
Predicting bike-share usage
patterns with machine learning

Arnab Kumar Datta
Master’s Thesis Autumn 2014

Predicting bike-share usage patterns with
machine learning

Arnab Kumar Datta

31st October 2014

ii

Abstract

This thesis looks at how machine learning algorithms might be
used to predict bike-share traffic. We determine the accuracies
of estimators such as decision trees, random forests and boosted
decision trees. The effect of factors such as weather, geographic
location, time of day, day of week etc on the number of bikes at
a bike-share station are also investigated. Finally, we outline how a
web-based prediction system that uses the estimators mentioned in
this thesis could look like.

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 History of bike-share systems 3
1.2 Bike-share systems today 3
1.3 Challenges of modern bike-share systems 5

1.3.1 Overflows in the bike-share system 5
1.3.2 Imbalances due to commute patterns 6

1.4 Mathematical description of the problem 7
1.5 Research goals . 8

2 Related work 9
2.1 Data Science for Social Good: Divvy Bikes 9

2.1.1 Data and Analysis . 9
2.1.2 Data models . 11
2.1.3 Results . 12

2.2 VanderPlas: "Is Seattle really seeing an uptick in
cycling?" . 17
2.2.1 The data . 18
2.2.2 Overviews of the data 18
2.2.3 De-trending the data 19
2.2.4 Results . 23

3 Software 25
3.1 Data collection . 25

3.1.1 PyBikes . 25
3.1.2 Elevations API for obtaining altitudes 26
3.1.3 Weather data . 27
3.1.4 Data loader script . 28

3.2 Visualization module . 29
3.3 Analysis module . 29
3.4 Module for emailing reports 30
3.5 Github repository for source code 30

II Analysis 33

4 Machine Learning 35
4.1 Introduction . 35

v

4.2 Supervised learning . 35
4.2.1 What is supervised learning? 35
4.2.2 Approaches to supervised learning 42

4.3 Unsupervised learning . 42
4.3.1 Clustering . 42

4.4 Classifiers . 43
4.5 Regression . 44
4.6 Evaluation metrics for models 44

4.6.1 Error metrics for Classification 45
4.6.2 Error metrics for Regression 46
4.6.3 Root mean squared error (RMSE) 48

5 Decision Trees (CART) 51
5.1 Representation . 51
5.2 Learning algorithm . 52

5.2.1 Stopping criterion . 53
5.2.2 Finding the best split 53
5.2.3 Miscellaneous remarks 54

5.3 Strengths and weaknesses 55

6 Ensemble learning 57
6.1 Bagging . 57

6.1.1 Bootstrapping . 57
6.1.2 Fitting bootstrapped datasets and aggregation . . 58

6.2 Random Forest . 61
6.3 Boosting . 62

6.3.1 AdaBoost . 63
6.4 Strengths of ensembles over individual estimators . . . 64

III Results and conclusion 65

7 Results 67
7.1 Preliminary results . 67

7.1.1 Decision Trees . 68
7.1.2 Random Forests . 68
7.1.3 AdaBoost . 69

7.2 Effect of training-test ratio on estimator accuracy 69
7.3 Effect of ensemble size . 70
7.4 Feature importances . 71

8 Conclusion 75
8.1 Research process . 75
8.2 Findings . 76

8.2.1 Model choices . 76
8.2.2 Factors affecting bike-share traffic 76

8.3 Future work . 77
8.3.1 Web prediction system 77

vi

8.3.2 Hadoop / Map reduce for bigger datasets 78

vii

viii

List of Figures

1.1 London bike-share system in real-time (Barclays Bikes
iphone app). Each of the bike-share stations are shown
using a pin icon. The pins are colored blue if the
station is full, and red if the station is empty. 4

1.2 Bike-share growth worldwide (picture courtesy of the
ITDP bike-share planning guide [1]) 4

1.3 A customer reviews London’s bike-share system on the
tripadvisor website [3] . 5

1.4 London bike-share status before the morning rush
(approx 7:20 AM) on a Tuesday. Image generated by
the visualization module mentioned in 3.2). 6

1.5 London bike-share status after the morning rush
(approx 10:35 AM) on a Tuesday. Image generated by
the visualization module mentioned in 3.2). 6

2.1 Traffic data for Cambridge St. Image courtesy of the
DSSG team [6] . 10

2.2 Traffic data for the Colleges of the Fenway station.
Image courtesy of the DSSG team [6] 10

2.3 The pink distribution is when the simulation is started
with n = 16, and blue is for n = 22. Image courtesy of the
DSSG team [6] . 13

2.4 Sample probability graph that a station will be empty
between 7 AM and 9 AM on a given day. The dotted
blue line represents the likelyhood of this occuring
anytime between 7 and 9 AM. The dotted black line
is for estimating the likelyhood that the station will be
empty exactly at 9 AM. Image courtesy of the DSSG
team [6] . 14

2.5 RMSE in number of bikes predicted vs actual number
of bikes. Image courtesy of the DSSG team [6] 15

2.6 Error histogram for 15 minutes forward in time. Image
courtesy of the DSSG team [6] 15

2.7 Error histogram for 30 minutes forward in time. Image
courtesy of the DSSG team [6] 16

2.8 Error histogram for one hour forward in time. Image
courtesy of the DSSG team [6] 16

2.9 Bike counter on the Fremont Bridge, Seattle 17

ix

2.10Weekly traffic data for the Fremont bridge. The green
and blue lines signify soutbound and northbound
traffic respectively, while the red line is the total traffic
on the bridge. Image courtesy of Jake VanderPlas [13]. 19

2.11Hours of daylight (Seattle) given as a function of the
time of year. 20

2.12Weekly bicycle traffic given as a function of the hours
of daylight (Seattle). Image courtesy of Jake VanderPlas
[13]. 20

2.13Fitting a linear regressor to the data. Image courtesy
of Jake VanderPlas [13]. 21

2.14Weekly traffic data de-trended for hours of daylight.
Image courtesy of Jake VanderPlas [13]. 21

3.1 Bike-share traffic recorded from June 21st to 28th in
Washington D.C. at station 55 29

3.2 Class diagram for the visualization module written in
C++ . 31

3.3 Software overview for this thesis 32

4.1 Basic overview for all supervised learning algorithms . . 36
4.2 Bias-variance tradeoff illustration 37
4.3 Noisy sine dataset . 38
4.4 Fitting with a high-bias, low-variance model 39
4.5 Fitting with a high-variance, low-bias model 40
4.6 Bias-variance tradeoff resolved 41
4.7 Number of bikes at a suburban (green line) and

downtown station (blue line) in Washington D.C. over
the course of a week . 43

4.8 Estimating distance from the mean, distance from the
model. The distance from the model is given by the
blue dotted line, and the distance between the model
and the mean by the green dotted line. 47

4.9 High R2 - good fit . 48
4.10Low R2 - bad fit . 48

5.1 Binary class dataset divided into three partitions by a
decision tree. 54

5.2 Regression dataset divided into two partitions by a
decision tree . 54

5.3 Example of a learned decision tree. Terminal nodes
store the observed number of bikes at a bike station.
Note: This is a Decision Tree Regressor 55

6.1 Model #1 on bootstrapped dataset #1 59
6.2 Model #2 on bootstrapped dataset #2 60
6.3 Model #3 on bootstrapped dataset #3 60
6.4 Aggregated model . 61

x

7.1 Predictions from a single decision tree 68
7.2 Predictions from a random forest containing 40 de-

cision trees . 68
7.3 Predictions from an AdaBoostRegressor containing 30

decision trees . 69
7.4 Effects of train-test ratio . 70
7.5 Effects of ensemble size on error rates. The dotted gray

line reflects the error rate of the decision tree, which is
the base estimator used in the AdaBoost and Random
Forest algorithms . 71

7.6 Feature importances considered by a individual de-
cision tree . 72

7.7 Feature importances considered by a random forest . . 73
7.8 Feature importances considered by an AdaBoost al-

gorithm . 73

8.1 The web prediction app showing the predicted traffic
flow of bike-share station #59 in the Washington DC
bike-share system. The time window of the prediction
is set to two days but can be adjusted by using the
spinbox next to the "Prediction dates" label. 77

8.2 The system would generate alerts to warn the operat-
ors of shortages and overflows that occur in the next x
hours (x can be adjusted in the "settings" pane) 78

8.3 Mobile app for end users . 79

xi

xii

List of Tables

4.1 Example training set for a classifier 44
4.2 Possible classification output for the example test set . 44
4.3 Example training set for a classifier 45
4.4 Possible regression output for the example test set . . . 45
4.5 Calculating the standard error 49

7.1 Feature importances for a trained decision tree, ran-
dom forest and adaboost estimator. Each column lists
the importance of the different features in terms of per-
centage. 72

xiii

xiv

Preface

I would firstly thank my thesis supervisor Volker Stolz, for valuable
technical insights and writing advice. In addition, I also thank my
co-supervisors Olaf Owe and Cristian Priscariu from the PMA group
for their advice and words of encouragement.

I would also like to thank Mathias Holte, Sigmund Hansen,
Seline Tomt, and Kristoffer Waløen for providing valuable feedback
on my thesis.

Most of all, I thank my parents for providing moral support
through a daunting writing process and for numerous proof-reading
sessions.

xv

xvi

Part I

Introduction

1

Chapter 1

Introduction

1.1 History of bike-share systems

Public bike-share systems were first conceptualized in 1965 in
Amsterdam under the Witte Fietsen (translated to "White bikes")
initiative [1, p.19]. The entrepreneur behind the plan, Luud
Schimmelpennink came up with the idea of leaving 2000 free white
bikes in Amsterdam that would be free for everyone to use. Users
of the system could pick up any bike, ride it to their destination
and leave it there for the next user. There were no locks or bike
stations in this system. This resulted in an unreliable system, as
there was no way to predict where users could find free bikes. The
program was also compromised by theft and vandalism, as there
was no user accountability.

Nearly 26 years later, the first large-scale 2nd generation of bike-
share systems was introduced in Copenhagen, Denmark in 1991
[1, p.20]. In this system, bikes were designed to be picked up and
returned at specific locations which resulted in a more reliable
system. In addition, a coin deposit system akin to the ones found in
supermarket trolleys was put into place. However, the system still
suffered from theft due to the lack of user accountability.

1.2 Bike-share systems today

Modern 3rd generation bike-share systems require customers to
authenticate themselves through identification in order to increase
user accountability. Some bike-share systems today now require
users to pay with a credit card so that the user is charged the price
of the bike in case of theft. In addition, most bike-share systems
use proprietary parts in their bikes to discourage disassembly and
resale of parts.

Bike-sharing today has gone through technological improve-
ments such as real-time status maps of bike-share stations (see
figure 1.1), smartcards and electronic-locking racks and on-board
communication systems for location tracking [1, p.20].

3

Figure 1.1: London bike-share system in real-time (Barclays Bikes iphone
app). Each of the bike-share stations are shown using a pin icon. The pins
are colored blue if the station is full, and red if the station is empty.

Figure 1.2: Bike-share growth worldwide (picture courtesy of the ITDP bike-
share planning guide [1])

Bike-share systems have experienced significant growth world-
wide [1, p.13], [2, p.5] and are quickly gaining popularity as a green
and healthy way to travel. This growth has created challenges that

4

are presented in the next section.
The following bike-share systems were studied in this thesis:

• Barclays Cycle Hire (London)

• Capital bikeshare (Washington D.C.)

1.3 Challenges of modern bike-share systems

1.3.1 Overflows in the bike-share system

Let us define the term over f low as a situation where a bike-share
station is in danger of being too full (i.e. customers can’t park their
bikes there). This leads to customers being forced to use another
bike-share station or park the bike privately overnight (see figure
1.3).

Figure 1.3: A customer reviews London’s bike-share system on the
tripadvisor website [3]

It would therefore be useful for customers to have a prediction
system that tells them if a bike-share station will be full when they
arrive.

5

In addition, when commuters have a wide range of choices in
regards to where they park their bike, it would be helpful to know
which station would be the least likely to be full.

1.3.2 Imbalances due to commute patterns

Commute patterns will place imbalances in bike-share systems. In
addition to the overflows mentioned above, let us define shor t ag e
as a condition where a bike-share station is in danger of running
out of available bikes. Shortages and overflows occur as part of the
daily commute pattern, as shown in figures 1.4 and 1.5.

Figure 1.4: London bike-share status before the morning rush (approx 7:20
AM) on a Tuesday. Image generated by the visualization module mentioned
in 3.2).

Figure 1.5: London bike-share status after the morning rush (approx 10:35
AM) on a Tuesday. Image generated by the visualization module mentioned
in 3.2).

6

The images in figures 1.4 and 1.5 are generated from traffic data
recorded in the London bike-share system run by Barclays. Each
bike-share station is represented by a circle, and the color of the
station represents how full the station is: the redder the station, the
more empty it is and the greener the station, the closer it is to being
completely full.

When shortages arise, it is important that redistribution trucks
restore balance to the bike-share distribution. It is therefore just as
important to understand when bike-share stations run empty, and
this is in fact just the inverse problem (predicting overflows and the
likelyhood of overflows).

1.4 Mathematical description of the problem

Let us consider bss to be the status of a bike-share station, 0 <= X <=
Y <= 100 (X and Y being arbitrary classification boundaries), where
the possible values of bss (for classification) might be:

• shortage (0 - X% free bikes in the bike-share station)

• balanced (X - Y% free bikes in the bike-share station)

• overflow (Y - 100% free bikes in the bike-share station)

For regression purposes, bss is defined as the number of bikes
available at the given bike-share station.

Let w be the weather recorded at time t , where air temperature
T is measured in °C, cloud cover CC is measured in okta and
precipitation (last 24h) RR is measured in mm. Let st be the
station described by the latitude l at , longitude lng , altitude al t ,
and the station_id i d. And finally, let t be the time described by
the variables: time of the day h, day of the week wd ay, day of the
month d, month m.

The concepts are formalized below:

w = (T,CC ,RR) (1.1)

t = (h, wd ay,d ,m) (1.2)

st = (l at , l ng , al t , i d) (1.3)

The contribution of this thesis is to answer the following
questions:

1. Given a station st , the weather conditions w and the time t , can
we predict the bike-share station status bss using a machine
learning algorithm?

2. What are the best performing estimators for this particular
task?

7

3. How do factors such as time of day, weather etc affect bike-
share traffic?

The software is designed to predict future observations based
on past data. Example: Assume that the current time is 8:00 AM
on July 15th 2014. The estimator of choice is trained on data from
July 1st-14th, and asked to predict the status of the bike-share
station at Cambridge St (Washington DC) at 9:00 AM July 15th
2014. Classifier-type estimators will be able to predict whether the
station can be expected to overflow, experience a shortage or be
balanced, while regressors will just output the expected number of
bikes at the given station.

1.5 Research goals

The high-level goals of this thesis, is as follows:

• Reduce frustration amongst customers by letting them know
beforehand that a station is going to be empty or full. Accurate
predictions will allow them to choose an alternative path.

• Enable the bike-share operators to be proactive. If they can
receive a prediction about the net loss in number of bikes X
at a given station in a timeframe T , they can then place X +b
number of bikes at that station, where b is a small buffer that
ensures that the station will not be empty. Similarly, if they
are able to predict an influx, they can do the opposite.

In order to achieve these goals, the system must be able to
predict the future based on historical data. It must also be flexible
enough to take into account factors that cause variance like wind,
rain, temperature etc, while generalizing enough to understand
concepts like weekdays and weekends, morning and afternoon rush
hours etc. that produce periodic patterns in the data.

8

Chapter 2

Related work

2.1 Data Science for Social Good: Divvy Bikes

The Eric and Wendy Schmidt Data Science for Social Good (DSSG)
fellowship is a summer program at the University of Chicago that
invites data scientists from all over the USA to use data mining,
machine learning and big data analysis techniques for solving
projects that have social impact.

The public bike-share system in Chicago is run by a company
called Divvy. The divvy system, like most other bike-share systems
share a weakness that occurs due to commute patterns. There is
an influx of bikes in the city center during the morning, and in
the suburbs during the afternoon. This leads to imbalance in the
system. In Divvy, the rebalancing of bikes was done with trucks
that drove around with bikes. However, the problem was that this
was done on a reactionary basis rather than on a prophylactic basis
[4]. Therefore, although the system would eventually be rebalanced,
there was a scope of improvement if the operators could predict
overflows and shortages.

In July 2013, one of the projects was to predict when Divvy bike
share stations would be empty or full. This would help the Divvy
operators to see an estimate of how the system would look in the
future.

2.1.1 Data and Analysis

The data collected as part of the preliminary analysis included both
bike-share data and weather data. The sources were:

• historical bike-share data from the O’Brian bikeshare datacol-
lection project [5]

• Weather data from forecast.io

The DSSG team looked at the Boston bike share system,
and visualized daily usage patterns. Each station was investiaged
individually, and the team looked at the number of bikes that

9

were available at every minute of the day (00 : 01,00 : 02,00 : 03 etc).
This number was collected for the whole span of a large dataset
(spanning a year), and then averaged. Figures 2.1 and 2.2 show the
commute pattern from two bike-share stations: one downtown and
another suburban.

Figure 2.1: Traffic data for Cambridge St. Image courtesy of the DSSG team
[6]

Figure 2.2: Traffic data for the Colleges of the Fenway station. Image
courtesy of the DSSG team [6]

The commute pattern from figure 2.1 and 2.2 is very similar
to the one found later in figure 4.7 and it shows that stations in
downtown and suburban areas seem to complement each other for
most of the day.

They also found that the standard deviation of the number of
bikes available at each station during the day was high. This meant
that they could not simply average the recordings for any given time
during the day and use that to predict the number of bikes. In order
to explain the high variance in the data, they took into account
factors like:

• Is the observation recorded on a weekday or weekend?

• Was there rain in close proximity of the observation?

• Is there a big event happening close to the observation that
might explain a huge influx of riders?

10

2.1.2 Data models

The two models that were most successful in predicting the data
were:

• Autoregressive binomial logistic model

• Poisson point process model

Note that the models were fit to each individual station in the
system, rather than the system as a whole. This is different from
the approach chosen in this thesis, as the attempt of this thesis
is to create a more general prediction system that would also be
capable of predicting how a new bike-share station (one without
any historical data) would behave.

2.1.2.1 Data features

The feature values chosen for the data were:

• current number of bikes at a station S

• available spaces at a station S

• the hour of the day

• the current temperature

• the current precipitation

Additionally, the logistic model stored the number of bikes at a
station S fifteen and thirty minutes ago as part of an autoregressive
structure [7].

The DSSG team also had access to rebalancing data i.e. recorded
times for when the bike share trucks added or removed bikes at a
station. This helped them distinguish changes caused by riders and
the rebalancing team. The reason this was important is that the
point of both models was to predict what would happen to a station
if it were to be left untouched by the rebalancing team.

The rebalancing data was then adjusted for, by manipulating
the number of bikes recorded in historical data. Say for instance
station S received five bikes from a truck at 08:00 on Tuesday 7th
July 2013, and this increased the number of bikes from 10 to 15.
The adjustment would be to instead assume that the rebalancing
did not take place and simulate what would happen from there on.

2.1.2.2 Poisson Point Process

A Poisson process is a stochastic process that counts the number
of times a type of event E occurs in a given time interval T .
The occurrences are considered independent of each other. In this
case, there are two types of events: arrivals Ear r i val and departures

11

Edepar tur e . The assumption is that these are also independent,
and therefore the rates for arrivals and departures are modelled
separately from each other.

The number of bikes arriving or departing are calculated using
a maximum likelyhood estimator [8] that determines how weather
elements, the time of the day and day of the week will play a role
and outputs a coefficient that is then applied to the poisson point
process to determine when the next event will be. This provides the
model with the time of the next event, but not what type of event
it will be. This is decided by a coinflip that takes into account the
likelyhood of departures happening at the bike-share station at that
particular point in time.

The result is then simulated by updating the number of bikes
at the station, and calculating the time until the next arrival or
departure event.

Note: In case the poisson process predicts an arrival of a bike at
a station that is already full, the model treats it as if the rider parked
at an alternative location. The same is true if the model predicts a
departure from an already empty station. This is merely to avoid
simulation results that would be invalid i.e. a station with more
bikes than it has the capacity to hold, or a station with a negative
number of bikes.

2.1.2.3 Autoregressive Binomial Logistic Regression

Binomial Logistic Regression models provide a prediction on how
many bikes a station S will have at the end of a time interval T .
This is done by taking the probability that a bike will be present at
any given dock P (Dbi ke), D ⊂ S, and multiplying it by the number of
parking spaces in S. In other words: E(S) =∑

P (Dbi ke),D ⊂ S
In addition, the logarithm of the odds of a dock being full

currently log (Pcur r entl y_ f ul l), fifteen minutes ago log (P f ul l_15_mi ns_ag o)
and thirty minutes ago log (P f ul l_30_mi ns_ag o) are incorporated into the
estimator along with temperature and precipitation values at the
current time. The estimator will then adjust its probability output
for each dock holding a bike, and the expected number of bikes can
then be found using the equation given above.

2.1.3 Results

The Poisson model predicts a certain chain of events in a given
timeframe T when the simulation is started with a certain number
of bikes n. This model is run thousands of times, and the results
accumulated as a distribution as shown in figure 2.3. Note that
starting the simulation with fewer bikes increases the likelyhood
that the station will be empty in two hours (as expected).

The simulations shown in figure 2.3 can be used to model the
probabilities that a station will be empty or full at any point during

12

Figure 2.3: The pink distribution is when the simulation is started with
n = 16, and blue is for n = 22. Image courtesy of the DSSG team [6]

a time interval given a starting point with a certain number of bikes.
In other words, the results can be used to compute P (k = 0) (empty
station) and P (k = N) (full station) for any station at any given point
in time.

Due to the distributions being dependant on starting conditions,
it is possible to predict how many bikes the station must start with
to be completely empty by the end of the time interval. Figure 2.4
demonstrates this, and also shows how much of a tolerance this
prediction has. It is for instance possible to be 95% sure that if the
simulation starts with 19 bikes, it will not be empty during the time
interval 7 AM - 9 AM.

The models and errors were evaluated using MSE (Mean Squared
Error) which is defined as follows: The mean X = 1

n

∑n
i=1 Xi MSE(X) =

E((X −µ)2)
The evaluation method was to train the model on one year of

data, and then try to predict incrementally larger time intervals.
The largest interval trained was one week. The RMSE (Root Mean
Squared Error) in terms of number of bikes increased (as expected)
as the size of the test set was expanded (see figure 2.5). Note: the
reason for using RMSE instead of MSE in this plot is simple; it has
the same units as the estimator’s predicted number of bikes and
can therefore be plotted in the same graph.

Lastly, the DSSG team created 90 test sets that the models pre-
dicted and visualized. The visualizations were histograms consist-
ing of 90 error terms that corresponded to each of the test sets. The
predictions were then visualized as in figures 2.6, 2.7 and 2.8. It

13

Figure 2.4: Sample probability graph that a station will be empty between 7
AM and 9 AM on a given day. The dotted blue line represents the likelyhood
of this occuring anytime between 7 and 9 AM. The dotted black line is for
estimating the likelyhood that the station will be empty exactly at 9 AM.
Image courtesy of the DSSG team [6]

can be seen that the uncertainity of the predictions increases as the
prediction time interval gets larger.

Despite the fall in accuracy when predicting an hour ahead,
the predictions are still pretty accurate (77% of predictions are
correct within an RMSE of 5 bikes). The DSSG mentions on their
websites that they would like to explore whether higher accuracy
can be achieved by using ensemble techniques such as bagging [9]
or boosting [10]. Boosting and bagging methods are covered deeper
in chapter 6 (ensemble methods).

14

Figure 2.5: RMSE in number of bikes predicted vs actual number of bikes.
Image courtesy of the DSSG team [6]

Figure 2.6: Error histogram for 15 minutes forward in time. Image courtesy
of the DSSG team [6]

15

Figure 2.7: Error histogram for 30 minutes forward in time. Image courtesy
of the DSSG team [6]

Figure 2.8: Error histogram for one hour forward in time. Image courtesy of
the DSSG team [6]

16

2.2 VanderPlas: "Is Seattle really seeing an
uptick in cycling?"

In October 2012, the city of Seattle (Washington, USA) installed a
bike counter device, known as a "eco-totem" on the Fremont bridge
(see fig 2.9). The device was funded by the Mark and Susan Torrance
Foundation, and then acquired by the Cascade Bicycle club which
gave it to the city of Seattle. The Seattle Department of Transport
(SDOT) publishes the data collected from the eco-totem on their
website [11] through an API. The intent behind the installation was
not only to act as a motivator to encourage people to use bicycles as
a means of commuting but also to aid analysis of bicycle traffic.

Figure 2.9: Bike counter on the Fremont Bridge, Seattle

The data from the eco-totem was analyzed by Jake VanderPlas,
who works as a data scientist at University of Washington eScience
Institute [12]. He investigated [13] the validity of claims from Seattle
Bike-Blog that bicycle usage was on the rise [14]. In the introduction
to the article he states his research goals for the data collected:

Bicycle advocates have been pointing out the upward trend of the
counter, and I must admit I’ve been excited as anyone else to see this
surge in popularity of cycling (Most days, I bicycle 22 miles round trip,
crossing both the Spokane St. and Fremont bridge each way).
But anyone who looks closely at the data must admit: there is a large
weekly and monthly swing in the bicycle counts, and people seem
most willing to ride on dry, sunny summer days. Given the warm
streak we’ve had in Seattle this spring, I wondered: are we really
seeing an increase in cycling, or can it just be attributed to good
weather?

17

Here I’ve set-out to try and answer this question. Along the way, we’ll
try to deduce just how much the weather conditions affect Seattleites’
transportation choices.

2.2.1 The data

Hourly bicycle counts were downloaded from the SDOT website
[11] as CSV files. In addition, weather data was acquired from the
National Climatic Data Center website [15]. Both the hourly bicycle
data and weather data were parsed using Pandas [16], a free open-
source library for data analysis in python.

The fremont bridge records the following every hour:

• time in the format DD:MM:YYYY HH:MM:SS

• number of northbound bicycles

• number of southbound bicycles

2.2.2 Overviews of the data

First VanderPlas creates a brief overview of the data, shown in figure
2.10. Following this, the data is modelled using a Linear Regressor
and de-trended for the following factors:

• Hours of daylight per day

• Day of Week

• Temperature

• Precipitation

18

Figure 2.10: Weekly traffic data for the Fremont bridge. The green and blue
lines signify soutbound and northbound traffic respectively, while the red
line is the total traffic on the bridge. Image courtesy of Jake VanderPlas
[13].

2.2.3 De-trending the data

The de-trending is done in an identical fashion for all the factors
mentioned above and therefore only one of them, hours of daylight
per day will be described below as an example. VanderPlas says the
following about the de-trended data we see in our example:

This is what I mean by "de-trended" data. We’ve basically removed the
component of the data which correlates with the number of hours in a
day, so that what is left is in some way agnostic to this quantity. The
"adjusted weekly count" plotted here can be thought of as the number
of cyclists we’d expect to see if the hours of daylight were not a factor.

First, the average hours of daylight d in Seattle is computed for
every month in the year (figure 2.11). Then, the weekly bicycle traffic
is plotted against the average daylight hours (figure 2.12).

This data is then fitted to a Linear Regressor [17], and the
results visualized (figure 2.13) using the snippet shown in Listing
2.1. Thereafter, a quick look at the model coefficients reveal how
much one hour of daylight affects the number of weekly crossings
on the bridge: 2000 riders per extra hour of daylight in this case
(see Listing 2.2).

The data is adjusted by subtracting off the trend that follows as a
natural consequence of the extra daylight hours and replacing that
chunk of the y-component with the mean instead (see Listing 2.3).
A visualization of the adjusted data is shown in figure 2.14. After
the data has been de-trended for all the factors mentioned above,
the error covariance for each of the factors is calculated, and used
to compute the error bars for each of them (see Listing 2.4).

19

Figure 2.11: Hours of daylight (Seattle) given as a function of the time of
year.

Figure 2.12: Weekly bicycle traffic given as a function of the hours of
daylight (Seattle). Image courtesy of Jake VanderPlas [13].

20

Figure 2.13: Fitting a linear regressor to the data. Image courtesy of Jake
VanderPlas [13].

Figure 2.14: Weekly traffic data de-trended for hours of daylight. Image
courtesy of Jake VanderPlas [13].

21

Listing 2.1: Fitting a Linear Regressor to bike crossing data
from sklearn.linear_model import LinearRegression

X = weekly[[’daylight’]].to_dense()
y = weekly[’total’]
clf = LinearRegression(fit_intercept=True).fit(X, y)

weekly[’daylight_trend’] = clf.predict(X)
weekly[’daylight_corrected_total’]
= weekly[’total’] - weekly[’daylight_trend’]
+ weekly[’daylight_trend’].mean()

xfit = np.linspace(7, 17)
yfit = clf.predict(xfit[:, None])
plt.scatter(weekly[’daylight’], weekly[’total’])
plt.plot(xfit, yfit, ’-k’)
plt.title("Bicycle traffic through the year")
plt.xlabel(’daylight hours’)
plt.ylabel(’weekly bicycle traffic’);

Listing 2.2: "Calculating the coefficient for daylight hours; the coefficient is
the increase in the number of crossings for every extra hour of daylight"
In [10]:print(clf.coef_[0])
Out [10]:2056.44964989

Listing 2.3: Replacing the trend with the mean
trend = clf.predict(weekly[[’daylight’]].as_matrix())
plt.scatter(weekly[’daylight’], weekly[’total’]
- trend + np.mean(trend))

plt.plot(xfit, np.mean(trend) + 0 * yfit, ’-k’)
plt.title("weekly traffic (detrended)")
plt.xlabel(’daylight hours’)
plt.ylabel(’adjusted weekly count’);

Listing 2.4: "Computing error covariance"
#Calculating error bars
#X is an array of feature vectors for the observations
#y is the de-trended target variable for X
vy = np.sum((y - daily[’final_trend’]) ** 2) / len(y)
X2 = np.hstack([X, np.ones((X.shape[0], 1))])
C = vy * np.linalg.inv(np.dot(X2.T, X2))
var = C.diagonal()

22

2.2.4 Results

The results of the analysis yield some interesting statistics:

• Rain: “Every inch of rain translates, on average, to about 800
cyclists staying home.”

• Day of week: “As you might expect in a city of bicycle
commuters, there is roughly 2.5 times the amount of traffic
on weekdays as there is on weekends. Bicycles are not just
for entertainment! In Seattle, at least, they are a real means
of commuting for thousands of people per day, and the data
show this clearly.”

• Temperature (°F): “We see that for every increase of ten
degrees, we add around 250 crossings on the Fremont bridge!”

• Daylight: “We see that, once the effects of rain and temperature
are removed, each hour of daylight results in about 125
more crossings at the Fremont Bridge. This is fewer than
the 2000/week (300/day) that we saw above: this is
because our first model did not include precipitation and
temperature: apparently the weather is far more important
than the darkness in affecting ridership!”

Finally, VanderPlas looks at the question "Is ridership increas-
ing?" when the data is de-trended for annual and daily trends,
weather trends etc. The analysis suggests that there are 4.4 ± 0.8
new riders per day, which translates to a 10% growth in bicycle
traffic from 2012.

In this thesis, weather factors and their effects on bike-share
traffic were also investigated, albeit in a different fashion; a feature
importance table (table 7.1). It is worth noting that the concept
of a feature being encapsulated within another is encountered in
this thesis as well, where monthly trends encapsulate weather
phenomena such as temperature, precipitation etc. VanderPlas also
admits that Linear Regression is not a complex enough model to
capture the complexities of bike patterns (as evidenced by an RMSE
of 500 bikes every week in the final model), and mentions that
ideally he would like to fit RandomForest estimators to his data.

23

24

Chapter 3

Software

Figure 3.3 on page 32 shows a brief overview of the software
modules that were developed as part of this thesis. Note that both
the PyBikes API and Weather Underground website were developed
externally.

3.1 Data collection

3.1.1 PyBikes

PyBikes is a software module written by Lluis Eskerda. The API
can be found at https://github.com/eskerda/PyBikes . The API
provides a common interface to different bike-share systems around
the world. It is intended mainly for data analysis projects.

3.1.1.1 Usage

The API can be used as follows:

>>>import pybikes
>>>#Washington DC uses a bixi system
>>> DC_bikeshare = pybikes.getBikeShareSystem
... (’bixi’, ’capital-bikeshare’)
>>> print(DC_bikeshare.meta)
{

’name’: ’Capital BikeShare’,
’city’: ’Washington, DC - Arlington, VA’,
’longitude’: -77.0363658,
’system’: ’Bixi’,
’company’: ’PBSC’,
’country’: ’USA’,
’latitude’: 38.8951118

}
>>>DC_bikeshare.update()
>>> print(len(capital_bikeshare.stations))
191
>>> print(capital_bikeshare.stations[0])
--- 31000 - 20th & Bell St ---
bikes: 7
free: 4

25

latlng: 38.8561,-77.0512

3.1.1.2 Data format

Bike-share data is stored as JSON (JavaScript Object Notation) files.
JSON is an open-standard format with human-readable text which
is used to store bike station statuses in the chosen cities.

Bike station information is stored as follows:

{

"0": {
"capacity": 10,
"description": "31000 - 20th & Bell St",
"id": 0,
"latitude": 38.8561,
"longitude": -77.0512
},

...
}

Bike station observations are logged in the following format:

{
"city": "Washington, DC",
"time": 1396928285 ,
"stations": [

{ "id": 0, "bikes": 5, "free": 6},
{ "id": 1, "bikes": 6, "free": 5},
{ "id": 2, "bikes": 9, "free": 6},
...
]

}

3.1.2 Elevations API for obtaining altitudes

The ITDP bike-share planning guide [1, p.116] states:
For example, most systems have found that stations at the tops of
hills are often empty, as people will check out a bike and ride down
the hill, but will rarely ride up the hill to park at that station.

In order to investigage how much of an impact altitude has,
altitude data was required. PyBikes does not collect data on bike-
share station altitudes, but it does contain data on the geolocation
of bike-share stations. A third-party library, Google Elevations API,
was used to resolve the altitudes of bike-share stations.

An example of the Elevation API is given below

//API request
http://maps.googleapis.com/maps/api/elevation/json?
locations=59.6,10.72&sensor=true

//This is the json result generated by the request
{
"results" : [

26

{
"elevation" : 107.5778503417969,
"location" : {
"lat" : 59.6,
"lng" : 10.72

},
"resolution" : 610.8129272460938

}
],
"status" : "OK"

}

3.1.3 Weather data

Additionally, in order to determine the importance of weather on
bike-share stations, weather data collection was required as well.
This was done using the weather API at http://www.wunderground.com/

The API gives a response in the following form:

Time,TemperatureC,DewpointC,PressurehPa,WindDirection
,WindDirectionDegrees,WindSpeedKMH,WindSpeedGustKMH,
Humidity,HourlyPrecipMM,Conditions,Clouds,dailyrainMM,
SoftwareType,DateUTC

2014-07-02 00:00:00,47.6,26.2,1016.8,East,
100,0.0,0.0,31,0.0,CLR,BKN, 0.0,
WeatherDisplay:10.37,2014-07-01 23:00:00,

2014-07-02 00:10:00,47.6,26.2,1016.8,East,
100,0.0,0.0,31,0.0,CLR,BKN,0.0,
WeatherDisplay:10.37,2014-07-01 23:10:00,

The timestamp is then converted into UNIX epoch time [18], and
the weather for that timestamp is stored as follows:

"weather": {
"Clouds": "BKN",
"Conditions": "-RA",
"DewpointC": "8.5",
"HourlyPrecipMM": "1.0",
"Humidity": "85",
"PressurehPa": "1011.1",
"SoftwareType": "WeatherDisplay:10.37",
"TemperatureC": "10.9",
"Time": "2014-04-01 01:51:00",
"WindDirection": "North",
"WindDirectionDegrees": "0",
"WindSpeedGustKMH": "0.0",
"WindSpeedKMH": "0.0",
"dailyrainMM": "1.0"

}

Finally, the weather values are added to, and stored in the bike-
share log files mentioned in section 3.1.1.2.

27

3.1.4 Data loader script

The machine learning algorithms that are used, cannot deal with
JSON data. Instead they require numerical data. A data loader
was developed for this, where the JSON files were converted using
numpy and python.

A typical log file containing bike-share data and weather data
looks like this

{
"city": "Washington, DC",
"stations": [

{
"bikes": 6,
"free": 5,
"id": 0

} ...
"time": 1403388000,
"weather": {

"Clouds": "",
"Conditions": "",
"DewpointC": "15.3",
"HourlyPrecipMM": "0.0",
"Humidity": "65",
"PressurehPa": "1011.4",
"SoftwareType": "WeatherLink 5.9.2",
"TemperatureC": "22.2",
"Time": "2014-06-21 18:08:00",
"WindDirection": "North",
"WindDirectionDegrees": "0",
"WindSpeedGustKMH": "11.3",
"WindSpeedKMH": "6.4",
"dailyrainMM": "-2539.7"

}
}

This is then converted into the following format:

#Observations are numpy arrays of type
[’epoch’, ’time_of_day_hours’,
#’day_of_week’, #’station_id’, ’latitude’,
#’longitude’, ’altitude’, ’TemperatureC’,
#’HourlyPrecipMM’, ’number_of_bikes’]

data = array (array([1.403388000e+09,
0.00000000e+00, 7.00000000e+00,
0.00000000e+00, 3.88561000e+01,
-7.70512000e+01, 1.55606689e+01,
2.23000000e+01, 0.00000000e+00,
6.00000000e+00])

, ...)

After this, we are ready to feed the data into our chosen machine
learning algorithms, and analyze accordingly. These arrays are
also used in conjunction with pyplot to produce graph plots that
illustrate bike-share traffic (see figure 3.1).

28

Figure 3.1: Bike-share traffic recorded from June 21st to 28th in Washington
D.C. at station 55

3.2 Visualization module

When dealing with large amounts of data, it is always useful to have
some means of visualizing the data quickly. In the case of bike-share
systems, the visualization module included in the software enables
us to view bike-share history of a month in about twelve minutes.
Additionally, it makes it easier to notice behavioral differences in
downtown stations compared to suburban stations (see figure 1.4
and 1.5 for instance).

The module itself is written in C++, using the Qt Framework.
Qt is a framework that was developed in 1991 by Trolltech, and
is now maintained by Digia. The framework focuses on creating
cross-platform applications and providing easy-to-use GUI toolkits
to developers.

A class diagram of the module is shown in figure 3.2.

3.3 Analysis module

The analysis module can be further broken down into three main
scripts:

• Preprocessing scripts; these scripts are used to append addi-
tional feature information to stations and datapoints, in or-
der to improve the performance of regressor and classification
scripts.

– Spectral clustering based on similarity matrices
– Individual listing of similar stations for each station in a

network

29

• Estimator loader scripts (classifiers and regressors)

• Genetic Algorithms for adjusting hyperparameters for the
estimators

3.4 Module for emailing reports

When large datasets with machine learning algorithms, experiments
could sometimes take upwards of three to four hours. It was
therefore practical to develop a module that could automate the
testing and email the results when the experiments were finished.

3.5 Github repository for source code

The source code is organized into three repositories:

• Visualization module: https://github.com/arnabkd/bikes-timeline-
qt

• Data analysis module: https://github.com/arnabkd/bikeshare-
analysis

• Data collection module: https://github.com/arnabkd/pybikes-
datacollection

30

Figure 3.2: Class diagram for the visualization module written in C++

31

Figure 3.3: Software overview for this thesis

32

Part II

Analysis

33

Chapter 4

Machine Learning

4.1 Introduction

Machine learning is a subfield of computer science that deals with
construction of models that can generalize datasets in a way that
closely resembles the way human beings collect data, generate
hypotheses and test them. In other words, the machine must learn
to generalize and summarize the dataset rather than simply recall
it.

There are several approaches to machine learning, based on the
type of input given to the machine during learning:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

4.2 Supervised learning

4.2.1 What is supervised learning?

Every fall at the University of Oslo, there is a programming course:
Introduction to object-oriented programming INF1000. At the end of
the course, all students are evaluated. In order to do so, the course
instructor might devise an exam. An appropriate exam must fulfill
the following criteria:

• The exam must be relevant. If students were only taught how
to program in Java, it is unfair to ask students to program the
final exam in Python.

• The exam must be challenging. If students are given the exact
same problems that they trained on, they would simply be
required to recall the answers and write them down.

35

The desired outcome of this situation is that students learn how
to generalize and learn concepts, and then apply those concepts to
problems that are related but not identical to the ones they have
encountered before.

If one extends the student-exam concept to supervised learning,
the machine would be given lots of training questions, with answers.
The machine learning terminology for training questions with
answers would be "training set with target variables". At the end
of the learning period, the machine would be given test questions
without answers, known as the "test set without target variables".
The goal is that the machine will have generalized its knowledge
from the training set to such a degree that it will be able to predict
the target values for the test set fairly accurately (see figure 4.1). The
results from such a prediction might then be compared to the actual
target values in order to evaluate the performance of the estimator
(see chapter 9).

Figure 4.1: Basic overview for all supervised learning algorithms

When using machine learning with bike-share data, there were
two major factors to consider:

• Bias-variance tradeoff

• Presence of interactions between data features i.e. the com-
plexity of the ground truth function

4.2.1.1 Bias-variance tradeoff

The goal in supervised machine learning is to create a statistical
model of the underlying process that created the training data.
The bias-variance tradeoff is the issue of minimizing two different

36

sources of error that supervised machine learning algorithms suffer
from:

• bias errors that occur from the models not being complex
enough to reflect the complexity of the ground truth that
created the training data.

• variance errors resulting from overcomplicated models that
capture and model the noise in the training data.

In order to understand why these errors occur, it is important to
note that the bias-variance tradeoff is the issue of determining the
complexity of the models we choose.

Moore and McCabe (2002) [19] uses the analogy of a dartboard
and a dart thrower to illustrate the bias-variance tradeoff (see figure
4.2). When the dart-thrower has low bias and has low variance, they
tend to hit the bulls-eye very accurately. This is the ideal situation.
However, in the case of high variance and low bias, the dart-thrower
will miss uniformly in all directions. In the case of high bias, and
low variance, the dart-thrower will miss in one direction, but the
spread of the darts will be small.

Figure 4.2: Bias-variance tradeoff illustration

It is possible to think of high-variance estimators as algorithms
that are very flexible. Examples include deep decision trees
(discussed in chapter 5), support vector machines etc. Similarly,
low-variance estimators can be thought of as inflexible. Examples
of low-variance estimators are: simple linear regressors, shallow
decision trees etc.

37

The typical method of reducing variance is to increase bias, and
vice-versa. It is generally (but not entirely) impossible to reduce bias
and variance at the same time.

Below is an example of resolving the bias-variance tradeoff
simply by choosing the complexity of a model. Figure 4.3 shows a
dataset that was generated by adding some noise to a sine function
(see Listing 4.1).

Listing 4.1: Generate a noisy but simple dataset using a sine function
#Imports
import numpy as np
import pylab as plt

#Introduce some noise to make the dataset slightly realistic
rng = np.random.RandomState(1)
X = np.sort(5.0* rng.rand(80,1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))

#Create a test set
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]

#Visualize the dataset
plt.scatter(X, y, marker="o", color="black", label="Data")
plt.legend()
plt.title("A noisy sine function")
plt.show()

Figure 4.3: Noisy sine dataset

The first model, a Linear Regressor was fitted to the data (Listing
4.2) and the results are shown in Figure 4.4. It is clear from the
prediction plot that the linear regressor was too simple (high-bias)
to predict the dataset properly.

38

Listing 4.2: Predicting a noisy sine function using Linear Regression
from sklearn.linear_model import LinearRegression

#Create a Linear Regressor
estimator = LinearRegression()

#Fit the estimator
estimator.fit(X,y)

#Prediction
y_pred = estimator.predict(X_test)

plt.scatter(X,y, color="black", marker="o", label="Data")
plt.plot(X_test, y_pred, color="red", label="Prediction")
plt.title("Predicting a sine function with a linear regression

model")
plt.legend()
plt.show()

Figure 4.4: Fitting with a high-bias, low-variance model

Next, a Decision Tree Regressor was fitted to the data: Listing
4.3 and 4.5. This illustrates the opposite problem: the model has
now learnt the training data by heart and considers the noise as
part of the ground truth. This is a high-variance, low-bias model.
Note that the low bias comes from the fact that decision trees only
become biased when a certain class or value range dominates.

Listing 4.3: Predicting a noisy sine function using a Decision Tree
from sklearn.tree import DecisionTreeRegressor

#Create a deeper DecisionTreeRegressor
estimator2 = DecisionTreeRegressor(max_depth=None)

#Fit the estimator
estimator2.fit(X,y)

39

#Prediction
y_pred2 = estimator2.predict(X_test)

plt.scatter(X,y, color="black", marker="o", label="Data")
plt.plot(X_test, y_pred2, color="blue", label="max_depth=None")
plt.title("Predicting a sine function with a DecisionTree with

maxdepth=None")
plt.legend()
plt.show()

Figure 4.5: Fitting with a high-variance, low-bias model

Finally, the bias-variance tradeoff is resolved by making the
decision tree shallower (and thus reducing the variance) as can be
seen in Figure 4.6. It is quite clear that this model does not consider
most of the noise as part of the ground truth. This is not the model
that achieves the best error score on the training data so far, but it
is the one that visually seems to be generalizing the best.

It should be noted that the reason why the tradeoff was so
simple to resolve in this case was merely that the dataset itself
was simple. Real-world data deals with a higher signal-to-noise
ratio (SNR), and that is the domain of ensemble learning, namely
Boosting and Bagging. Bagging works by averaging large amounts
of estimators to reduce the variance (bias stays the same). Boosting,
and AdaBoost in particular builds estimators iteratively by using
reweighting techniques to teach each successive estimator more
about the mistakes of its predecessor, thereby reducing variance
and bias errors. Both of these techniques are disscussed in greater
detail in chapter 6.

40

Figure 4.6: Bias-variance tradeoff resolved

4.2.1.2 Size of training set and complexity of the ground truth
function

The function complexity of the number of bikes at a bike-share
station includes (but is not limited to) the following features:

• Weather conditions (temperature, wind, rain etc)

• Time (day of week, time of day, month)

• Station variables such as the location of the station, bike
capacity, altitude

It is not clear how important the different features are to the
ground truth function, but it is clear that it might be quite complex.
If this is indeed the case i.e. lots of non-linear interactions between
features or feature interactions being different in different input
spaces, then a low-bias, high variance estimator (i.e. a Decision
Tree) is required to accurately predict the test set, along with a large
training set.

In the bike-sharing context, traffic might behave completely
differently in the month of June compared to the month of February,
even on days when the weather conditions are comparable. A user
might see that it is a sunny day outside but decide not to rent a bike
purely based on the fact that it is the middle of February and they
have a mental block against it. These kinds of cases will result in
noise, where the algorithm will suspect that sunny days will bring
up traffic but the reality will be different. It is therefore important to
have a big enough dataset where such noise can be easily ignored.

41

4.2.2 Approaches to supervised learning

Supervised learning can be further split up into two approaches (see
examples below):

• Classification: In classification, the target variables are class
labels, i.e. all observations are of class A, but the problem is to
determine which sub-class of class A they fall into.

Example: All emails fall into the class Emai l , but spam
classifiers strive to determine which ones fall into the spam
and r elevant_emai l subclasses respectively.

• Regression: In regression, the target variables are real/con-
tinuous values, i.e. the problem is to determine how big or
small the target variable will be.

Example: While browsing Netflix, Alice gave a 5/5 rating to
some comedy movies, 2/5 to a few thriller movies and 3/5 to
some mixed-genre movies. She then comes across a new movie
which is in the thriller/horror category. Based on her previous
experiences, Netflix can try to use a regressor to predict how
well she will like the movie on a scale from 1-5.

4.3 Unsupervised learning

In unsupervised learning, the datasets are similar to the ones in
supervised learning, except for one difference: they do not have a
target variable. The problem in unsupervised learning is to uncover
a hidden structure or feature interaction in data that has not been
labeled. In this thesis, unsupervised learning, and more specifically
clustering is attempted as a pre-processing method for identifying
hidden structures in the bike-share systems.

4.3.1 Clustering

Clustering is the task of grouping a set of data points in such a way
that they are more similar (in one or more feature spaces). A quick
look at the datasets reveals that downtown and suburban stations
behave differently (see figure 4.7). It is therefore logical to try and
cluster stations into two groups:

• suburban stations

• downtown stations

In this thesis, each station was pre-processed with a clustering
script. The stations were clustered by their behaviour; stations
that emptied and filled up at similar times, were put in the same
clusters. However, this did not lead to any improvement in the
predictions.

42

Figure 4.7: Number of bikes at a suburban (green line) and downtown
station (blue line) in Washington D.C. over the course of a week

4.4 Classifiers

Classification is the problem of learning about a labeled set of
datapoints and then using that knowledge to apply labels to
unlabeled set of previously unseen datapoints.

A classifier is an algorithm that takes an observation and decides
which sub-category the observation belongs to. An example of
classification would be determining whether a given email should
be tagged as "spam" or "non-spam".

In machine-learning, a classifier has access to a set of obser-
vations that have been accurately tagged. This set is known as a
training set. A simplified example training set for the bikeshare do-
main is shown in table 4.1. This trains the classifier, which is then
given a test set similar to table 4.1 except that the test set does not
have a "Class" column. The classifier produces the "Predicted class"
column for a test set (shown in table 4.2).

Note that classification is only used as a helpful concept to
explain decision trees in this thesis, and not to actually predict
shortages and overflows.

43

Hour
of day

Day of
week

Month Lat Lng MAMSL CC T wind Class

00:00 5 5 38.89 -76.96 4.92 4 31 4.8 Balanced
12:00 7 4 38.90 -77.03 25.43 4 14.3 1.6 Balanced
17:00 7 7 38.89 -77.08 69.89 4 26.4 9.7 Shortage
02:00 3 5 38.89 -77.08 71.20 4 20.7 3.2 Shortage
01:00 5 4 38.88 -77.04 6.70 4 21.6 11.3 Overflow

Table 4.1: Example training set for a classifier

Note: Cloud cover (CC) is given in okta, temperature (T) in
degrees Celsius, wind in km/h and altitude (MAMSL: Meters
Above Mean Sea Level) in meters.

Hour
of day

Day of
week

Month Lat Lng MAMSL CC T wind Predicted
Class

2 2 6 38.92 -77.07 79.38 4 31.1 4.8 Balanced
20 1 5 38.90 -76.98 12.62 4 22 12.9 Balanced
17 7 6 38.89 -77.01 8.54 4 19.7 4.8 Shortage
22 6 6 38.85 -77.05 16.15 4 24.1 14.5 Balanced
0 6 3 38.90 -77.02 15.24 4 11 3.2 Overflow

Table 4.2: Possible classification output for the example test set

Note: Cloud cover (CC) is given in okta, temperature (T) in
degrees Celsius, wind in km/h and altitude (MAMSL: Meters
Above Mean Sea Level) in meters.

4.5 Regression

Regression in machine-learning is similar to classification, with the
exception of the target variable, which is a real value as opposed to
a class label. In the bike-share domain, this would mean that while
classification algorithms might output whether or not a station will
be in a overflow, balanced or shortage state, regression algorithms
will output the expected number of bikes at the station.

The training set will be slightly different for regression al-
gorithms (table 4.3), as will the output for the test set (table 4.4).

4.6 Evaluation metrics for models

Creating a prediction model is only the first part of creating a
prediction system. Models need to be evaluated against each other
in an objective manner to determine which one such a system
should use. It is therefore common in machine learning to use
the predictions from the test set and compare it to the actual data
using error metrics. Error metrics are functions that take prediction
values, compare them to actual values and output a score for how
well the predictions fit the truth.

44

Hour
of day

Day of
week

Month Lat Lng MAMSL CC T wind Free bikes

0 5 5 38.89 -76.96 4.92 4 31 4.8 5
12 7 4 38.90 -77.03 25.43 4 14.3 1.6 5
17 7 7 38.89 -77.08 69.89 4 26.4 9.7 0
2 3 5 38.89 -77.08 71.20 4 20.7 3.2 1
1 5 4 38.88 -77.04 6.70 4 21.6 11.3 13

Table 4.3: Example training set for a classifier

Note: Cloud cover (CC) is given in okta, temperature (T) in
degrees Celsius, wind in km/h and altitude (MAMSL: Meters
Above Mean Sea Level) in meters.

Hour
of day

Day of
week

Month Lat Lng MAMSL CC T wind Predicted number
of free bikes

2 2 6 38.92 -77.07 79.38 4 31.1 4.8 5
20 1 5 38.90 -76.98 12.62 4 22 12.9 5
17 7 6 38.89 -77.01 8.54 4 19.7 4.8 1
22 6 6 38.85 -77.05 16.15 4 24.1 14.5 5
0 6 3 38.90 -77.02 15.24 4 11 3.2 13

Table 4.4: Possible regression output for the example test set

Note: Cloud cover (CC) is given in okta, temperature (T) in
degrees Celsius, wind in km/h and altitude (MAMSL: Meters
Above Mean Sea Level) in meters.

4.6.1 Error metrics for Classification

In classification, the error metrics that are available in scikit-learn
are:

• Information gain (entropy)

• Gini impurity

Given a region R in a dataset D, we can define the misclassi-
fication rate for R as ER = ∑

c∈C
P (y 6= ŷ) where C gives the number of

subclasses present in D and P (y 6= ŷ) represents the likelyhood that
the prediction of a sample will be wrong. This is known as the "Im-
purities metric".

The Information gain (or entropy) metric HR is based on the
misclassification probability mentioned above:

HR =−
n∑

i=1
PR (y)∗ l og (PR (y))

For CART type decision trees, the equation is:

HR =−
n∑

i=1
PR (y)∗ l og2(PR (y))

Note the difference in logarithmic base, the CART type decision
trees have log2 simply because all the decision trees implemented
in scikit-learn are binary trees.

45

The Gini impurity GR is given as:
GR = ∑

y∈Y
PR (y)(1−PR (y))

The classification trees in scikit-learn support either the gini
impurity or entropy as their error metrics.

4.6.2 Error metrics for Regression

RMSE (Root Mean Squared Error) and R2 (coefficient of determin-
ation) are two popular choices when evaluating regression models.
The DSSG divvy project [7] uses RMSE, while scikit-learn uses R2.
In order to understand the choice of error metric in this thesis, the
error metrics themselves must be understood first.

4.6.2.1 Residual sum of squares, Explained sum of squares,
Total sum of squares

Regression is basically the process of applying a best-fit model to a
series of real values. Given a regression model Ŷ that approximates
the data Y = f (x), with the mean Ȳ (see figure 4.8), for each datapoint
yi it is possible to calculate:

• How far the datapoint is from the model: yi − ŷi

• How far the model is from the mean: ŷi − Ȳ

In statistical data analysis [20] Residual sum of squares is given

as RSS =
n∑

i=1
(yi−ŷi)2, Explained sum of squares as ESS =

n∑
i=1

(ŷi−Ȳ)2 and

Total sum of squares as T SS = RSS+ESS. The metric R2 (coefficient of
determination) is R2 = ESS/T SS.

Since T SS = RSS +ESS, it also follows that:

R2 = lim
RSS→0

ESS

RSS +ESS
= 1.

In other words, the "best" fit possible for any regression model
will give us an R2 value of 1 (see figure 4.9) and similarly worse
models will give us lower values of R2 (see figure 4.10).

However, it would be too simplistic to simply use R2 as the
only metric. R2 tends to be inflated [21] as more parameters are
added to the regression model Ŷ . So for instance, in the domain of
bike-share traffic, as the regression models account for more and
more variables (such as temperature, precipitation, wind, location
of the station, time of day, day of week etc), the R2 score will
increase without any guarantee that the newer variables decrease
the residuals RSS. In this thesis, R2 was therefore only used by
the genetic algorithm to compare models that had the exact same
number of variables since all estimators in scikit-learn implement a
score() method which outputs the R2 on a dataset with a trained

46

Figure 4.8: Estimating distance from the mean, distance from the model. The
distance from the model is given by the blue dotted line, and the distance
between the model and the mean by the green dotted line.

model. In contrast, the RMSE requires an extra step to compute
which requires the training and test data to be stored at all times,
which requires a large amount of memory. This is only practical
for analysis on the final models, but not when comparing several
estimators generated by a genetic algorithm.

47

Figure 4.9: High R2 - good fit

Figure 4.10: Low R2 - bad fit

4.6.3 Root mean squared error (RMSE)

RMSE is another general purpose error metric for regressions. It is

defined as : RMSE =
√

1
n

n∑
i=1

(yi − ŷi)2

Given a test set where:
X = [1,2,3,4,5]
Y = [2,4,6,8,10]
Ŷ = [4,4,6,8,10]

48

Ȳ = 1
n

n∑
i=1

yi = 10+8+6+4+2
5

First, the Standard Error is calculated: sei = (ŷi − Ȳ)2 (see table

4.5), then the Mean Square Error MSE = 1
n

n∑
i=1

sei = 5.6, and lastly the

Root Mean Square Error: RMSE =p
MSE ≈ 2.36.

xi yi ŷi Ȳ (ŷi − Ȳ) sei = (ŷi − Ȳ)2

1 2 4 6 -2 4
2 4 4 6 -2 4
3 6 6 6 0 0
4 8 8 6 2 4
5 10 10 6 4 16

Table 4.5: Calculating the standard error

The advantage of using RMSE is that it provides an error metric
that has the same unit as the target variable. In other words, if a
model for bike-share traffic has RMSE = 2.4, it denotes that the model
is off by approximately 2.4 bikes at all times. This is the reason the
DSSG team chose this error metric. In this thesis, RMSE is used as
the metric on the test sets so that the model error results could be
compared to the ones achieved by the DSSG team.

49

50

Chapter 5

Decision Trees (CART)

A decision tree (also called CART for Classifcation and Regression
Tree) is a statistical prediction model, that can be used for
classification or regression. The structure of the model is a tree
structure, where each node represents a question and the child
edges from the node represent the possible answers to that
question.

Consider a machine that asks the following questions about an
email that’s received:
Machine: Does the word "free" appear more than three times?
Answer: Yes
Machine: Does this email contain the words "lottery" and "won"?
Answer: Yes
Machine: This email is predicted to be spam.

The above is the basic concept behind decision trees i.e. it asks
questions to determine the predicted class/value of the input data.
Decision trees are chosen in this thesis for their transparency, as
well as the fact that scikit-learn provides a feature_importance()
function for their decision tree class. This helps identify the factors
that affect bike-share traffic in a much more intuitive way than
estimators like SVMs, neural networks etc. This chapter focuses on
the representation of the decision tree, the learning algorithm that
creates the structure, adjustable hyperparameters along with pros
and cons of using decision trees.

5.1 Representation

We begin by visualizing an example of a simple learned decision tree
(figure 5.3) that has been trained on a very small training set (leaf
nodes usually have a wide range of values) with a depth of two. Each
question can be answered as a yes/no question (because this is a
binary tree). The "yes" child nodes are marked in green, and "no"
child nodes in red. The leaf nodes contain target values (in this case
number of bikes) recorded in the training set.

51

Note that we can ask different questions in the left and right
subtrees. For instance, if it is not true that the time of day 06 :
00 ≤ T ≤ 10 : 00, we can ask a different question in the left subtree
(ex: al t i tude ≤ 70m?). It should also be mentioned that the authors
of scikit-learn decided to implement binary decision trees to avoid
code complexity. In general, decision trees need not be binary [9].

5.2 Learning algorithm

Decision trees ask questions when learning a training set, but the
important part is to ask them in the right order. Let’s assume that
a set of questions Q looks like this:

• Is it raining?

• How much rain has been recorded in the last hour?

• Is it sunny?

• What is the time of day?

• What day of week is it?

• What month is it?

• Where was the observation recorded? (downtown or suburban)

It is important to note while that the answer to the questions
might be categorical (ex: downtown or suburban), real values (time
of day), boolean (raining/not raining) etc, these answers must be
represented numerically. This is because scikit-learn estimators
only accept numpy arrays, which may only contain numerical
values. An overview of the learning algorithm is provided below:

Algorithm 1 Decision tree learning

1: function DECISION TREE LEARNING(Training_set, Q)
2: tr ee ← NU LL
3: while not STOP-CRITERION(tr ee, Training_set) do
4: q ← FIND-BEST -SPLIT(Q, Training_set)
5: dL ,dR ← SPLIT(Training_set, q)
6:

7: Le f t ← DECISION TREE LEARNING(dL, Q)
8: Ri g ht ← DECISION TREE LEARNING(dR , Q)
9:

10: tr ee ← (q, (Le f t ,Ri g ht))
11: end while
12: return tree
13: end function

52

The Split and Find-best-split functions are described in
further detail in section 5.2.2. Section 5.2.1 describes how the
decision tree decides when to stop, i.e. the Stop-criterion
function.

5.2.1 Stopping criterion

The Is-stop-criteria-met function is implementation-specific,
and it is a boolean function that that returns True/False for a
subset of the training set s ∈ S. The stopping criteria can be split
into two:

• The hyperparameters mi n_samples_spl i t (least number of
samples required to split a node) and mi n_samples_l ea f
(minimum number of samples for a leaf node) are checked to
see if the node should be split further or not.

• The hyperparameter max_depth of the tree is checked against
depth of the current internal node to determine whether
depthcur r ent_node == max_depth.

5.2.2 Finding the best split

The Find-best-split function boils down to "If you could ask only
one question at this time, what would that question be?". Scikit-
learn uses a metric to determine which question splits the data in
the "best" possible manner. The metrics supported are Gini impurity
and entropy for classification trees (see section 4.6.1), and MSE for
regression trees (mentioned in section 4.6.3).

Consider the following 2D projection of how an example dataset
is split by three questions asked by a decision tree (figure 5.1). Each
of the three lines drawn in red, green and blue represent a question.

The red line isolates five instances of the class x on one side. It
is possible to define the red line as a binary question (hereby known
as the "red question"), and all datapoints plotted to the left of the red
line as answering "yes" to the red question. Therefore all datapoints
di answering "yes" to the red question, are surely di ⊂ x. In other
words, the red line provides a 100% accuracy rate on one side of its
splits.

Since neither the blue nor the green line provides such a high
level of accuracy on either side of their respective splits, the red line
is chosen as the question with the best split, and therefore is the
first question to be asked. The green line is chosen second, as it has
the second best split, and lastly the blue line is chosen as it has the
worst split of the three. The metric used in this example is known as
entropy (see section 4.6.1). Note that it is not necessary to ensure
that one side of a split assures a 100% accuracy rate.

When analyzing regression datasets, the questions separate real
values instead (figure 5.2).

53

Figure 5.1: Binary class dataset divided into three partitions by a decision
tree.

Figure 5.2: Regression dataset divided into two partitions by a decision tree

In the scikit-learn implementation of decision trees, there are
two different strategies for choosing the "best" split. The first option
is to do an exhaustive search on all possible splits and find the split
that scores the best on the chosen error metric (MSE for regression,
gini/entropy for classification). Another option is to pick a set of
random splits and choose the best scoring split in the set.

5.2.3 Miscellaneous remarks

Any question that is asked once in a subtree will not be asked
again, since asking that question again would not split the data
any further; the reason being that the information gain will simply
be zero. Looking back at section 5.2.2, it would be equivalent to
drawing the red line again and again after we are done drawing
both the red, green and blue lines.

54

0

N

N

2012

Y

250,1,1

Y

N

320

Y

0,1,015,14,13

Level 0: q0 Raining?

Level 1: q1 06:00 ≤ T ≤ 10:00

Level 2: q2 ...

Level 3: Observations

Figure 5.3: Example of a learned decision tree. Terminal nodes store the
observed number of bikes at a bike station. Note: This is a Decision Tree
Regressor

5.3 Strengths and weaknesses

The strengths [22] of decision trees are:

• Easy to understand when visualized as boolean logic (see
figure 5.3). Models like neural networks, SVMs are not as easy
to interpret.

• High variance: Decision trees have high enough variance to
successfully predict complex functions. This is a double-edged
sword (see below under "disadvantages of decision trees").

• Fast predictions on complex models: The cost of performing a
prediction is O(log (h)) where h is the depth of the decision tree.
This is very low compared to the potential number of decision
boundaries (there are at least 2h − 1 leaf nodes, and at most
2h+1 −1).

The disadvantages of decision trees include:

• The learning algorithm is greedy by definition, and there is
no guarantee that it will find a globally optimal split at each
internal node. The task of finding the optimal decision tree for
a training set is NP-complete.

• Bias: Decision trees can become biased when the dataset is
not balanced (applies to both classification and regression
problems). This can be solved by balancing the dataset (as was
done in this thesis when dealing with classifiers).

• High variance might lead to overfitting. A decision tree might
create an overly complex model of the data that fits the noise
as well as the ground truth.

In summary, decision trees seem like a good initial choice for
the complex nature of the data (see figures 3.1 and 4.7). Chapter
7 investigates whether they are flexible enough to capture the
complexity of the data.

55

56

Chapter 6

Ensemble learning

Ensemble learning algorithms are meta-estimators that use mul-
tiple learning estimators to produce better performance than any
of the individual estimators could. Theory [23] [24] suggests that
both boosting and bagging should bring down the variance of the
decision tree estimators mentioned in the chapter 5 and they are
therefore relevant to look at in this thesis.

6.1 Bagging

Bagging was introduced in 1994 by Leo Breiman [23], and it stands
for Bootstrap Aggregation. He showed through a series of tests on
regression and classification cases that bagging gave significant
gains in accuracy. The bagging algorithm can be divided into three
steps:

• Bootstrapping the training set randomly

• Training a set of models M on bootstrapped data

• Averaging all models m ∈ M to create a final model m f i nal such

that m f i nal (x) = 1
n

n∑
i=0

mi (x)

6.1.1 Bootstrapping

Bootstrapping is the act of taking an observation (xi , yi) ∈ D and
randomly resampling it to create sets like b = ((xi , yi), (xm , ym), (x j , y j))
where i , j ,m are all randomly picked. Since all the datapoints in D
are randomly chosen to be resampled (sampling by replacement,
see "unordered samples with replacement" in [25]) into bootstrap
sets like B, it is very improbable that B = D. It is important to
note that a bootstrapped dataset Bi is built independently from
B j , and is therefore likely to be different. As an example, assume
D = 0,1,2,3,4,5. This may be resampled into one bootstrap dataset
B1 = 0,0,1,2,4,1.

57

Scikit-learn has a bootstrapping mechanism that can be used as
shown in Listing 6.1 to create bootstrapped datasets. The dataset
used in the example is a regression dataset that is included in
scikit-learn [22]. The bootstrapped datasets can be seen in figures
6.1, 6.2 and 6.3. Note that the datasets shown are not identical,
even though they are similar.

Listing 6.1: Bootstrapping
from sklearn import cross_validation
from sklearn import datasets

dataset = datasets.load_boston()
data, target = dataset.data, dataset.target

#Plot original dataset
plt.scatter(data[:,5], target, marker="x", color="black")
plt.title("Complete training set")
plt.show()

bs = cross_validation.Bootstrap(len(target), n_iter=3)
n = 0

#Plot bootstrapped datasets
for train_index, test_index in bs:
n += 1

bs_xtrain = [data[:,5][i] for i in train_index]
bs_ytrain = [target[i] for i in train_index]

bs_xtest = [data[:,5][i] for i in test_index]
bs_ytest = [target[i] for i in test_index]

plt.scatter(bs_xtrain, bs_ytrain, marker="x",
label="Training set", color="blue")

plt.scatter(bs_xtest, bs_ytest, marker="x",
label="Validation set", color="red")

plt.title("Random bootstrap sample #%d
of %d (n_samples = %d)" %(n,len(bs),bs.n_iter))

plt.legend()
plt.show()

6.1.2 Fitting bootstrapped datasets and aggregation

Once the bootstrapped partitions have been created, the next step is
to create a bunch of models on each of the partitions. In the example
shown in Listing 6.2, the models are created by hand, but this is
just for illustration purposes. Finally, the models are aggregated by
averaging the output mi (x)for all x ∈ X . The final model can be seen
in figure 6.4 on page 61.

Listing 6.2: Model fitting
m_x = range(4,10)
m1 = [(10*x - 40) for x in m_x]
m2 = [(11*x - 45) for x in m_x]

58

m3 = [(11.5*x - 45) for x in m_x]
models = [m1,m2,m3]

#Aggregate bootstrap models to form a final model
m_final =[(sum(model[i] for model in models))/len(models)
for i in range(len(m1))]

for i in range(len(bs_data)):
x_train, y_train, x_test, y_test = bs_data[i]

plt.scatter(x_train, y_train, marker="x", label="Training set",
color="0.25")
plt.scatter(x_test, y_test, marker="x", label="Validation set",
color="0.75")

plt.plot(m_x, models[i], label = ("Model for bootstrap #%d"
% (i+1)), color="red", linestyle="--")

plt.title("Model#%d fitted to bootstrap partition #%d"
%((i+1),(i+1)))
plt.legend()
plt.show()

plt.scatter(data[:,5], target, color="black", marker="x",
label="original training set")

for i in range(len(models)):
plt.plot(m_x, models[i], label = ("Model for bootstrap #%d"%
(i+1)), color="red", linestyle="--")

plt.plot(m_x, m_final,color="green", linestyle="-",linewidth=1,
label="Mean of bootstrap models")

plt.legend()
plt.title("Aggregated model")
plt.show()

Figure 6.1: Model #1 on bootstrapped dataset #1

59

Figure 6.2: Model #2 on bootstrapped dataset #2

Figure 6.3: Model #3 on bootstrapped dataset #3

60

Figure 6.4: Aggregated model

6.2 Random Forest

The Random Forest algorithm was introduced by Leo Breiman in
2001 [26]. It has been shown to have excellent performance as
shown in Caruana & N-M [27], and came in a close second only to
boosted decision trees, beating relatively complex algorithms such
as neural networks and SVMs.

Random Forests combine bagging with the concept of random
feature selection introduced by Ho [28] and Amit and Geman [29].
The learning algorithm for random forests is given below:

Algorithm 2 Random Forest Learning

1: function RANDOM FOREST(dataset D, n_estimators = n)
2: ((x1, y1), ..., (xm , ym)) = D
3: B ← CREATE-BOOTSTRAPS(D,n)
4: RF ← {}
5: for all di ∈ B do
6: S ← Total feature space for di

7: s ← SELECT -K-RANDOM-FEATURES(S, k)
8: Q ← GENERATE-QUESTIONS(s)
9: ti ←DECISION-TREE-LEARNING(di , Q)

10: RF ←APPEND(RF ,ti)
11: end for
12: return RF
13: end function

61

In scikit-learn, the number k for the size of the random feature
subspace is by default set to p

p for a dataset with p features.
Generally, one can grow an infinite number of trees without

danger of overfitting [9], due to the law of large numbers; a theorem
stating that when an experiment is performed enough times, the
mean of the results will be close to the expected value. Increasing
the number of trees in a random forest decreases the variance
of the estimator, while maintaining the bias of the forest. The
number of trees in scikit-learn is controlled by the n_estimators
hyperparameter.

Random forests do not require cross-validation, due to the so-
called OOB (out-of-bag error estimate). During the learning process
of the random forest, bootstrap datasets Di ∈ B are created by taking
examples with repetition. The datapoints left out of every dataset
Di ∈ B are called out-of-bag samples for that dataset (there are N
such samples in total, where N is the number of samples in the
original dataset). After the estimators tr eei ∈ RF are created, they are
all tested on the out-of-bag samples, and the error is the generalized
error metric for random forests.

Other than the hyperparameters mentioned above, random
forests also include the hyperparameters mentioned for decision
trees and these are applied to all decision trees in the forest.

6.3 Boosting

A boosting algorithm is a meta-estimator for machine learning that
combines multiple weak (or simple) estimators to form a single
strong estimator. The prediction techniques make it a type of
ensemble method, and was first introduced by Robert Schapire [30].

The core concept of boosting can be explained by comparing it to
students preparing for exams. Assume that a student is attending
the course INF1000 (an introduction course at the University of
Oslo), and wants to prepare for the final exam. The INF1000 course
focuses on two primary subtopics:

• Programming

• UML drawings

When preparing for the exam, students must learn to solve
problem sets that involve both subtopics. A student may therefore
look at earlier exams to get an idea of what kind of problems might
be expected on the final exam. This would be the training dataset
D in a machine learning context. The learning is completed in three
steps:

• The first objective of the learning period before the exam could
be to find out more about the weaknesses/strengths in the

62

topics covered in INF1000. This is accomplished by just taking
an exam from the previous years and solving it to the best of
the student’s abilities.

• After solving the exam, the student looks at the error they
made, and analyses the problems they made an error on. Upon
noticing the mistakes, the student decides to spend more time
learning more about them. This ensures that they are less
likely repeat the same mistake again.

• Lastly, the student decides to repeat the process again and
again, until time has run out and it is time to sit for the final
exam.

6.3.1 AdaBoost

In this thesis, the boosting algorithm called AdaBoost (short for
Adaptive Boosting) was used. The pseudocode is shown below:

Algorithm 3 AdaBoost Learning for classification

1: function ADABOOST(dataset D, n_estimators = n,
estimator_type=T)

2: E ← CREATE-ENSEMBLE(T , n) . Create n estimators of type T
3: for all Estimator ei ∈ E do
4: TRAIN(ei , D, w t s)
5: Y ← D.target
6: Ŷ = PREDICT(ei , D)
7: e ← w t s ∗ (Y 6= Ŷ) . Calculate weighted error
8: αi = 0.5∗ l og (1−e)

e . Calculate coefficient alpha
9: w t s ← w t s ∗exp(−αi ·Y · Ŷ) . Update weight vector

10: E ←APPEND(RF ,ti)
11: end for
12: return E
13: end function

Some remarks:

• The algorithm outlined above is only for classification pur-
poses. For regression, the pseudocode must be changed
slightly; instead of looking at misclassifications, the algorithm
looks at loss functions [31].

• w t s in the algorithm is a weight vector for all datapoints in D,
such that w t si for (xi , yi) is some real value v ∈R.

• The calculation for α is related to a property of AdaBoost.
Without going into too much detail, the formula is derived from
the surrogate loss function Cad a =∑

exp(−y i f (xi)) that AdaBoost
corresponds to. In essence, the weight of a given point (xi , yi)

63

increases if yi 6= ŷi and decreases otherwise (i.e. increase the
weight of samples that the predictor erred on, and decrease
otherwise).

• e signifies the error metric (mean accuracy for classifiers).
For regression purposes, the formula αi ← bar L

1−bar L , is used as
the error metric (L signifies either a linear or exponential
loss function) (see Drucker 1997 [32]). e is calculated by
multiplying the weight vector w t s with the mislabeling rate:
Y 6= Ŷ

After the AdaBoost algorithm has finished learning the training
data, it links the decision boundaries of all the weak estimators
in some way to form one strong estimator. In scikit-learn, all the
estimators in the ensemble perform a majority vote to determine
the output of the ensemble as a whole.

6.3.1.1 Criticism

It should be noted that Long & Servedio (2007) [33] concludes that
"convex potential boosters cannot withstand random classification
noise". The consequence of this result is that if a non-zero fraction of
a training dataset is mislabeled, the boosting algorithm will try to fit
the noise and will produce a final model with an accuracy no better
than 0.5 (i.e. random). This finding does apply to AdaBoost, but as
it can be seen in chapter 7, AdaBoost still provides predictions that
are on-par with Random Forests.

6.4 Strengths of ensembles over individual
estimators

Ensembles by their very nature, reduce the variance of any single
estimator and can therefore be expected to deliver better results.
In addition, when the ground truth function is complex, ensemble
estimators tend to capture this better as they are more flexible. In
chapter 7, the improvements that can be achieved by employing
either boosting or bagging techniques are investigated.

64

Part III

Results and conclusion

65

Chapter 7

Results

This chapter looks at how decision trees, random forests and
Adaboost compare to the Poisson models used by the DSSG tree.
It is worth mentioning that the time-window for the predictions in
this thesis was much larger, as the intention of the software is to
help customers plan their commute in advance.

7.1 Preliminary results

All regressors tested in this section, were run with the following
conditions:

• Total length of dataset: 3 months (May 2014 - July 2014)

• Dataset taken from city: Washington DC

• Ratio of training to test samples: 80-20

• Feature space:

– Time of day (hours)

– Day of week

– Day of month

– Month

– Station latitude

– Station longitude

– Station altitude

– Temperature in degrees °C

– Precipitation in mm

– Cloud cover in okta

67

Figure 7.1: Predictions from a single decision tree

7.1.1 Decision Trees

The results in 7.2 show that using a decision tree as an estimator
will deliver comparable results to the ones achieved by the DSSG
team. The DSSG team achieved an RMSE of approximately 6.5
when predicting more than two hours ahead (see section 2.1.3). In
comparison, the decision tree model above in figure 7.2 predicted
over a period of 14 days and maintained an RMSE of 5.3.

7.1.2 Random Forests

Figure 7.2: Predictions from a random forest containing 40 decision trees

A random forest regressor fitted to the same test set achieves

68

an RMSE of 4.15, which is better than the results achieved by the
decision tree in section 7.1.1. The improvement over the decision
tree can be calculated as follows:
Improvement ((RMSEd t − RMSEr f)/RMSEd t) ∗ 100)% = ((5.3 − 4.15)/5.3) ∗
100)% = 21.7%

7.1.3 AdaBoost

Figure 7.3: Predictions from an AdaBoostRegressor containing 30 decision
trees

The AdaBoost regressor achieves even better results than the
random forest, with a RMSE of 4.01. Again the improvement over a
single decision tree is calculated as follows:
Improvement = ((RMSEd t −RMSEad a)/RMSEd t)∗100)% = ((5.3−4.01)/5.3)∗
100)% = 24.3%

7.2 Effect of training-test ratio on estimator
accuracy

The training-test split ratio is usually determined by the Pareto
principle ("80% of the effects come from 20% of the data"). However,
there does not exist any general consensus that any one split ratio
is better than the other (in terms of the accuracy of the trained
model). Generally speaking, if the estimators are complex (i.e. high
variance), and are given lots of data, they might eventually overfit.
In contrast, when estimators are not given enough data, they might
underfit and not perform well enough.

69

Figure 7.4: Effects of train-test ratio

Figure 7.4 shows the effect of different training-test ratios when
training the different estimator types. The bike-share datasets are
slightly special (in terms of machine learning) as the target variable
(number of bikes) follows a periodic pattern. This would explain why
changing the ratio of training to test data does not affect the error
rate significantly; even at a 60-40 ratio, the estimators know enough
to predict accurately. The general 80-20 ratio is therefore hold here;
a 60-40 split is enough (for this dataset).

7.3 Effect of ensemble size

In the case of random forests, Breiman 2006 [26] states that they
cannot overfit just because one increases the size of trees in the
forest. They can however underfit if the ensemble size is not big
enough. It appears from figure 7.5 that the number of estimators
n = 10 is enough, and extending the number of estimators beyond
that point does not appear to give any benefits.

In contrast, AdaBoost can overfit if it has too many estimators
[24]. This is due to its additive nature, that adds a lot of complexity
to the models (increasing the variance). There does not appear to
be any significant benefit from fitting a large number of models, but
repeated experiments (that form the basis of figure 7.5) show that
there might be a "sweet spot" at n = 35. However, the potential gain
(0.2 RMSE) is not big enough to be significant.

70

Figure 7.5: Effects of ensemble size on error rates. The dotted gray line
reflects the error rate of the decision tree, which is the base estimator used
in the AdaBoost and Random Forest algorithms

7.4 Feature importances

All three estimator types (decision trees, random forests, boosted
decision trees) have the option to rank the features in the order of
importance. The order of importance simply means how important
the estimator considers them to be in terms of determining the
target variable (number of bikes). Figures 7.6, 7.7 and 7.8 show
how they are ranked by the three algorithms mentioned above.

It is evident from table 7.1 that the feature importances are fairly
similar amongst the three models. The top ranking feature amongst
all three estimators is the "epoch" feature. The epoch at any given
time is defined as the number of seconds since January 1st 1970.
This is a strong indication that there is (at least) one time-based
feature hidden in the data that is causing a lot of the variance.
It is not clear what that feature could be as the time of day (in
hours), day of week, day of month and month have already been
considered as features. It is probable that the estimator accuracy
might be increased if the aforementioned time factor is discovered.

It is also interesting to note that although rain was cited as
an important factor by Vanderplas [13], rain is not considered
important by the estimators used in this thesis.

One theory that was investigated, is that the dataset could be
skewed in favor of observations without rain. This could cause
decision trees (and by extension the ensembles) to be biased.
When looking at the dataset for May-July 2014, it is clear that
the dataset is definitely skewed: 911 observations with rain were
recorded, while 17964 observations had no rain. Unfortunately, the
rebalancing trick that is normally used to correct bias in decision
trees cannot be used here as the training set would then become too

71

Feature name Decision tree Random forest AdaBoost
Epoch 19.19 20.78 26.88
Time of day (hours) 14.06 13.2 13.05
Day of week 10.4 11.7 8.6
Day of month 6.35 2.65 3.4
Month 0.29 0.0 0.0
Station ID 10.4 11.4 6.9
Station latitude (deg) 12.7 13.5 9.5
Station longitude (deg) 7.7 9.9 7.4
Altitude 11.20 11.3 12.3
Temperature (C) 6.78 5.3 9.5
Hourly Precipitation (mm) 0.27 0.12 1.3
Cloud cover (okta) 0.0 0.0 0.0

Table 7.1: Feature importances for a trained decision tree, random forest
and adaboost estimator. Each column lists the importance of the different
features in terms of percentage.

Figure 7.6: Feature importances considered by a individual decision tree

small for the estimators to train accurately. To put it into context,
every single day of data contains 288 observations per station;
taking only 911 rainy observations and 911 non-rainy observations
is effectively the same thing as looking at six days of data (instead
of 92 days).

72

Figure 7.7: Feature importances considered by a random forest

Figure 7.8: Feature importances considered by an AdaBoost algorithm

73

74

Chapter 8

Conclusion

This thesis was set out to explore the concept that bike-share
traffic could be successfully analysed and predicted with machine
learning patterns. The study also sought to compare some popular
estimators to determine which was best suited for a prediction
system. As a final step, the study determined the effect of
climatological, geographical and time-based variables on the traffic
flow.

8.1 Research process

The research for this thesis started by looking at the work of
the DSSG team (section 2.1) and Jake VanderPlas (section 2.2).
Vanderplas [13] ends the article by mentioning that ensemble
learning might provide better results when predicting bike-share
traffic.

To begin with, a data collection system (for both bike-share data
and weather data from Washington D.C.) was put in place to ensure
that the prediction system had enough data to work with. This
was followed up by implementing a conversion system to provide
a numerical representation that machine learning algorithms could
work with.

After looking at Caruana [27], decision trees and ensemble meth-
ods using decision trees were investigated as possible candidates for
an estimator. The error rates of these estimators were compared to
each other and to the work of the DSSG team to see if there was any
significant improvement (chapter 7).

Lastly, this section looks at how the prediction system developed
in this thesis can be used as the back-end for a web based
prediction system.

75

8.2 Findings

8.2.1 Model choices

Chapter 5 and 6 introduce Decision trees, Random Forests and Ad-
aBoost as the estimators used in this thesis. It is clear from sec-
tions 7.1.2 and 7.1.3 that ensemble learners outperform individual
decision trees, which in turn outperform logistic regressors (at least
in the long term).

It is also apparent that the training-test ratio does not matter
as much here, since 60% of three months (a little over a month) is
enough for the models to stabilize their error rates.

It is also shown that using more than 10 estimators does not
have a significant effect on the error rate for Random Forests, while
AdaBoost has a "sweet spot" of sorts around 30-35 estimators. The
recommendation would therefore be to use either a random forest
or AdaBoost with decision trees as bike-share estimators.

Lastly, it is worth mentioning that the models in this thesis
have not considered when, where and how many bikes were
added/removed by bike-share operators as part of efforts to
rebalance the system. If a feature that describes rebalancing effects
is added to the data, it is possible that the error rate could decrease.
However, this has not been done in the thesis as it was not possible
to access the details of when/where the rebalancing was done by
the bike-share operators.

8.2.2 Factors affecting bike-share traffic

Section 7.4 shows the different features that are considered
important by the three estimator types used in this thesis.

The time of day being important (13-14% importance on average
across all three models) is expected, as people in Washington do
consider bike-share to be a valid commute option. The existance of a
commute pattern is further confirmed by the Qt-based visualization
module and how important the "day of week" was considered by the
estimators (10.4 % importance).

It is also interesting to see that the station (location) parameters
matter almost as much as the time-based ones (table 7.1). The claim
put forth by the ITDP in section 3.1.2 that users often ride bikes
from the top of a hill but seldom back again, was shown to have
merit as all models conclude that the altitude of a bike-station has
about 12% importance.

Unfortunately, no explanation was found as to why the epoch
tag of every observation was considered so significant by all three
models. It is however clear that there is some time-based factor at
play here, which if found, would probably increase the accuracy of
the models.

76

8.3 Future work

The software developed in this thesis provides part of the necessary
back-end for a (web-based) prediction system for bike-share
systems globally. The vision for such a product is outlined in the
sections below.

8.3.1 Web prediction system

As the DSSG team states in their blog [34], bike-share operators
are currently reacting to shortages and overflows that have already
happened in their system. The software developed in this thesis
provides long-term predictions, that can help bike-share operators
be proactive in their operations. Figures 8.1 and 8.2 outline
a wireframe design for such a system. Note the alerts shown
in figure 8.2; these alerts are meant to help operators avoid
overflows/shortages in the short-term.

Figure 8.1: The web prediction app showing the predicted traffic flow of
bike-share station #59 in the Washington DC bike-share system. The time
window of the prediction is set to two days but can be adjusted by using
the spinbox next to the "Prediction dates" label.

For end users, the mobile interface proposed is farily simplistic
(see figure 8.3). The user enters the time and chooses a station for
which they want a prediction. This sends an API request to the web
server, and returns a prediction as shown.

77

Figure 8.2: The system would generate alerts to warn the operators of
shortages and overflows that occur in the next x hours (x can be adjusted
in the "settings" pane)

8.3.2 Hadoop / Map reduce for bigger datasets

The data analysis software developed in this thesis is time-
consuming to run; up to an hour of computation time required for
three months of data. However, this is only on a desktop computer.
This computation time can be lowered drastically by using parallel
programming.

Random forests in scikit-learn are designed for use in clusters.
To ensure parallel processing, one only needs to set the n_jobs
variable to N where N is the number of processors available in a
cluster. The desktops that were used in the analysis part of the
thesis were only able to handle about 50 estimators before the
memory constraints were breached. Using parallel programming
would allow for a significantly faster process.

78

(a) App homescreen (b) Prediction

Figure 8.3: Mobile app for end users

79

80

Bibliography

[1] Institute for Transportation and Development Policy (ITDP).
ITDP Bikeshare Planning Guide. URL: https : / / go . itdp . org /
display / live / The + Bike - Share + Planning + Guide (visited on
19/06/2014).

[2] Olivier O’Brien and UCL Centre for advanced spacial analysis.
Bicycle sharing systems - Global trends in size. URL: http://
www.bartlett.ucl.ac.uk/casa/pdf/paper196.pdf (visited on
19/06/2014).

[3] Barclays review by customer. URL: http : / / www. tripadvisor.
com / ShowUserReviews - g186338 - d2151262 - r174553920 -
Barclays_Cycle_Hire-London_England.html#REVIEWS.

[4] Divvy: Helping Chicago’s New Bike Share Find Its Balance.
URL: http://dssg.io/2013/08/09/divvy-helping-chicagos-new-
bike-share.html (visited on 20/09/2014).

[5] Olivier O’Brien. Bike Share Map. URL: http://bikes .oobrien.
com/global.php.

[6] DSSG Analysis. URL: https://github.com/dssg/bikeshare/wiki/
Analysis (visited on 29/10/2014).

[7] ‘Data Science for Social Good: Divvy project Methodology’. In:
(). URL: https://github.com/dssg/bikeshare/wiki/Methodology
(visited on 20/09/2014).

[8] John Aldrich. ‘R.A. Fisher and the making of maximum
likelihood 1912-1922’. In: Statistical Science 12.3 (Sept.
1997), pp. 162–176. DOI: 10.1214/ss/1030037906. URL: http:
//dx.doi.org/10.1214/ss/1030037906.

[9] Leo Breiman. ‘Random Forests’. English. In: Machine Learning
45.1 (2001), pp. 5–32. ISSN: 0885-6125. DOI: 10 . 1023 /
A : 1010933404324. URL: http : / / dx . doi . org / 10 . 1023 / A %
3A1010933404324.

[10] Yoav Freund and Robert E. Schapire. A Decision-Theoretic
Generalization of on-Line Learning and an Application to
Boosting. 1997.

81

[11] Seattle Department of Transport. Fremont Bridge Hourly
Bicycle Counts by Month, October 2012 to present. https : / /
data . seattle . gov / Transportation / Fremont - Bridge - Hourly -
Bicycle - Counts - by - Month - Octo / 65db - xm6k. (Visited on
29/09/2014).

[12] Jake VanderPlas. Personal website. URL: http://www.astro .
washington.edu/users/vanderplas/ (visited on 29/09/2014).

[13] JHake VanderPlas. Is Seattle really seeing an Uptick in
Cycling? URL: https :// jakevdp.github. io/blog/2014/06/10/
is - seattle - really - seeing - an - uptick - in - cycling/ (visited on
29/09/2014).

[14] Seattle Bike Blog. Fremont Bridge smashes bike count record +
Bike use rises all over town. URL: http://www.seattlebikeblog.
com/2014/05/14/fremont-bridge-smashes-bike-count-record-
for- real - this - time - bike - use - rises - all - over- town/ (visited on
29/09/2014).

[15] National Climatic Data Center. Climate Data Online. URL: http:
//www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND
(visited on 29/09/2014).

[16] Pandas. Pandas. URL: http://pandas.pydata.org/ (visited on
29/09/2014).

[17] Scikit-learn. Scikit-learn Linear Model: Linear Regression. URL:
http : / / scikit - learn .org/stable/modules/generated/sklearn .
linear _ model . LinearRegression . html # sklearn . linear _ model .
LinearRegression (visited on 29/09/2014).

[18] General concepts: epoch. URL: http ://pubs .opengroup.org/
onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_
15.

[19] G.P Moore D.S. McCabe. Introduction to the Practice of
Statistics. 6th edition. W. H. Freeman, 2007.

[20] S.E. Maxwell and H.D. Delaney. Designing Experiments
and Analyzing Data: A Model Comparison Perspective. Avec
CD v. 1. Lawrence Erlbaum Associates, 2004. ISBN:
9780805837186. URL: http://books.google.no/books?id=h-
bMhmQMifsC.

[21] Alvin C. Rencher and Fu Ceayong Pun. ‘Inflation of R2 in Best
Subset Regression’. In: Technometrics 22.1 (1980), pp. 49–53.
DOI: 10.1080/00401706.1980.10486100. eprint: http://www.
tandfonline.com/doi/pdf/10.1080/00401706.1980.10486100.
URL: http://www.tandfonline.com/doi/abs/10.1080/00401706.
1980.10486100.

[22] F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830.

82

[23] Leo Breiman. ‘Bagging Predictors Technical Report No. 421’.
In: (1994). URL: http://statistics .berkeley.edu/sites/default/
files/tech-reports/421.pdf (visited on 13/10/2014).

[24] Robert E. Schapire Yoav Freund. ‘A short introduction
to boosting’. In: Journal of Japanese Society for Artificial
Intelligence (1999). URL: http : / / www . yorku . ca / gisweb /
eats4400/boost.pdf (visited on 13/10/2014).

[25] Eric W. Weisstein. Ball Picking. URL: http : / / mathworld .
wolfram.com/BallPicking.html.

[26] Leo Breiman. ‘Random Forests’. English. In: Machine Learning
45.1 (2001), pp. 5–32. ISSN: 0885-6125. DOI: 10 . 1023 /
A : 1010933404324. URL: http : / / dx . doi . org / 10 . 1023 / A %
3A1010933404324.

[27] Rich Caruana and Alexandru Niculescu-Mizil. ‘An Empirical
Comparison of Supervised Learning Algorithms’. In: (). URL:
http : / / www. cs . cornell . edu / ~caruana / ctp / ct . papers /
caruana.icml06.pdf (visited on 13/10/2014).

[28] Tin Kam Ho. ‘Random decision forests’. In: (1995). URL: http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=598994 (visited
on 13/10/2014).

[29] ‘Shape Quantization and Recognition with Randomized Trees’.
In: (). URL: http://www.cis . jhu.edu/publications/papers_in_
database/GEMAN/shape.pdf (visited on 13/10/2014).

[30] Robert E. Schapire. ‘The Strength of Weak Learnability’. In:
(). URL: http : / / www. cs . princeton . edu / ~schapire / papers /
strengthofweak.pdf (visited on 13/10/2014).

[31] L. Weiss. Introduction to Wald (1949) Statistical Decision
Functions. English. Ed. by Samuel Kotz and NormanL.
Johnson. Springer Series in Statistics. Springer New York,
1992, pp. 335–341. ISBN: 978-0-387-94037-3. DOI: 10.1007/
978-1-4612-0919-5_21. URL: http://dx.doi.org/10.1007/978-1-
4612-0919-5_21.

[32] Harris Drucker. ‘Improving Regressors Using Boosting Tech-
niques’. In: Proceedings of the Fourteenth International Con-
ference on Machine Learning. ICML ’97. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1997, pp. 107–115.
ISBN: 1-55860-486-3. URL: http://dl.acm.org/citation.cfm?id=
645526.657132.

[33] ‘Random classification noise defeats all convex potential
boosters’. In: Machine Learning Journal 78 (2010). URL: http:
//www.phillong.info/publications/LS10_potential.pdf (visited
on 13/10/2014).

[34] DSSG. Helping Chicago’s new bike-share. URL: http://dssg.
io/2013/08/09/divvy-helping-chicagos-new-bike-share.html
(visited on 26/10/2014).

83

84

