert:
$$\rho_{\text{Bur}}(r) = \frac{\rho_s}{(1+r/r_s)(1+(r/r_s)^2)}$$

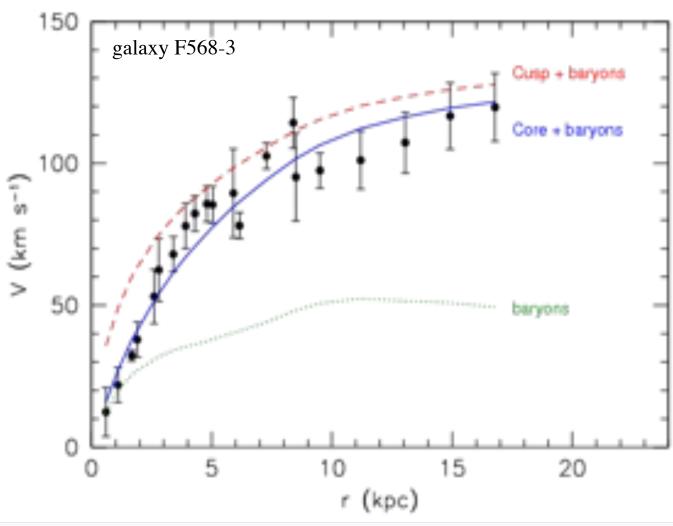
Moore:
$$\rho_{\text{Moo}}(r) = \rho_s \left(\frac{r_s}{r}\right)^{1.16} \left(1 + \frac{r}{r_s}\right)^{-1.84}$$

Angle from the GC [degrees]



Cusp profiles, such as NFW, are predicted by N-body simulation of CDM

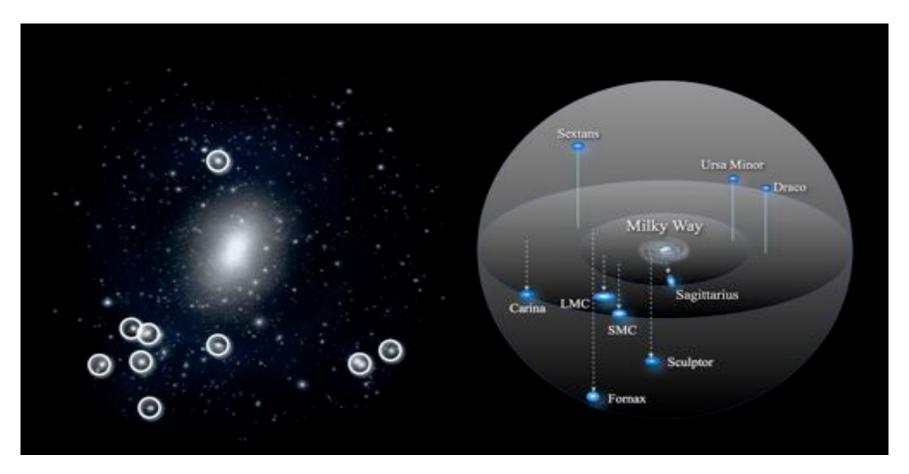
Cusp vs. Core



"missing satellites" problem

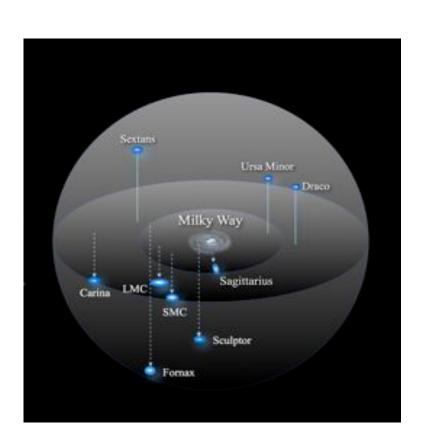
- Projected dark matter distribution of a simulated CDM halo.
- The numerous small subhalos far exceed the number of known Milky Way satellites.
- Circles mark the nine most massive subhalos.

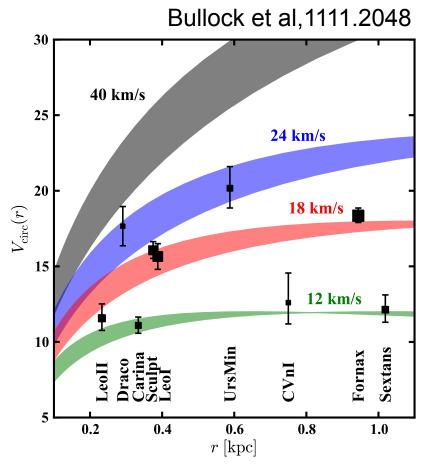
"too-big-to-fail" problem



The central densities of the subhalos in the left panel are too high to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed.

"too-big-to-fail" problem





• Right Panel: Observed circular velocity of the nine bright dSphs, along with rotation curves corresponding to NFW subhalo.

Possible solutions

Baryonic physics:
 gas cooling, star formation,
 supernova feedback,...

Dark Matter:
 warm dark matter
 Decaying DM
 Self-Interacting DM

Spergel et al, Sigurdson et al, Boehm et al, Kaplinghat et al, Loeb et al, Tulin et al, van de Aarseen et al,

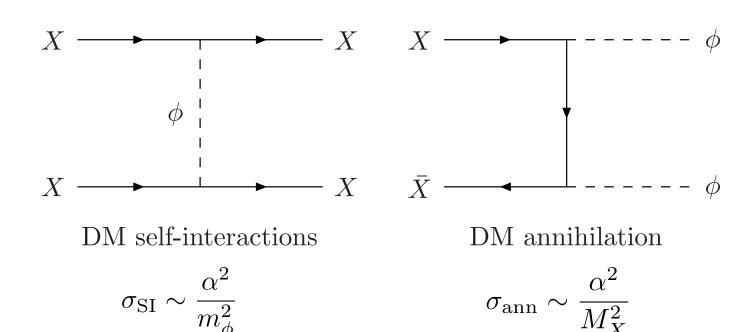
. . . .

What is SIDM?

DM-DM scattering cross section is around

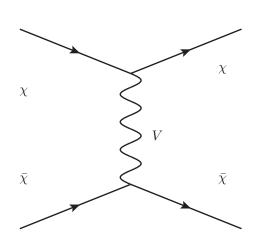
$$\frac{\sigma}{M_X} \sim \text{cm}^2/\text{g} \sim \text{barn/GeV}$$

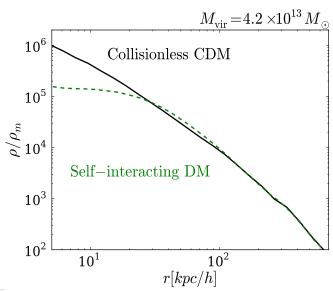
It can still be the usual WIMP



Effects

- In-falling dark matter is scattered before reaching the center of the galaxy. These collisions increase the entropy of the dark matter phase space distribution and lead to a dark matter halo profile with a shallower density profile.
- It can flatten the halo centre, solving the "cusp-vs-core" and "too-big-to-fail" problems.
 But not "Missing Satellites"!
- MeV mediator can provide the right elastic scattering cross section for TeV dark matter

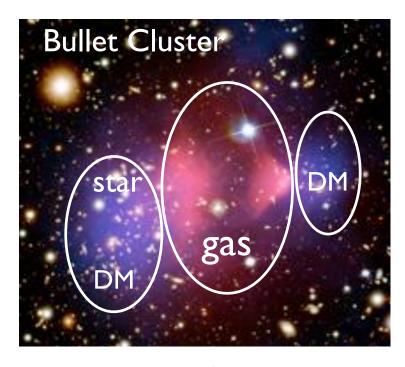




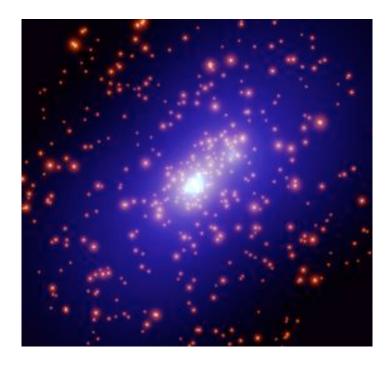
nx ~ 01 Astrophy stear Constraints

· BUTTET CHAPTET, CHAPTET AND MAIOSHEDDES

$$\frac{\sigma_{\rm SI}}{M_X} \lesssim 0.1 - 1 \text{ cm}^2/\text{g}$$



 $V \sim 1000 \text{ km/s}$ for cluster



 $V \sim 200 \text{ km/s}$ for galaxies

Velocity dependence

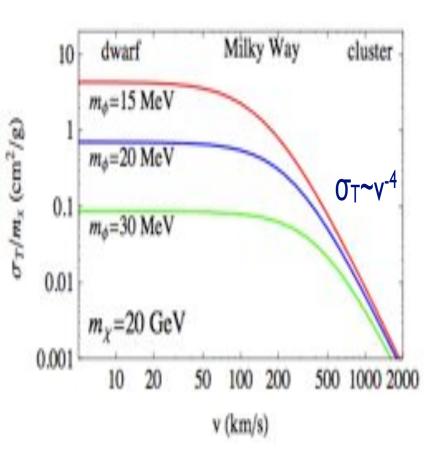
In the Born limit $(\alpha_X m_X/m_\phi \ll 1)$,

In the Born limit
$$(\alpha_X m_X/m_\phi \ll 1)$$
,
$$\sigma_T^{\rm Born} = \frac{8\pi\alpha_X^2}{m_X^2 v^4} \Big(\log\big(1+m_X^2 v^2/m_\phi^2\big) - \frac{m_X^2 v^2}{m_\phi^2+m_X^2 v^2}\Big) \ ,$$
 in the classical limit $(m_X v/m_\phi \gg 1)$,

$$\sigma_T^{\text{clas}} = \begin{cases} \frac{4\pi}{m_\phi^2} \beta^2 \ln (1 + \beta^{-1}) & \beta \lesssim 10^{-1} \\ \frac{8\pi}{m_\phi^2} \beta^2 / (1 + 1.5\beta^{1.65}) & 10^{-1} \lesssim \beta \lesssim 10^3 \\ \frac{\pi}{m_\phi^2} \left(\ln \beta + 1 - \frac{1}{2} \ln^{-1} \beta \right)^2 & \beta \gtrsim 10^3 \end{cases}$$

where $\beta \equiv 2\alpha_X m_\phi/(m_X v^2)$.

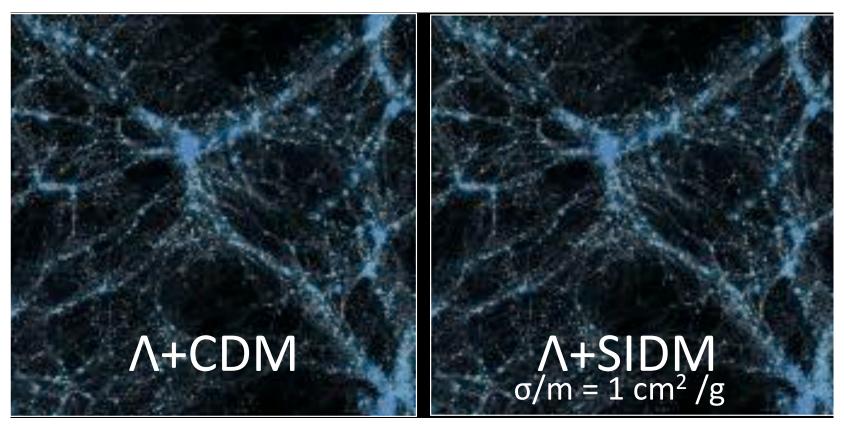
$$\alpha_{\phi} \equiv \frac{\lambda_{\phi X}^2}{4\pi} \left(\frac{v_{\phi}}{2M_X}\right)^2 \text{ and } \beta \equiv \frac{2\alpha_{\phi} M_{H_2}}{M_X v_{\text{rel}}^2}.$$

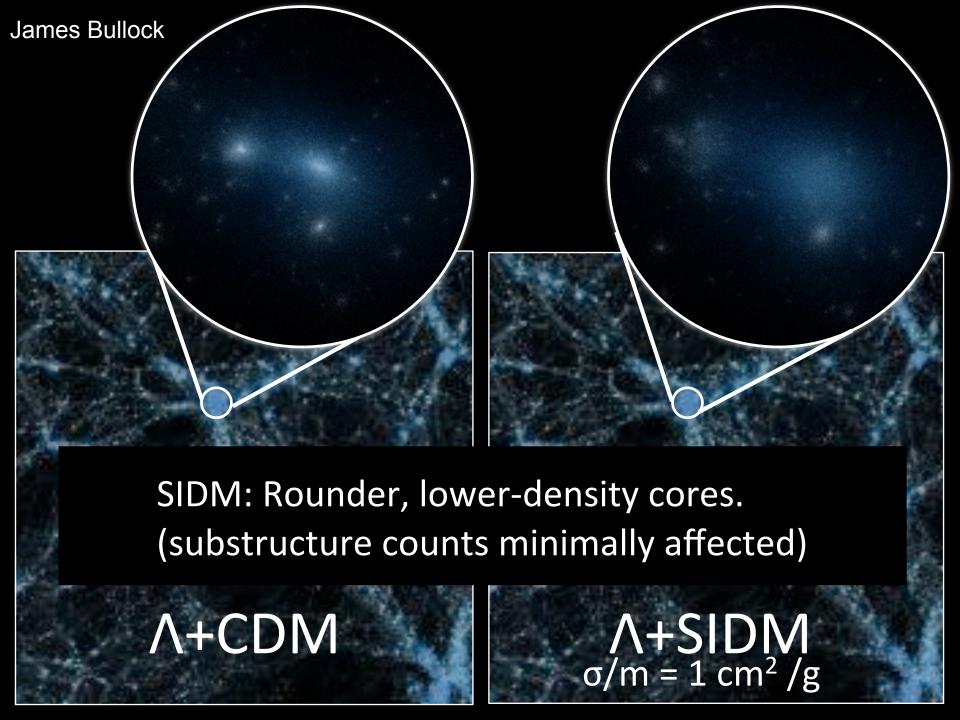


Feng et al, Buckley & Fox, Leob & Weiner, Tulin & Yu et al,..., Ko&Tang

Identical LSS

James Bullock





Global Symmetry

Longevity protected by symmetry, Z_2 , $\phi
ightarrow -\phi$

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \lambda \phi^4 - \lambda_{\phi H} \phi^2 H^{\dagger} H + \mathcal{L}_{SM}$$

There are some reasons to expect that global symmetries are not respected by non-perturbative quantum gravity.

Global charges can be absorbed by black holes which then evaporate, R.Kallosh, A.Linde, D.Linde and L.Susskind, hep-th/9502069

There is no global symmetry in string theory, symmetry must be gauged, Banks & Seiberg, arXiv:1011.5120

$$\delta \mathcal{L}_{\text{eff}} = \frac{g}{M_{\text{pl}}} \phi \mathcal{O}_{\text{SM}}, \ \mathcal{O}_{\text{SM}} = F_{\mu\nu} F^{\mu\nu}, \ \bar{f} \gamma \cdot Df, \ \bar{f}_L f_R H, \dots$$
$$\tau \sim \frac{1}{g^2} \left(\frac{1 \text{TeV}}{M_{\phi}}\right)^3 \times 10^4 \text{s}$$

Discrete symmetry from gauge symmetry

An extra U(1)x *gauge symmetry* is introduced, with scalar DM X and dark higgs with charges 1 and 3, respectively.

P, Ko, YT, arXiv:1402.6449(JCAP)

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - \frac{1}{4} \tilde{X}_{\mu\nu} \tilde{X}^{\mu\nu} - \frac{1}{2} \sin \epsilon \tilde{X}_{\mu\nu} \tilde{B}^{\mu\nu} + D_{\mu} \phi_{X}^{\dagger} D^{\mu} \phi_{X} + D_{\mu} X^{\dagger} D^{\mu} X - V$$

$$V = -\mu_{H}^{2} H^{\dagger} H + \lambda_{H} \left(H^{\dagger} H \right)^{2} - \mu_{\phi}^{2} \phi_{X}^{\dagger} \phi_{X} + \lambda_{\phi} \left(\phi_{X}^{\dagger} \phi_{X} \right)^{2} + \mu_{X}^{2} X^{\dagger} X + \lambda_{X} \left(X^{\dagger} X \right)^{2} + \lambda_{\phi H} \phi_{X}^{\dagger} \phi_{X} H^{\dagger} H + \lambda_{\phi X} X^{\dagger} X \phi_{X}^{\dagger} \phi_{X} + \lambda_{HX} X^{\dagger} X H^{\dagger} H + \left(\lambda_{3} X^{3} \phi_{X}^{\dagger} + H.c. \right)$$

$$X \rightarrow e^{\mathrm{i} \frac{2\pi}{3}} X$$

$$Z_{3} \text{ symmetry} \qquad X^{\dagger} \rightarrow e^{-\mathrm{i} \frac{2\pi}{3}} X^{\dagger} \qquad X^{3} + X^{\dagger 3}$$

Limits

 If the masses of dark gauge boson and dark higgs are much heavier, we have effective theory, global Z₃,

$$\mathcal{L} = \mathcal{L}_{SM} + \partial_{\mu} X^{\dagger} \partial^{\mu} X - V$$

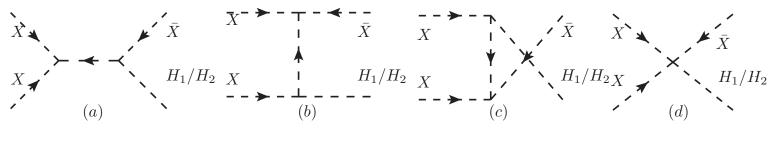
$$V = \mu_X^2 X^{\dagger} X + \lambda_X (X^{\dagger} X)^2 + \lambda_{HX} X^{\dagger} X H^{\dagger} H + (\mu_3 X^3 + h.c)$$

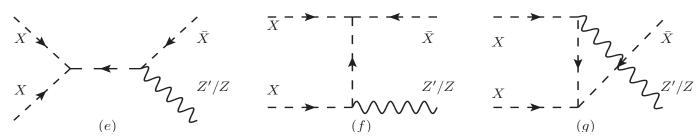
· If the cubic term vanishes, further simplified

$$\mathcal{L} = \mathcal{L}_{SM} + \partial_{\mu} X^{\dagger} \partial^{\mu} X - V$$

$$V = \mu_X^2 X^{\dagger} X + \lambda_X (X^{\dagger} X)^2 + \lambda_{HX} X^{\dagger} X H^{\dagger} H$$

Semi-annihilation





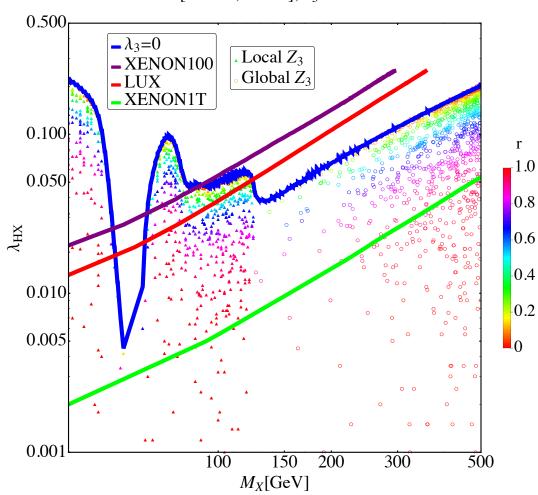
$$\frac{dn_X}{dt} = -v\sigma^{XX^* \to YY} \left(n_X^2 - n_{X \text{ eq}}^2 \right) - \frac{1}{2}v\sigma^{XX \to X^*Y} \left(n_X^2 - n_X n_{X \text{ eq}} \right) - 3Hn_X,$$

$$r \equiv \frac{1}{2} \frac{v\sigma^{XX \to X^*Y}}{v\sigma^{XX^* \to YY} + \frac{1}{2}v\sigma^{XX \to X^*Y}}.$$

micrOMEGAs

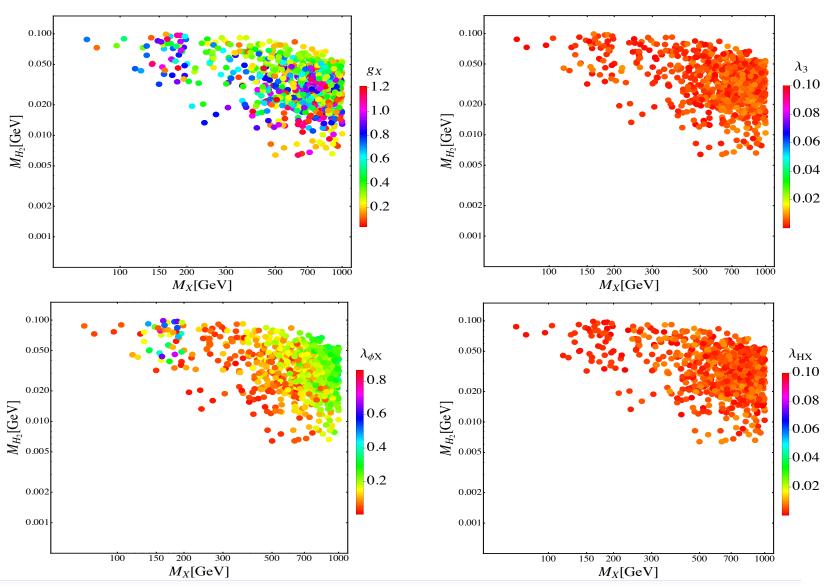
Relic density and Direct Search

 $\Omega h^2 \subset [0.1145, 0.1253], \lambda_3 < 0.02$



- Blue band marks the upper bound, $\lambda_{HX}X^{\dagger}XH^{\dagger}H$
- All points are allowed in our local Z3 model, 1402.6449
- only circles are allowed in global Z3 model,1211.1014

Parameters for SIDM

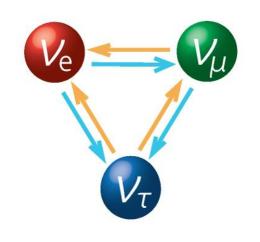


Yong Tang(KIAS)

Self-Interacting DM and Sterile Neutrinos

Sterile Neutrinos

Neutrinos in SM



For 2-flavor mixing,

$$|\nu_{\alpha}\rangle = \cos\theta \ |\nu_{1}\rangle + \sin\theta \ |\nu_{2}\rangle,$$

$$|\nu_{\beta}\rangle = -\sin\theta \ |\nu_{1}\rangle + \cos\theta \ |\nu_{2}\rangle,$$

$$|\nu_{\beta}\rangle = -\sin\theta \ |\nu_{1}\rangle + \cos\theta \ |\nu_{2}\rangle,$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right).$$

- Neutrinos in SM are massless, no mixing and oscillation
- One can extend SM with sterile right-handed neutrinos to give mass. But their masses are not known.
- Sterile neutrings do not have Sit interactions, but can mix with active neutrinos.

eV Sterile Neutrinos?

- Motivated by neutrino experiments to solve anomalies,
- accelerator, ($ar
 u_{\mu}
 ightarrow ar
 u_{e}$) LSND and MiniBooNE
- reactor, (deficit of $\bar{\nu}_e$ flux)
- gallium anomalies ($^{71}Ga + \nu_e \rightarrow ^{71}Ge + e^-$)

GALLEX and **SAGE**

$$\Delta m_{14}^2 \sim \text{eV}^2$$
, $\sin^2 2\theta_{14} \sim 0.05$

Cosmological Bounds

- Extra radiation, $N_{
 m eff}$,
- eV sterile neutrinos as hot dark matter, BBN, CMB, LSS

Joint CMB+BBN, 95% CL preferred ranges

Planck 2015, arXiv:1502.01589

$$N_{\text{eff}} = \begin{cases} 3.11_{-0.57}^{+0.59} & \text{He+}Planck \text{TT+lowP,} \\ 3.14_{-0.43}^{+0.44} & \text{He+}Planck \text{TT+lowP+BAO,} \\ 2.99_{-0.39}^{+0.39} & \text{He+}Planck \text{TT,TE,EE+lowP,} \end{cases}$$

Constraints on sterile neutrino mass

$$\left. \begin{array}{l} N_{\rm eff} < 3.7 \\ m_{\nu,\,\,\rm sterile}^{\rm eff} < 0.52 \,\, {\rm eV} \end{array} \right\} = 95\%, Planck\,\,\rm TT+lowP+lensing+BAO.$$

Difficulty

With such mixing parameters,

$$\Delta m_{14}^2 \sim \text{eV}^2$$
, $\sin^2 2\theta_{14} \sim 0.05$

- neutrino oscillation would bring sterile neutrino into equilibrium in the early universe, then contribute $\Delta N_{\rm eff} \simeq 1$, in tension with *CMB* and *LSS*
- This is not true in case there is a large lepton asymmetry, or a self-interaction for sterile neutrinos, which induces a matter potential $V_{
 m eff}$

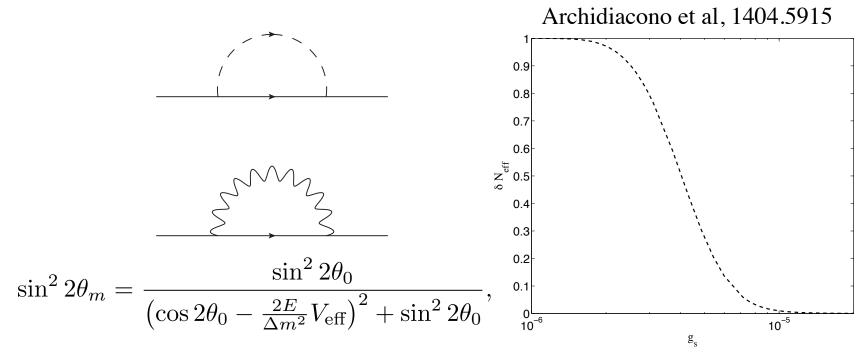
MSW effect, Akhmedov, hep-ph/0001264

$$\sin^2 2\theta_m = \frac{\sin^2 2\theta_0}{\left(\cos 2\theta_0 - \frac{2E}{\Delta m^2} V_{\text{eff}}\right)^2 + \sin^2 2\theta_0}, \ V_{\text{eff}} \sim \frac{G_X}{M_X^2} T^5$$

Hannestad et al, 1310.5926, Dasgupta&Kopp 1310.6337,

Interacting Sterile Neutrinos

Partial thermalization at BBN



 The new interaction could lead to flavor equilibrium after BBN,
 A. Mirizzi et al, 1410.1385, inconsistent with cosmological neutrino mass bounds

Kinetic Equations

two-flavor mixing for ν_a - ν_s

$$\rho = \left(\begin{array}{cc} \rho_{aa} & \rho_{as} \\ \rho_{sa} & \rho_{ss} \end{array}\right)$$

density matrix is evolving as

$$i\frac{d\rho}{dt} = [H, \rho] + C(\rho)$$

where
$$_{H}=\left(egin{array}{ccc} -rac{\delta m^{2}}{2E}\cos2 heta_{0}+V_{\mathrm{eff}} & rac{\delta m^{2}}{2E}\sin2 heta_{0} \\ rac{\delta m^{2}}{2E}\sin2 heta_{0} & rac{\delta m^{2}}{2E}\cos2 heta_{0}-V_{\mathrm{eff}} \end{array}
ight)$$

and $C(\rho)$ is the collision term.

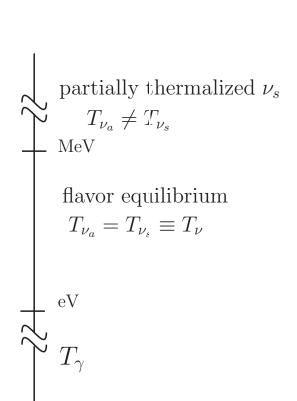
Kinetic Equations

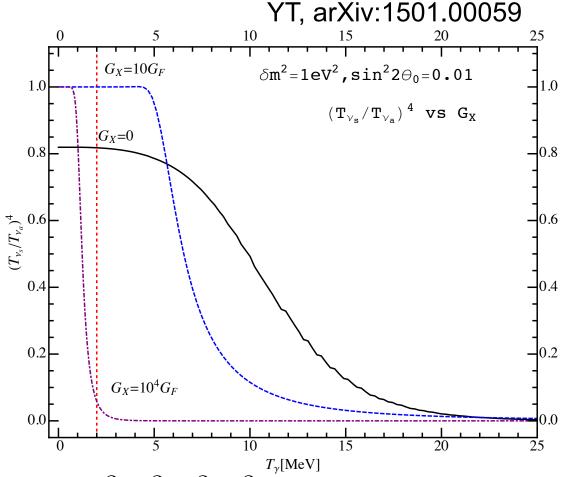
Reparametrize

$$\begin{split} \rho &= \begin{pmatrix} \rho_{aa} & \rho_{as} \\ \rho_{sa} & \rho_{ss} \end{pmatrix} = \frac{1}{2} f_0 \left(P_0 + \vec{P} \cdot \vec{\sigma} \right), \quad f_0 = 1/(e^{E/T} + 1) \\ P_a &= P_0 + P_z = 2 \frac{\rho_{aa}}{f_0}, \qquad P_s \equiv P_0 - P_z = 2 \frac{\rho_{ss}}{f_0}, \\ \dot{P}_a &= V_x P_y + \Gamma_a \left[2 \frac{f_{eq,a}}{f_0} - P_a \right], \\ \dot{P}_s &= -V_x P_y + \Gamma_s \left[2 \frac{f_{eq,s}}{f_0} - P_s \right], \\ \dot{P}_x &= -V_z P_y - D P_x, \\ \dot{P}_y &= V_z P_x - \frac{1}{2} V_x (P_a - P_s) - D P_y. \qquad D \simeq \frac{1}{2} \left(\Gamma_a + \Gamma_s \right) \end{split}$$

Hannestad, Hansen, Tram, LASAGNA

Flavor Equilibrium after BBN





$$\nu_e : \nu_\mu : \nu_\tau : \nu_s = 1 : 1 : 1 : 0 \Rightarrow \frac{3}{4} : \frac{3}{4} : \frac{3}{4} : \frac{3}{4}$$

Excluded for eV scale

$\delta Neff < 0$?

Neff at BBN and CMB

$$\delta N_{\rm eff}^{\rm bbn} = n \times \left(\frac{T_{\nu_s}}{T_{\nu_s}^0}\right)^4.$$

Flavor equilibrium:

number density is conserved

$$3 \times (T_{\nu_a}^0)^3 + n \times T_{\nu_s}^3 = (3+n) \times T_{\nu}^3, \quad \xi$$

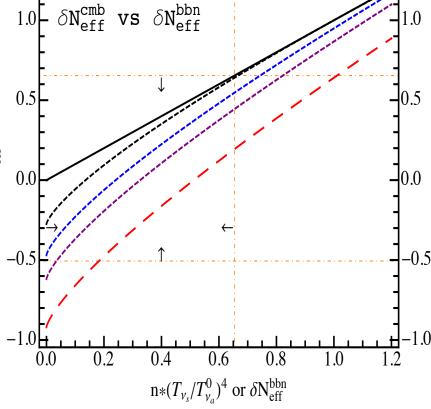
Assume Fermi-Dirac Distribution

$$\delta N_{\text{eff}}^{\text{cmb}} = (3+n)^{-1/3} \times \left[3 + n \times \left(\frac{T_{\nu_s}}{T_{\nu_a}^0} \right)^3 \right]^{4/3} - 3,$$
 -1.0

Neff can be even reduced.

Similar observations in Bringmann, Hasenkamp, Kersten, JCAP 1407 (2014) 042 and Mirizzi, Mangano, Pisanti, Saviano, PRD 91 (2015) 025019.

YT, arXiv:1501.00059



Yong Tang(KIAS)

Self-Interacting DM and Sterile Neutrinos

U.Oslo

Cosmological Mass bound

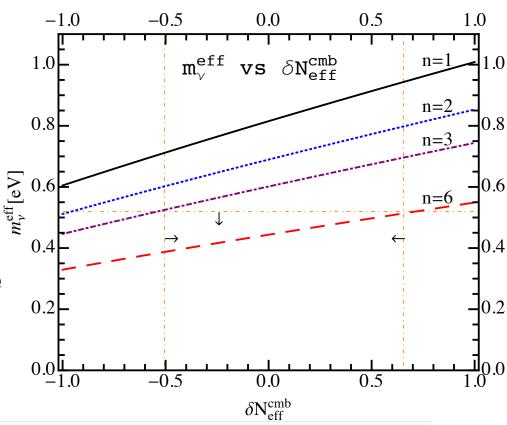
Planck2015
$$\binom{N_{\rm eff} < 3.7}{m_{\nu,\, \rm sterile}^{\rm eff} < 0.52 \, {\rm eV}}$$
 95%, Planck TT+lowP+lensing+BAO.

$$m_{\nu}^{\text{eff}} \equiv \frac{\sum_{i} n_{\nu_{i}} m_{\nu_{i}}}{n_{\nu_{a}}^{0}} = \sum_{i} \left(\frac{T_{\nu_{i}}}{T_{\nu_{a}}^{0}}\right)^{3} m_{\nu_{i}} \simeq 94.1 \text{eV} \times \Omega_{\nu} h^{2},$$

Assuming one ~ eV, and all others are light

$$m_{\nu}^{\text{eff}} \simeq \left(\frac{T_{\nu}}{T_{\nu_a}^0}\right)^3 m_{\nu_4}.$$

Increasing n would make the number density of each species decrease.



YT, arXiv:1501.00059

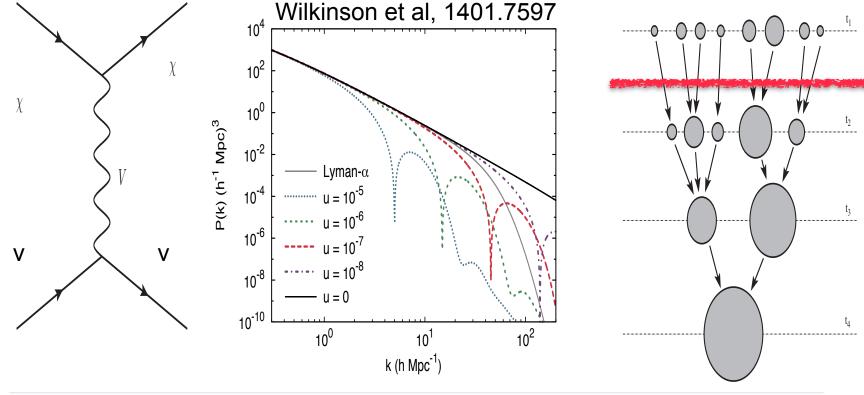
related works

- •Large lepton asymmetry [Foot and Volkas, 1995; Hannestad, Hansen, Tram, 2013]
- •Secret interactions in the sterile sector [Hannestad, Hansen, Tram, PRL 112 (2014) 031802; Dasgupta, Kopp, PRL 112 (2014) 031803; Bringmann, Hasenkamp, Kersten, JCAP 1407 (2014) 042; Ko, Tang, PLB 739 (2014) 62; Archidiacono, Hannestad, Hansen, Tram, arXiv:1404.5915; Mirizzi, Mangano, Pisanti, Saviano, PRD 90 (2014) 113009, PRD 91 (2015) 025019; Cherry, Friedland, Shoemaker, arXiv:1411.1071; Bertoni, Ipek, McKeen and Nelson, arXiv:1412.3113; Tang, arXiv:1501.00059, Chu, Dasgupta and Kopp, arXiv:1505.02795]
- •A larger cosmic expansion rate at the time of sterile neutrino production [Rehagen, Gelmini JCAP 1406 (2014) 044]
- •MeV dark matter annihilation [Ho, Scherrer, PRD 87 (2013) 065016]
- •Invisible decay [Gariazzo, Giunti, Laveder, arXiv:1404.6160]
- •Modified primordial power spectrum [Gariazzo, Giunti, Laveder, arXiv:1412.7405]

Connection with DM

Aarssen, Bringmann and Pfrommer, 1205.5809(PRL)

Interaction with relativistic particles can induce a cut-off in the matter power spectrum by collisional damping, solving the "*missing satellites*" problem.



An Example Model

P. Ko, YT, 1404.0236(PLB)

We introduce two right-handed gauge singlets, a dark sector with an extra U(1)x gauge symmetry

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{N}_{i} i \partial N_{i} - \left(\frac{1}{2} m_{ij}^{R} \bar{N}_{i}^{c} N_{j} + y_{\alpha i} \bar{L}_{\alpha} H N_{i} + h.c\right) - \frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu} - \frac{1}{2} \sin \epsilon \hat{X}_{\mu\nu} \hat{B}^{\mu\nu}$$

$$+ \bar{\chi} \left(i \not \!\!D - m_{\chi}\right) \chi + \bar{\psi} \left(i \not \!\!D - m_{\psi}\right) \psi + D_{\mu}^{\dagger} \phi_{X}^{\dagger} D^{\mu} \phi_{X} - \left(f_{i} \phi_{X}^{\dagger} \bar{N}_{i}^{c} \psi + g_{i} \phi_{X} \bar{\psi} N_{i}\right) + h.c\right)$$

$$- \lambda_{\phi} \left[\phi_{X}^{\dagger} \phi_{X} - \frac{v_{\phi}^{2}}{2}\right]^{2} - \lambda_{\phi H} \left[\phi_{X}^{\dagger} \phi_{X} - \frac{v_{\phi}^{2}}{2}\right] \left[H^{\dagger} H - \frac{v_{h}^{2}}{2}\right],$$

 $v_{\phi} \sim \mathcal{O} \left(\mathrm{MeV} \right)$ for our interest

Various Mixings

- Kinetic mixing term $\frac{1}{2}\sin\epsilon\hat{X}_{\mu\nu}\hat{B}^{\mu\nu}$ leads to three physical neutral gauge boson mixing,
- Scalar interaction term $\lambda_{\phi H} \left[\phi_X^{\dagger} \phi_X \frac{v_{\phi}^2}{2} \right] \left[H^{\dagger} H \frac{v_h^2}{2} \right]$ leads to Higgs mixing,

$$h = H_1 \cos \alpha - H_2 \sin \alpha,$$

$$\phi = H_1 \sin \alpha + H_2 \cos \alpha,$$

• $y_{\alpha i} \bar{L}_{\alpha} H N_i$, $f_i \phi_X^{\dagger} \bar{N}_i \psi$, $g_i \phi_X \bar{\psi} N_i$ give rise to neutrino mixing.

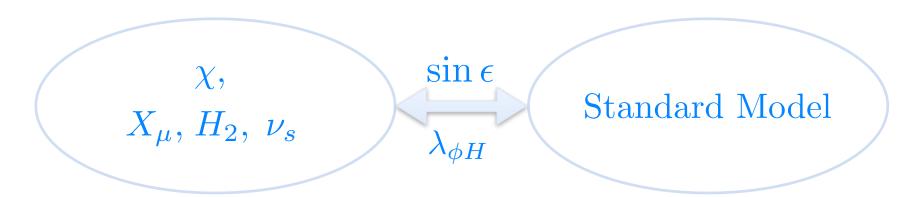
Physical Spectrum

Neutrino Mixing

$$\begin{pmatrix} \nu_{\alpha} \\ N_{i}^{c} \\ \psi_{L} \\ \psi_{L}^{c} \end{pmatrix} = U \begin{pmatrix} \nu_{a} \\ \nu_{s4} \\ \vdots \\ \nu_{s7} \end{pmatrix}_{L}, \quad \mathbb{M} = \begin{pmatrix} 0_{3\times3} & \frac{v}{\sqrt{2}} [y_{\alpha i}]_{3\times2} & 0_{3\times2} \\ \frac{v}{\sqrt{2}} [y_{\alpha i}]_{2\times3}^{T} & [m_{ij}^{R}]_{2\times2} & \frac{v_{\phi}}{\sqrt{2}} (f_{i} g_{i})_{2\times2} \\ 0_{2\times3} & \frac{v_{\phi}}{\sqrt{2}} (f_{i} g_{i})_{2\times2}^{T} & \begin{pmatrix} 0 & m_{\phi} \\ m_{\phi} & 0 \end{pmatrix} \end{pmatrix}.$$

 Dark Matter, dark gauge boson X_μ, dark Higgs H₂, and 4 sterile neutrinos v_s,

Thermal History



- DM chemically decoupled, determining its relic density,
- Then the whole dark sector decoupled from SM thermal bath, and entropy is conserved separately. Effective number of neutrinos can be calculated.
- Relativistic particles at CMB time contribute as hot dark matter. Sterile neutrinos are not thermalized due to the new interaction.

velocity dependent σ

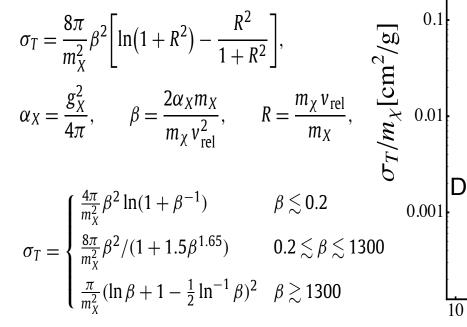
DM self-scattering is the transfer cross section

$$\sigma_T \equiv \int d\Omega (1 - \cos \theta) \frac{d\sigma}{d\Omega}.$$

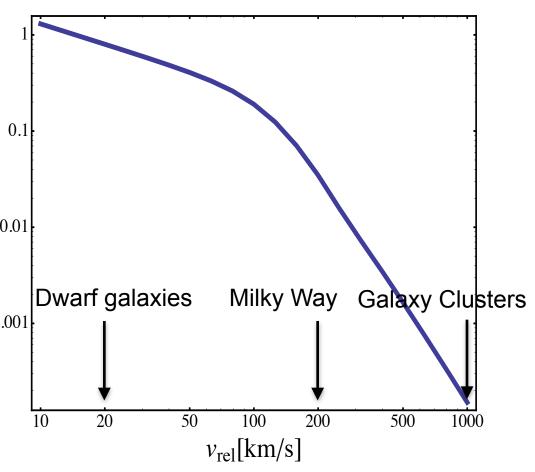
$$\sigma_T = \frac{8\pi}{m_x^2} \beta^2 \left[\ln(1 + R^2) - \frac{R^2}{1 + R^2} \right]$$

$$\alpha_X = \frac{g_X^2}{4\pi}, \qquad \beta = \frac{2\alpha_X m_X}{m_X v_{\rm rol}^2},$$

$$R = \frac{m_{\chi} v_{\text{rel}}}{m_{\chi}}$$



 m_{χ} =1TeV, m_X =4MeV, g_X =0.5



Kinetic decoupling

Kinetic decoupling of χ from ν_s happens when the elastic scattering rate for $\chi \nu_s \leftrightarrow \chi \nu_s$ drops below Hubble parameter H. The decoupling temperature is given by

$$T_{\chi}^{\mathrm{kd}} \simeq 1 \mathrm{keV} \left(\frac{0.1}{g_X} \right) \left(\frac{T_{\gamma}}{T_{\nu_s}} \right)_{\mathrm{kd}}^{\frac{3}{2}} \left(\frac{m_{\chi}}{\mathrm{TeV}} \right)^{\frac{1}{4}} \left(\frac{m_X}{\mathrm{MeV}} \right),$$

The kinetic decoupling of DM from the relativistic particles imprints on the matter power spectrum, for which there are two relevant scales: the comoving horizon $\tau_{\rm kd} \propto 1/T_{\chi}^{\rm kd}$ and free-streaming length $\left(T_{\chi}^{\rm kd}/m_{\chi}\right)^{1/2}\tau_{\rm kd}$. For our interested regime, $\tau_{\rm kd}$ is much larger and relevant. Thus $T_{\chi}^{\rm kd}$ can be translated into a cutoff in the power spectrum of matter density perturbation with

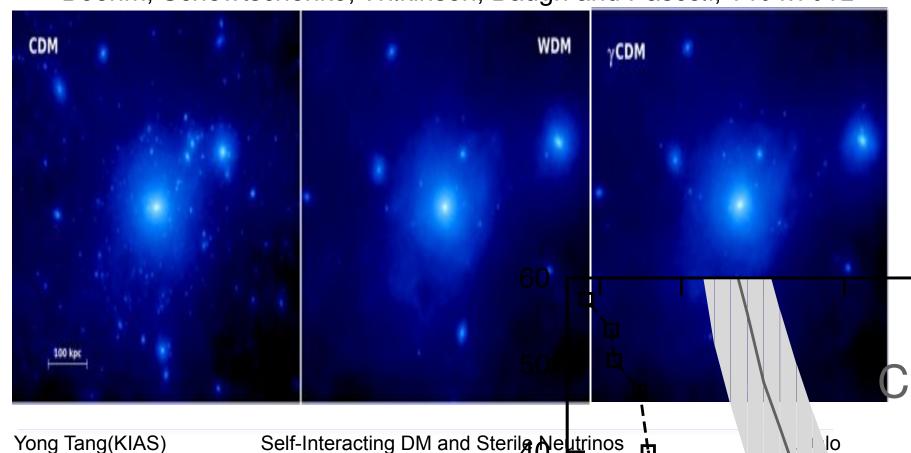
$$M_{\rm cut} = \frac{4\pi}{3} \rho_{\rm M} \left(c\tau_{\rm kd}\right)^3 \sim 2 \times 10^8 \left(\frac{T_{\chi}^{\rm kd}}{\rm keV}\right)^{-3} M_{\odot},$$

Then $M_{\rm cut} \sim \mathcal{O}(10^9) M_{\odot}$ can be easily obtained for explanation of missing satellites problem for $\mathcal{O}(\text{TeV}) \chi$ and $\mathcal{O}(\text{MeV}) X_{\mu}$.

Simulation

• DM- γ /v interaction ~ $2 \times 10^{-9} \ \sigma_{\rm Th} \ (m_{\rm DM}/{\rm GeV})$

Boehm, Schewtschenko, Wilkinson, Baugh and Pascoli, 1404.7012



Summary

- Introduction of three controversies in CDM paradigm, cusp-vs-core, too-big-to-fail, and missing satellites problems.
- Self-interacting DM is an attractive solution.
- eV sterile neutrino is motivated from anomalies, but cosmologically disfavored, relaxed if large lepton asymmetry, new interactions or more light species are introduced.
- We study a simple model v/\MDM based on an extra U(1) gauge symmetry that connects sterile neutrinos and DM.

Thanks for your attention.