Norwegian version of this page

PERMANOR – Permafrost landscapes in transformation

In the PERMANOR project we want to get knowledge about the local-scale processes of a thewing permafrost, and how this affect the global climate system. The research is cross disclipinary between permafrost researchers and meteologists. Of particular interest is the warming potential of this so-called “permafrost-carbon feedback”. The aim is to give input to the Earth System Models (ESMs) used for climate predictions, including the Norwegian Earth System Model NorESM.

Fieldwork: Britta Sannel (second from left) and MSc students Pia Axelsson and Sofia Kjellman (Stockholm University) collecting a permafrost core from a peat plateau in Finnmark with Professor Bernd Etzelmüller. Photo: Sebastian Westermann

Fieldwork: Britta Sannel (second from left) and MSc students Pia Axelsson and Sofia Kjellman (Stockholm University) collecting a permafrost core from a peat plateau in Finnmark with Professor Bernd Etzelmüller. Photo: Sebastian Westermann

About the project

The research project PERMANOR – "Permafrost landscapes in transformation - from local-scale processes to the global model NorESM" aims at increasing our knowledge on the role of permafrost in the global climate system. Permafrost soils contain large amounts of organic material that is protected from microbial decomposition in the frozen ground, similar to a gigantic freezer.

In a future warmer world, thawing of permafrost is expected to occur, so that this organic material could be partially decomposed and trigger a massive release of greenhouse to the atmosphere. The additional warming potential of this so-called “permafrost-carbon feedback” is so far not well captured in Earth System Models (ESMs) used for climate predictions, including the Norwegian Earth System Model NorESM.

Objectives

The project brings together experts from the Department of Geociences, University of Oslo, the Bjerknes Centre for Climate Research, Bergen and the German Alfred-Wegener-Institute for Polar and Marine Research to investigate the highly dynamic evolution of permafrost landscapes in the light of ESM development. Rapid changes of permafrost landscapes are in many cases related to thawing ice-rich ground which can for instance transform dry and well-drained permafrost ground into a wetland within only a few years, as currently observed in mire areas in Northern Norway.

In PERMANOR, we will make use of extensive field observations in Norway, Svalbard and Siberia to better include such processes in NorESM climate simulations. The improved representation of permafrost landscape dynamics in NorESM will lead to reducing our uncertainty in the predictability of future climate change.

Outcomes

In autumn 2016 we conducted a joint fieldwork in Finnmark with meteorologists and climate modelers both from the University of Oslo and the Bjerknes Centre to experience the “real” permafrost landscapes which must be represented in large-scale model schemes in order to predict the magnitude of the permafrost-carbon feedback. Together with our project partner Britta Sannel from Stockholm University, we obtained cores and samples from up to 3m depth in several peat plateaus.

Thick layers of almost pure ice were documented which upon melting would lead to ground subsidence or even the formation of ponds. Not only the field datasets, but also the personal experience of the participants will in the future guide model development within the PERMANOR project.

Background

The project is cross discplinary with researchers in geography and in meteorology. Participants from two sections at the Department of Geosciences, and other research institutions.

Financing

The full name of the project are Permafrost landscapes in transformation - from local-scale processes to the global model NorESM (PERMANOR). The project is funded through the Norwegian Research Council KLIMAFORSK program, and have the NFR project number 255331.

The PERMANOR project started up i 2016 and will be finished in 2020.

Cooperation

This project is carried out in cooperation with several researchers from different institutions, see links in right column for participating researchers:

Publications

  • Cai, Lei; Lee, Hanna; Aas, Kjetil Schanke & Westermann, Sebastian (2020). Projecting circum-Arctic excess-ground-ice melt with a sub-grid representation in the Community Land Model. The Cryosphere. ISSN 1994-0416. 14( 12), p. 4611–4626. doi: 10.5194/tc-14-4611-2020. Full text in Research Archive
  • Aas, Kjetil Schanke; Martin, Leo Celestin Paul; Nitzbon, Jan; Langer, Moritz; Boike, Julia & Lee, Hanna [Show all 8 contributors for this article] (2019). Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. The Cryosphere. ISSN 1994-0416. 13(2), p. 591–609. doi: 10.5194/tc-13-591-2019. Full text in Research Archive
  • Ekici, Altug; Lee, Hanna; Lawrence, David M.; Swenson, Sean C. & Prigent, Catherine (2019). Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5. Geoscientific Model Development. ISSN 1991-959X. 12(12), p. 5291–5300. doi: 10.5194/gmd-12-5291-2019.
  • Martin, Leo Celestin Paul; Nitzbon, Jan; Aas, Kjetil Schanke; Etzelmüller, Bernd; Kristiansen, Håvard & Westermann, Sebastian (2019). Stability Conditions of Peat Plateaus and Palsas in Northern Norway. Journal of Geophysical Research (JGR): Earth Surface. ISSN 2169-9003. 124(3), p. 705–719. doi: 10.1029/2018JF004945. Full text in Research Archive
  • Kjellman, Sofia E.; Axelsson, Pia E.; Etzelmüller, Bernd; Westermann, Sebastian & Sannel, A. Britta K. (2018). Holocene development of subarctic permafrost peatlands in Finnmark, northern Norway. The Holocene. ISSN 0959-6836. 28(12), p. 1855–1869. doi: 10.1177/0959683618798126. Full text in Research Archive
  • Aas, Kjetil Schanke; Gisnås, Kjersti; Westermann, Sebastian & Berntsen, Terje Koren (2017). A Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere Models. Journal of Hydrometeorology. ISSN 1525-755X. 18(1), p. 49–63. doi: 10.1175/JHM-D-16-0026.1. Full text in Research Archive

View all works in Cristin

  • Cai, Lei; Lee, Hanna; Westermann, Sebastian & Aas, Kjetil Schanke (2019). Development of the subgrid excess ground ice framework in the Community Land Model.
  • Lee, Hanna & Ekici, Altug (2018). Dynamic wetlands parameterization under permafrost thaw in CLM5.
  • Ekici, Altug; Lee, Hanna; Lawrence, David M. & Swenson, Sean C. (2018). Coupling ground subsidence and surface wetlands.
  • Lee, Hanna; Ekici, Altug; Robson, Benjamin Aubrey; Fan, Yuanchao; Westermann, Sebastian & Langer, Moritz (2018). Vulnerability of permafrost thaw and the emerging risks for the Arctic infrastructure.
  • Lee, Hanna; Christiansen, Casper Tai & Westermann, Sebastian (2017). Advancing permafrost carbon climate feedback – improvements and evaluations of the Norwegian Earth System Model with observations (FEEDBACK).
  • Aas, Kjetil Schanke; Westermann, Sebastian; Martin, Leo Celestin Paul & Berntsen, Terje Koren (2017). Degrading Palsa Mires in Northern Norway Simulated with a Regional Climate Model with a Subgrid Snow Scheme.
  • Fan, Yuanchao; Lee, Hanna & Ekici, Altug (2017). Modeling biophysical and biogeochemical processes in vulnerable ecosystems under global climate change: thawing permafrost landscapes in the Arctic.
  • Lee, Hanna (2017). Representing the Terrestrial Role in the Climate System.
  • Lee, Hanna & Ekici, Altug (2017). PERMANOR project progress in the CLM.
  • Lee, Hanna & Christiansen, Casper Tai (2017). FEEDBACK project progress.
  • Lee, Hanna; Ekici, Altug & Christiansen, Casper Tai (2017). Advancing permafrost carbon climate feedback – improvements and evaluations of the Norwegian Earth System Model with observations.
  • Christiansen, Casper Tai & Lee, Hanna (2017). Advancing permafrost carbon climate feedback – improvements and evaluations of the Norwegian Earth System Model with observations .
  • Lee, Hanna & Christiansen, Casper Tai (2016). Advancing permafrost carbon climate feedback - improvements and evaluation of the Norwegian Earth System Model with observations.

View all works in Cristin

Tags: Permafrost, Meteorology, Climate Models
Published Oct. 5, 2016 11:25 AM - Last modified Sep. 16, 2022 3:06 PM