Lars Kristiansen

Image of Lars Kristiansen
Norwegian version of this page
Phone +47-22855897
Mobile phone 92210527 +47 922 10 527
Room B705
Username
Visiting address Niels Henrik Abels hus Moltke Moes vei 35 0851 OSLO
Postal address Postboks 1080 Blindern 0316 OSLO
Other affiliations Department of Mathematics
Tags: Mathematical Logic, Computability Theory, Complexity Theory

Publications

  • Aanderaa, Stål; Kristiansen, Lars & Ruud, Hans-Kristian (2017). Search for Good Examples of Hall's Conjecture.. Mathematics of Computation.  ISSN 0025-5718.
  • Kristiansen, Lars (2017). On Subrecursive Representability of Irrational Numbers, Part II.. Computability - The Journal of the Assosiation.  ISSN 2211-3568.
  • Kristiansen, Lars (2016). On subrecursive representability of irrational numbers.. Computability - The Journal of the Assosiation.  ISSN 2211-3568.  6, s 249- 276 . doi: 10.3233/COM-160063 Full text in Research Archive.
  • Ben-Amram, Amir & Kristiansen, Lars (2012). On the edge of decidability in complexity analysis of loop programs. International Journal of Foundations of Computer Science.  ISSN 0129-0541.  23(7), s 1451- 1464 . doi: 10.1142/S0129054112400588
  • Kristiansen, Lars (2012). Degrees of Total Algorithms versus Degrees of Honest Functions. Lecture Notes in Computer Science.  ISSN 0302-9743.  7318, s 442- 431
  • Kristiansen, Lars (2012). Higher Types, Finite Domains and Resource-bounded Turing Machines. Journal of logic and computation (Print).  ISSN 0955-792X.  22(2), s 281- 304 . doi: 10.1093/logcom/exq009
  • Kristiansen, Lars; Lubarsky, Robert; Schlage-Puchta, J.-C. & Weiermann, Andreas (2012). On the structure of honest elementary degrees, In Sy-David Friedman; Martin Koerwien & Moritz Muller (ed.),  The Infinity Project.A 2009–2011 Research Programme.  Centre de Recerca Matematica.  ISBN 978-84-616-3307-4.  On the structure of honest elementary degrees..  s 255 - 279
  • Kristiansen, Lars & Mender, Bedeho (2012). Non-determinism in Gödel's System T. Theory of Computing Systems.  ISSN 1432-4350.  51(1), s 85- 105 . doi: 10.1007/s00224-011-9377-9
  • Kristiansen, Lars; Schlage-Puchta, Jan-Christoph & Weiermann, Andreas (2012). Streamlined subrecursive degree theory. Annals of Pure and Applied Logic.  ISSN 0168-0072.  163(6), s 698- 716 . doi: 10.1016/j.apal.2011.11.004
  • Kristiansen, Lars & Mender, Bedeho (2011). Non-determinism in Gödel's system T. Theory of Computing Systems.  ISSN 1432-4350. . doi: 10.1007/s00224-011-9377-9
  • Avery, James; Kristiansen, Lars & Moyen, Jean-Yves (2010). Static Complexity Analysis of Higher Order Programs. Lecture Notes in Computer Science.  ISSN 0302-9743.  6324, s 84- 99
  • Kristiansen, Lars (2010). Higher types, finite domains and resource bounded Turing machines. Journal of logic and computation (Print).  ISSN 0955-792X. . doi: 10.1093/logcom/exq009
  • Jones, Neil D. & Kristiansen, Lars (2009). A Flow Calculus of mwp-Bounds for Complexity Analysis. ACM Transactions on Computational Logic.  ISSN 1529-3785.  10(4) . doi: 10.1145/1555746.1555752
  • Burgess, Mark & Kristiansen, Lars (2008). On the complexity of determining autonomic policy constrained behaviour, In Markus Brunner; Carlos B. Westphall & Lisandro Z. Granville (ed.),  Network Operations and Management Symposium, 2008. NOMS 2008. IEEE.  IEEE conference proceedings.  ISBN 978-1-4244-2066-7.  On the complexity of determining autonomic policy constrained behaviour.  s 295 - 301
  • Kristiansen, Lars (2008). Complexity-Theoretic Hierarchies Induced by Fragments of Godel's T. Theory of Computing Systems.  ISSN 1432-4350.  43(3-4), s 516- 541 . doi: 10.1007/s00224-007-9021-x
  • Kristiansen, Lars (2008). Recursion in Higher Types and Resource Bounded Turing Machines, In Arnold* Beckmann; Costas Dimitracopoulos & Benedikt Löwe (ed.),  Logic and Theory of Algorithms.  Springer.  ISBN 978-3-540-69405-2.  Recursion in Higher Types and Resource Bounded Turing Machines..  s 336 - 348
  • Kristiansen, Lars; Ben-Amram, Amir & Jones, Neil D. (2008). Linear, Polynomial or Exponential? Complexity Inference in Polynomial Time, In Arnold* Beckmann; Costas Dimitracopoulos & Benedikt Löwe (ed.),  Logic and Theory of Algorithms.  Springer.  ISBN 978-3-540-69405-2.  Linear, Polynomial or Exponential? Complexity Inference in Polynomial Time.  s 67 - 76
  • Kristiansen, Lars & Jones, Neil D. (2008). A flow calculus of mwp-bounds for complexity analysis. ACM Transactions on Computational Logic.  ISSN 1529-3785.
  • Kristiansen, Lars & Voda, Paul (2008). The Structure of Detour Degrees, In Manindra Agrawal; Dingzhu Du; Zhenhua Duan & Angsheng Li (ed.),  Theory and Applications of Models of Computation.  Springer Science+Business Media B.V..  ISBN 978-3-540-79227-7.  The Structure of Detour Degrees.  s 148 - 159
  • Barra, G. Mathias; Kristiansen, Lars & Voda, Paul J. (2007). Nondeterminism without Turing Machines, In S Barry Cooper; Thomas F Kenth; Benedikt Love & Andrea Sorbi (ed.),  Computation and Logic in the Real World.  CiE 2007.  artikkel.  s 71 - 78
  • Kristiansen, Lars (2007). Complexity Analysis of Programs: Methods and Challenges, In Robert Gluck & M Hagiya (ed.),  Proceedings of the 3rd DIKU-IST Joint Workshop on Foundations of Software.  Dept. of Computer Science, University of Copenhagen.  artikkel.  s 126 - 136
  • Kristiansen, Lars (2007). Complexity-theoretic hierarchies induced by fragments of Gödel's T. Theory of Computing Systems.  ISSN 1432-4350. . doi: 10.1007/s00224-007-9021-x
  • Kristiansen, Lars & Burgess, Mark (2007). Complexity of Change and Configuration Management, In Jan Bergstra & Mark Burgess (ed.),  Handbook of Network and System Administration.  Elsevier.  ISBN 978-0-444-52198-9.  6. 2..
  • Kristiansen, Lars (2006). Complexity-Thoretic Hierarchies. Lecture Notes in Computer Science.  ISSN 0302-9743.  3988, s 279- 288
  • Kristiansen, Lars (2006). Complexity-theoretic hierarchies. Lecture Notes in Computer Science.  ISSN 0302-9743.  3988, s 279- 288
  • Kristiansen, Lars & Jones, Neil D. (2006). Static Complexity Analysis of Programs, In Arne Løkketangen (ed.),  Norsk informatikkonferanse NIK 2006.  Tapir Akademisk Forlag.  ISBN 82-519-2186-4.  Static Complexity Analysis of Programs..  s 65 - 76
  • Kristiansen, Lars & Voda, Paul J. (2006). The Trade-off theorem and fragments of and Gödel's T. Lecture Notes in Computer Science.  ISSN 0302-9743.  3959
  • Kristiansen, Lars & Barra, G. Mathias (2005). The small Grzegorczyk classes and the typed lambda-calculus, In S. Barry Cooper; Benedikt Lowe & Leen Torenvliet (ed.),  New computational paradigms.  Springer.  ISBN 3-540-26179-6.  pp. 252-262.  s 252 - 262
  • Kristiansen, Lars & Jones, Neil D. (2005). The flow of data and the complexity of algorithms, In S. Barry Cooper; Benedikt Lowe & Leen Torenvliet (ed.),  New computational paradigms.  Springer.  ISBN 3-540-26179-6.  pp. 263-274.  s 263 - 274
  • Kristiansen, Lars & Voda, Paul J. (2005). Programming languages capturing complexity classes. Nordic Journal of Computing.  ISSN 1236-6064.  12, s 89- 115
  • Kristiansen, Lars (2005). Neat function algebraic characterizations of LOGSPACE and LINSPACE. Computational Complexity.  ISSN 1016-3328.  14, s 72- 88
  • Kristiansen, Lars (2005). Programming languages capturing complexity classes. Nordic Journal of Computing.  ISSN 1236-6064.  (Vol. 12, no. 2), s 89- 115
  • Kristiansen, Lars & Barra, Georg Mathias Honore (2005). The small Grzegorczyk classes and the typed lambda-calculus. Lecture Notes in Computer Science.  ISSN 0302-9743.  3526
  • Kristiansen, Lars & Jones, ND (2005). The flow of data and the complexity of algorithms. Lecture Notes in Computer Science.  ISSN 0302-9743.  3526
  • Kristiansen, Lars (2004). On the computational complexity of imperative programming languages. Theoretical Computer Science.  ISSN 0304-3975.  318, s 139- 161 . doi: 10.1016/j.tcs2003.10.016
  • Kristiansen, Lars & Niggl, KH (2004). On the computational complexity of imperative programming languages. Theoretical Computer Science.  ISSN 0304-3975.  318, s 139- 161
  • Kristiansen, Lars (2003). Complexity classes and fragments of C. Information Processing Letters.  ISSN 0020-0190.  88, s 213- 218 . doi: 10.1016/j.ipl2003.08.010
  • Kristiansen, Lars (2001). Subrecursive Degrees and Fragments of Peano Arithmetic. Archive for mathematical logic.  ISSN 0933-5846.  40(5), s 365- 397
  • Kristiansen, Lars (1998). A jump operator on honest subrecursive degrees. Archive for mathematical logic.  ISSN 0933-5846.  37, s 105- 125

View all works in Cristin

  • Leary, Christopher C. & Kristiansen, Lars (2015). A Friendly Introduction to Mathematical Logic. Milne Library, SUNY Geneseo.  ISBN 978-1-942341-07-9.  380 s.

View all works in Cristin

  • Kristiansen, Lars (2017). On Resource Analysis of Imperative Programs.
  • Kristiansen, Lars (2017). On Resource Analysis of Imperative Programs. Electronic Proceedings in Theoretical Computer Science.  ISSN 2075-2180.
  • Kristiansen, Lars (2016). On Subrecursive Representability of Irrational Numbers.
  • Kristiansen, Lars (2016). On Subrecursive Representability of Irrational Numbers..
  • Kristiansen, Lars (2016). Subrecursive Sum Approximations of Irrational Numbers.
  • Kristiansen, Lars (2015). Subrecursive Dedekind and Cauchy reals..
  • Kristiansen, Lars; Aanderaa, Stål & Ruud, Hans-Kristian (2014). A Preliminary Report on Search for Good Examples of Hall's Conjecture. arXiv.org.  ISSN 2331-8422.
  • Kristiansen, Lars (2012). Degrees of Total Algorithms versus Degrees of Honest Functions.
  • Ben-Amram, Amir & Kristiansen, Lars (2011). Decidable and undecidable problems related to complexity analysis of loop programs.
  • Kristiansen, Lars (2011). Honest subrecursive degree theory and provability in Peano Arithmetic.
  • Kristiansen, Lars (2011). New computational paradigms. Studia Logica : An International Journal for Symbolic Logic.  ISSN 0039-3215.  97(2), s 313- 316 . doi: 10.1007/s11225-011-9308-4
  • Kristiansen, Lars (2011). Review of the book "New Computational Paradigms (eds.: Cooper, Löwe, Sorbi)". Studia Logica : An International Journal for Symbolic Logic.  ISSN 0039-3215.  97, s 313- 316
  • Kristiansen, Lars (2011). Subrecursive degrees of honest functions and provably recursive functions.
  • Kristiansen, Lars (2010). Honest degree theory and statements independent of Peano Arithmetic.
  • Kristiansen, Lars & Mender, Bedeho (2010). Two notions of non-determinism in Gödel's system T.
  • Kristiansen, Lars; Weiermann, Andreas & Schlage-Puchta, Jan-Christoph (2010). Subrecursive degrees and statements independent of Peano Arithmetic.
  • Kristiansen, Lars (2009). Complexity Analysis of Imperative Programs.
  • Kristiansen, Lars (2009). Implicit Computational Complexity: Moving on from the Extensional to the Intentional.
  • Kristiansen, Lars & Ben-Amram, Amir (2009). The limits of decidability and tractability in growth-rate analysis for programs.
  • Kristiansen, Lars & Mender, Bedeho (2009). The Semantics and Complexity of Successor-Free Nondeterministic Gödel's T and PCF.
  • Kristiansen, Lars & Mender, Bedeho (2009). The Semantics and Complexity of Successor-free Nondeterministic Gôdel’s T and PCF.
  • Burgess, Mark & Kristiansen, Lars (2008). On the Complexity of Determining Autonomic Policy Constrained behaviour.
  • Kristiansen, Lars (2008). Implicit Characterisations of Complexity Classes and Recursion in Higher Types.
  • Kristiansen, Lars (2008). Recursion in Higher Types and Resource Bounded Turing machines.
  • Kristiansen, Lars (2008). The Structure of Detour Degrees.
  • Kristiansen, Lars (2007). Beregnbarhet, kompleksitet og typeteori.
  • Kristiansen, Lars (2007). Complexity Analysis of Programs: Methods and Challenges.
  • Kristiansen, Lars (2007). Complexity theory and Gödel's T.
  • Kristiansen, Lars (2007). Neil Jones: The early years.
  • Kristiansen, Lars (2007). Review of S.B. Cooper's book "Computability Theory". Studia Logica : An International Journal for Symbolic Logic.  ISSN 0039-3215.  86, s 145- 146
  • Kristiansen, Lars (2006). Complexity-Theoretic Hierarchies.
  • Kristiansen, Lars (2006). Complexity-Theoretic Hierarchies.
  • Kristiansen, Lars (2006). Fragments of Godel's T, Complexity Classes and Rewriting Systems.
  • Kristiansen, Lars (2006). $T^-$-hierarchies and the Trade-off Theorem.
  • Kristiansen, Lars & Jones, Neil D. (2006). Static Complexity Ananlysis of Programs.
  • Kristiansen, Lars & Voda, Paul J. (2006). The Trade-off theorem and fragments of and Gödel's T.
  • Kristiansen, Lars (2005). Computational Complexity and Natural Programming Languages.
  • Kristiansen, Lars (2005). Det tellbare og det overtellbare. Normat.  ISSN 0801-3500.  53(3), s 118- 129
  • Kristiansen, Lars (2005). Lambda-kalkyle og kompleksitetsteoretiske hierarkier.
  • Kristiansen, Lars (2005). Programmeringsspråk og kompleksitetsklasser.
  • Kristiansen, Lars & Aanderaa, Stål (2005). Løsninger av ligningen x^3 - y^2 = k.
  • Kristiansen, Lars & Jones, Neil D. (2005). Feasible programs and natural programming languages.
  • Kristiansen, Lars & Jones, Neil D. (2005). The Flow of Data and the Complexity of Algorithms.
  • Kristiansen, Lars & Voda, Paul J. (2005). Kleene-Kreisel Functionals and Computational Complexity.
  • Kristiansen, Lars (2004). Characterization of Complexity Classes and Complexity Analysis of Programs.
  • Kristiansen, Lars (2004). Complexity Classes and Higher Types.
  • Kristiansen, Lars (2004). Programming Languages Capturing Complexity Classes.
  • Kristiansen, Lars (2004). Small complexity classes and fragments of Gödel's system T.
  • Kristiansen, Lars (2004). The flow of data and the complexity of algorithms - an introduction.
  • Kristiansen, Lars (2004). The flow of data and the complexity of algorithms - some technical proofs.
  • Kristiansen, Lars (2004). The small Grzegorczyk classes and the typed lambda-calculus.
  • Kristiansen, Lars (2003). Computing without the Successor Function.
  • Kristiansen, Lars (2003). The Garland Measure and Computational Complexity of Stack Programs.
  • Kristiansen, Lars (2003). The surprising power of restricted programs and Gödel's functionals.
  • Kristiansen, Lars (1999). Et kritisk blikk på Curch-Turings tese.
  • Kristiansen, Lars (1999). Low<SUB>n</SUB>, high <SUB>n</SUB>, and intermediate subrecursive degrees.

View all works in Cristin

Published Oct. 16, 2013 12:09 PM - Last modified Dec. 9, 2016 10:31 AM