
OCR-Based Data
Authentication for Online
Banking

Marius Portaas Haugen
Master’s Thesis Autumn 2016

OCR-Based Data Authentication for Online
Banking

Marius Portaas Haugen

1st November 2016

ii

Abstract

This Master’s project has investigated the potential for Optical Character
Recognition (OCR) based data authentication in online banking, for
ensuring authenticity of banking transactions.

An OCR-based data authentication scheme as been designed, and
implemented as a high fidelity prototype. The prototype consist of an
smartphone application developed for the Android platform, as well as
a mock-up e-banking web application. This prototype was evaluated
through a pilot usability study, in order to investigate the level of user
friendliness which it provides. The results from this pilot study indicates
that the authentication scheme itself has potential, however the prototype
will have to be improved in order to provide a sufficient user experience.

iii

iv

Acknowledgements

This Master’s project concludes my time as a student with the University
of Oslo – at least for now. While working on this project I have gained a
ton of knowledge, and acquired experiences which will be valuable for the
rest of my life.

First and foremost I would like to express my sincere gratitude to my
supervisors Audun Jøsang and Christian Johansen. You support, feedback
and most of all patience throughout this project have been invaluable.

I also wish to thank the OffPAD group for letting me participate in their
work.

Additionally, I would like to thank Colinda and Spartaco as second
readers of this text, input valuable constructive criticism and comments.
Not all heros wear capes!

Furthermore, I would also like to express my gratitude towards my
friends and family who have been supporting me while working on this
project.

Last, but not least, I would like to thank my dearest Inga, my best friend,
partner in crime and spooning cal. This would not be possible without you.

Marius Portaas Haugen
University of Oslo
November 2016

v

vi

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation and background 3
1.2 Research questions . 7
1.3 Scope and limitations . 7
1.4 Research methods . 8
1.5 Contributions and results . 9
1.6 Structure . 9

2 Background 11
2.1 Authentication . 11

2.1.1 User Authentication 12
2.1.2 System authentication 13
2.1.3 Data authentication . 19

2.2 Online banking and data authentication 22
2.2.1 Transaction Authentication Number 23
2.2.2 Indexed Transaction Authentication Codes 23
2.2.3 Indexed TAN with CAPTCHA 23
2.2.4 Mobile TAN . 24
2.2.5 TAN Generators . 25
2.2.6 photoTAN . 26
2.2.7 chipTan . 27
2.2.8 BankID . 28

3 Technical background 35
3.1 Cryptography . 35

3.1.1 Hash functions . 35
3.1.2 Symmetric cryptography 36
3.1.3 Asymmetric cryptography 37
3.1.4 The RSA algorithm . 40

3.2 Optical Character Recognition 42

II OCR Based Data Authentication 51

4 Design 53
4.1 Client side . 56
4.2 Server side . 59

vii

5 Implementation 61
5.1 Web application . 62

5.1.1 Database design . 62
5.1.2 Back-end & Front-end 64

5.2 Android client . 71
5.2.1 Main Activity - MainActivity.java 74
5.2.2 OCR Activity - OCRActivity.java 75
5.2.3 Authenticate Activity - AuthenticateActivity.java . . 80

5.3 Communication between webserver and smartphone 81

6 Testing 85
6.1 Usability study – Design . 85
6.2 Usability study – Pilot study 88
6.3 Pilot study – Results . 90

6.3.1 Pilot study – Observations 90
6.3.2 Pilot study – Analysis 92

6.4 Usability study – Suggested improvements 93

III Conclusions 97

7 Conclusion & future work 99
7.1 Goal fulfilment . 99
7.2 Future Work . 100

A Deliverable 5.2A 101

B GUI Sketches for the Android application 115

C Informed Consent Form 119

D Task List 121

E Questionnaire 123

F Coding table for questionnaires 127

G Coded data from the questionnaires 131

viii

List of Figures

1.1 An early sketch of the OffPAD 5

2.1 Google Authenticator user interface 14
2.2 Public Key Infrastructure for certificates 16
2.3 Firefox address bar indicating valid certificate 17
2.4 Chrome warning user that the certificate used is not signed

by a trusted CA . 18
2.5 HTML phising technique . 19
2.6 CAPTCHA displaying the text: “smwm” 24
2.7 mTAN ceremony . 25
2.8 RSA SecurID OTP generator 26
2.9 Caption . 27
2.10 Caption . 27
2.11 Login alternatives for skatteetaten.no 29
2.12 Illustration of how BankID could be implemented 30
2.13 BankID on mobile splash screen 31
2.14 Code words for BankID on mobile being displayed in browser 31
2.15 User authentication using BankID on mobile 32
2.16 Transaction details in web interface 33
2.17 BankID SAT application – Splash screen 34
2.18 BankID SAT application – Authentication of transaction . . . 34

3.1 Hash function (SHA1) input and output 35
3.2 OCR overview . 43
3.3 Results from OCR experiment - Part II 46
3.4 Text displayed with and without 45 ◦pan 46
3.5 Results from OCR experiment - Part III 48
3.6 Difference in reflection between matte LCD and glossy LCD 48

4.1 Attack scenario . 53
4.2 Ceremony using the OffPAD for data authentication in an

online banking use case . 55
4.3 Prototype design overview 56
4.4 Smartphone with OffPAD secure backcover 57
4.5 OffPAD backcover . 58

5.1 Waterfall Model for Software Development 61
5.2 Database design overview . 63
5.3 Table and column overview 63

ix

skatteetaten.no

5.4 Web application - Login page 66
5.5 Web application - Functionality when logged in 67
5.6 Web application - User info 67
5.7 Web application - Transaction registration and transaction

details . 68
5.8 Web application - Transaction overview field 70
5.9 Web application - Authentication history 71
5.10 Application UI sketches - Part I 73
5.11 OffPAD Android application activities 74
5.12 Main Activity UI - I . 75
5.13 Built-in Camera Activity UI 76
5.14 Main Activity UI - II . 77
5.15 Screenshot - OCR Activity . 79
5.16 Authenticate Activity UI . 81
5.17 Setup configuration . 83

6.1 Participant session setup . 86
6.2 Excerpt of coded data . 89
6.3 Results from questionnaires - Question 1.4 93
6.4 Results from questionnaires - Part II 94

B.1 Application UI sketches - Part I 115
B.2 Application UI sketches - Part II 116
B.3 Application UI sketches - Part III 116
B.4 Application UI sketches - Part IV 117

x

List of Tables

2.1 Sequence of messages and actions in the mTAN scenario . . 25
2.2 Possible BankID work flow 30

3.1 Key agreement using Diffie-Hellman key exchange 39
3.2 OCR experiment - Part I . 45
3.3 OCR experiment - Part II - Horizontal text rotation 47

4.1 Sequence of messages and actions in the attack scenario . . . 54
4.2 Sequence of messages and actions for data authentication

ceremony . 55

6.1 Example of transaction defined in task list 86
6.2 Statement from part III of the questionnaire 88

xi

xii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Motivation and background

The world constantly continues to progress further into the digital age.
Now, more than ever before, we let IT (Information Technology) play an
increasingly important role in vital aspects of our lives. On one hand, we
use the Internet for a variety of harmless things such as watching pictures
of cute kittens, or playing computer games, on the other hand, IT is central
to how we manage information considered private, such as finance, tax
records and medical information. This would generally be a good thing. It
would be hard to argue that IT and the Internet do not enable us to handle
these aspects of our lives in a more efficient manner. However, where there
are people, there is crime. Or more importantly: where there are people
and value, there is even more crime. It is my guess that criminals have little
or no interest in pictures of cute kittens, and even less interest in stealing
them. But what happens when things with real value become accessible
through the Internet, such as money?

Online banking, or e-banking, has made it possible for us to manage
our finances in a fast, efficient and convenient way. Just sitting behind
a computer, we can apply for loans, pay our bills and transfer money.
This has made online banking hugely popular in Norway. Online banking
is an efficient, convenient approach to banking. In 2015, according to
SSB (Statistisk Sentralbyrå, also known as Statistics Norway), 89% of the
Norwegian population aged between 16 and 79 years used online banking
services in some way [30]. This makes online banking the single most
popular way to do banking among Norwegians. Similar trends can be seen
in other parts of Europe and in the world in general.

“Safe as the Bank of England”, some say. The quote implies that a
bank (or in this case especially the Bank of England) is a place with a
high level of security security, a place one can trust. If one stores anything
of value in a bank, one can expect that it is safe, presumably in a large,
well protected vault. Whether being a physical bank, or an online, digital
banking system, users expect that a bank is secure and their financial
values are safe. However, £133.5m was acquired through criminal activity
related to online banking fraud in 2015 in the UK alone, an increase of 64%

3

compared to the year before [8].
Needless to say, security is essential for these online banking systems.

We, the customers, and the service provider (in this case, the bank) are
depending on these systems to store and manage our financial funds. There
is one concern however. As an increasing amount of value is being handled
within these systems, the world of crime also devote more energy into
breaking these systems for financial gain. This is a natural side effect of the
rise of online banking. Why should a criminal risk her life by storming into
a bank trying to rob it using heavy weaponry with the risk of being caught
and/or die in the attempt, when she could do it lying comfortably on her
couch with a laptop in her lap on another continent risking little more
than a mouse elbow? In fact, as we will see, highly advanced, malicious
computer software such as "Zeus", SpyEye" and "Dyre" pose a serious
threat to online banking as they are being used to steal enormous amounts
of money from online banking systems. Malicious software targeting
traditional computers is a known, widespread issue. In fact, the European
Union Agency for Network and Information Security (ENISA) already back
in 2012 recommended all banks to "assume that all of its customers’ PCs are
infected - and the banks should therefore take protection measures to deal with
this" [22]. Looking at an online banking system in a simplistic way, we
could say that such a system consists of two main components: the client
platform (the PC) and the server platform (the bank’s server). When we
cannot trust one of the components inherently, we have to think differently
when it comes to securing the system as a whole. It is clear that in order
to create a secure system, we need to add additional components as a
remedy to the fact that we cannot trust the client platform. Designers of
some online banking systems have included the user’s smart phone as a
component . However, as we know, when we change what we do, so do the
threat agents. According to Kaspersky Labs, 53% of the attacks targeting
the Android platform they observed between October 2013 and November
2014 were malicious software designed for financial gain, either through
SMS fraud or by attacking online banking systems [16]. This underlines
the motivation and interest threat agents have for breaking online banking
systems.

While the Internet enables us to do banking in a very efficient way,
it also enables criminals to commit crime in an equally efficient way.
Even better for the criminals, the Internet enables them to commit their
crimes while the risk of them being caught is negligible. By using privacy
enhancing services such as TOR1 (The Onion Router project), criminals can
operate anonymously on the Internet which causes much trouble for law
enforcement trying to pursue them.

Securing an online banking system is an enormous task, and is
outside the scope of this thesis. This text will instead focus on data
authentication in online banking systems. It will explore and evaluate
existing technology which is being used for data authentication today,
in addition to describing an alternative implementation of such a system

1The Onion Router project - https://www.torproject.org/

4

https://www.torproject.org/

using classical cryptography and consumer grade OCR (Optical Character
Recognition) technology proposed by the OffPAD project2. Finally, a
prototype of this system is implemented and evaluated.

The LUCIDMAN (Local User Centric ID Management) project took
place between June 2011 and October 2013. Its goal was to investigate
the "security and the usability aspects for client side management of
user and service provider idenitites". Based on LUCIDMANs’ work, the
OffPAD project was born. The OffPAD project was initiated in order to
explore the possibilities of a device which could help users manage their
online identities. An OffPAD is a "trusted device to support different
forms of authentication that are necessary for trusted interactions (i.e.user
authentication, server authentication)". The project consists of partners

Figure 1.1: An early sketch of the OffPAD

from both academia and industry. TazTag is a French company specialising
in developing secure devices, such as tablets and mobile phones. TellU AS,
is a system provider and software development company, in addition to
Vallvi AS, which conduct business development in the security sector. The
GREYC Lab of the E-Payment and Biometrics research unit at ENSICAEN
in France, The Security and Usability research unit at the Department of
Informatics at the University of Oslo in Norway are both involved.

Based on the previous work of the LUCIDMAN project, and input
from OffPAD project partners, a broad range of features has been proposed
for the OffPAD. Several features found in the OffPAD could be relevant
when securing an online banking system, as it’s goal is to facilitate security
enhancing operations, including, but not limited to:

• Server authentication

• User authentication

• Data authentication

Originally, the OffPAD project was scheduled for 2013-2016. However,
by the time of December 2015 TazTag announced that they were having
some financial issues, and were unable to participate in the project as a
partner. Since TazTag had such a central role and were to supply the
hardware prototypes of the OffPAD, the project as a whole was put on hold

2OffPAD Project - https://www.offpad.org/

5

https://www.offpad.org/

in January 2016. The project consortium was regrouped and the project was
resumed in October 2016.

One of the requested features of the OffPAD is to be able to authenticate
data. So what is data anyway? Data can be a broad range of different
things: a number, a sentence or even the bit sequence used to represent
a picture of a cute kitten. All of this is data. In most cases the term
"data" and "information" can be used interchangeably. In an online banking
system, there are many different kinds of information (or data) of interest.
One example would be the balance of bank accounts. Another example
could be the history of transactions tied to bank accounts, or even a
transaction itself. A bank transaction is essentially a piece of information
which states where you would like to transfer some value from, how
much value you would like to transfer, and where you would like to
transfer it to. A bank transaction is an important piece of information,
both from a user’s perspective, as well as from the service provider’s.
When registering a transaction, the user relies on the bank to carry out
that specific transaction according to the particular details specified. If I
were to pay an invoice, I would register a transaction corresponding to the
details in the invoice in my bank’s online system (sometimes referred to
as an e-banking system). I then trust that the bank would conduct that
particular transaction, according to how I specified it while registering it. If
the bank all of a sudden decided to process the transaction using modified
or incorrect details compared to those I registered, it would cause me a lot
of trouble. In this scenario, my funds could end up in the account of a
complete stranger, instead of in the account of my landlord, to whom I owe
money for this month’s rent.

Banks have a common interest. They would like to trust that the
transaction they receive from the user, is what the user actually wants to be
processed. If a bank receives a transaction request from a user, specifying
that 100,000 NOK is to be transferred from the user’s savings account to an
account in a Cayman Islands bank, it has to trust that this information is
correct, or authentic. If the bank were to process the transaction above, and
it turns out that the user actually wanted to transfer 100 NOK to a friend,
the bank would find itself in a difficult position. The bank’s employees
could argue that they just processed the transaction according to how it
was specified when it was registered in their system. However, if the
user claims that he or she specified a completely different transaction, that
would not be fair towards the user. As a result, they would find themselves
in a bit of a deadlock.

These examples makes it clear that we have to be able to ensure that the
information in the transactions is correct, or more precisely authentic. The
information must represent the user’s genuine intention.

The OffPAD project wanted to find out if it is possible to ensure
authenticity of banking transactions using the OffPAD itself combined with
OCR (Optical Character Recognition) technology. This question is the basis
for this thesis.

6

1.2 Research questions

This thesis describes an implementation of a data authentication scheme
where the use case is online banking (or e-banking). The main purpose
of the system is to provide means to ensure data origin authenticity in a
situation where we cannot trust the terminal (i.e., the computer) the user
is using for banking activities due to malware infection. In other words,
this system must be able to detect and alert unintentional or intentional
modification of banking transactions registered within an online banking
system. Also, any user of this system should be able to understand what
is going on based on the feedback given by the system, so that he or she is
able to act accordingly to any occurring events.

As proposed by the OffPAD project, the system should combine tradi-
tional cryptography, mobile technology and optical character recognition
(OCR). This thesis will investigate different approaches to such a system,
and describe a possible design. I will attempt to implement a prototype
based on this design, which is to be evaluated in a pilot usability study.

Based on this, the following research questions have been formulated:

1. How can, based on concepts and ideas derived from the OffPAD
project, a solution for data authentication of e-banking transactions
be designed?

2. Based on this design, how can it practically be implemented in a
working prototype?

3. Which level of user friendliness can be achieved with this solution?

1.3 Scope and limitations

This thesis will not describe or discuss how one can design a secure online
banking system. Its focus will be exclusively on data authentication, and
on how it can be used as a security measure in a online banking system.
We will explore a selection of existing technologies for data authentication
used today; however this thesis is by no means a complete guide to all
data authentication technologies out there. As noted, I will design and
implement a prototype of a data authentication scheme proposed by the
OffPAD project. This high fidelity prototype will serve as a proof of
concept, and is by no means a final product. It has only been developed
and tested in a very specific environment, and the results that have been
achieved are by no means directly transferable to other environments
without further work and modification.

This thesis focus on one specific attack scenario. My primary focus is to
ensure data authenticity in a system consisting of two different components
which are connected through an insecure channel. The two components are
represented as A, the user’s end point (a PC) and B, the service provider’s
system (server). The insecure communication channel is represented by
the Internet. In this scenario, it is assumed that one cannot trust the user’s

7

end point due to malware infection. One assume that there exists a threat
agent, whose motivation is to intentionally modify data provided by the
user. This modification occurs after the data has been typed into the user’s
computer, and before the data reaches the service provider’s system. More
precisely this modification occurs within the web browser, also known as
a Man-in-the-Browser (MitB) attack. This threat agent is represented as
malicious software (malware) which resides in the user’s computer. This
malicious software is able to modify what is being displayed on the screen
as well as modifying all network traffic originating from the machine. It is
assumed that the service provider’s system is unassailable, and therefore
to be trusted in an unconditional manner. There are several other attack
scenarios where the use of the approach described in this text would be
inadequate.

As noted, this thesis will be using the online banking use case, however
the material discussed and the approach described in this text is applicable
to a broad range of domains which require data authenticity of visual
textual data. Medical prescriptions, medial records and e-voting systems
are just a few examples of such domains where ensuring data origin
authenticity is essential and our approach could be utilized.

During the work with my thesis I have found that there are technical
limitations within the different technologies I have been using which have
affected the performance of the prototype. For instance, taking a picture
of a glossy computer display introduces too much visual noise to the
digital image, which makes it difficult to extract the textual data with
satisfactory accuracy. Taking a picture of a less glossy display introduces
less interference, which makes extraction of the textual data possible with
a much higher accuracy. This is a general problem which applies to any
scenario which involves taking a picture of a computer display. Also, image
rotation, either horizontally or vertically also affect the performance of the
OCR processing. The limitation herein lies in the OCR technology that has
been utilized itself, and not in the general concept for data authentication
which has been developed. My belief is that with additional improvements
and further maturation of these technologies the performance of our
system will improve as well.

1.4 Research methods

First, a literature study was conducted in order to understand what data
authentication is, and how it applies to modern online banking systems.
It was also crucial to understand in what ways these approaches to data
authentication are vulnerable, and how threat agents are able to exploit
these vulnerabilities, in order to avoid these vulnerabilities in the prototype
which was developed.

Based on specifications for a data authentication scheme provided by
the OffPAD project, a high fidelity prototype has been implemented in
development process utilizing ideas from the iterative development model.

Lastly, a pilot user-based usability study[17, p. 260] was conducted to

8

evaluate the prototype. In this pilot study, research methods from both
qualitative and quantitative research methodologies were utilized, such as
observation and questionnaires. The primary motivation behind this pilot
study was to identify critical flaws in the design of the prototype itself, as
well as any flaws in the design of the study, in preparation for a possible
full scale usability test later in course of the OffPAD project. Based on the
findings in this pilot study, a set of recommendations has been proposed
both for the design of the prototype as well as the research design which
should be implemented before further tests are conducted.

1.5 Contributions and results

A demonstration featuring the prototype was held for the members of the
OffPAD project in October 2015. The demonstration was well received.

All the code for the prototype has been handed over to the OffPAD
project, which plan to integrate the prototype described in this Master’s
thesis with other, related prototypes developed as part of the OffPAD
project.

1.6 Structure

In this text, I will describe an implementation of a data origin authentica-
tion scheme. This scheme is based on different technologies ranging from
classical cryptography and optical character recognition (OCR), and is ap-
plied to a very specific use case. This part, Part I, will describe existing
solutions which seek to solve this problem and how they have worked in
the past, and are being used by the e-banking industry today. I will also
investigate some real life examples of attack scenarios similar to the one
we are focusing on. Further, I will introduce some of the technologies and
concepts on which our scheme is built.

In Part II I will describe how the prototype was designed, implemented
and evaluated. This part also present the results derived from the
evaluation.

Part III concludes the the thesis. In this part, I will summarize how
the work presented in this thesis relate to the previously defined research
questions. I will also propose some ideas for future work related to this
Master’s project.

9

10

Chapter 2

Background

2.1 Authentication

To understand this thesis, an understanding of authentication and related
concepts is imperative. I will describe what I mean by the terms "authen-
tication", "authenticity", "integrity", "non-repudiation" and "identification".
I will describe how these concepts relate to each other, and how it is pos-
sible to prove them them using hash functions, symmetric cryptography
and asymmetric cryptography. Furthermore, we will also explain the dif-
ferences between identification (user or system authentication) and data-
origin authentication.

Authentication can be defined as the process of confirming the truth
of an attribute of a single piece of data (a datum) claimed true by an
entity [35]. Something as simple as logging into an online e-mail service
would involve two different types of authentication. On one hand, the
user (an entity) claims to the service that it is a certain individual, let us say
“Bob123”. In order to confirm towards the server that the user is in fact the
individual tied to the account named “Bob123”, the user enters a password
to the service. This password is a shared secret between the individual
disposing the named e-mail user account and the service. It is assumed that
no one else has knowledge of this password. The service will then check
its records, and see if the password entered for the user account “Bob123”,
matches the password entry stored by the service. If the two match, the
service will grant the user access to the e-mail account for the individual
“Bob123”.

Imagine the following scenario: our friend Bob has just started going
out with Alice, and things are going pretty well for them as a couple. Yet,
Alice has a very jealous friend, Eve. Eve does not like the fact that Alice is
spending so much time with Bob, and would prefer if Alice and Bob broke
off. Since Alice and Bob do most of their communications by e-mail, Eve
comes up with a scheme in order to gain access to Bob’s e-mail account,
which is provided by the fictive e-mail service www.supermail.com. In this
way, she can send an e-mail to Alice telling her that the relationship is over,
seemingly sent by Bob. To achieve this, Eve plans to set up a web site
which looks exactly like www.supermail.com, and trick Bob to visit the site,

11

www.supermail.com
www.supermail.com

and try to log into his account. The site will then redirect Bob to the real
www.supermail.com website, while relaying Bob’s password to Eve. This is
known as a phising attack [21]. To prevent this kind of attack scenario,
the service would have to prove towards the user that it is the service it
claims to be, so that the user would not be fooled to enter its credentials to
a fraudulent phising site.

If we now assume that Eve has achieved to get hold of Bob’s password,
she is able to send Alice an e-mail explaining that their relationship is over,
which originates from Bob’s e-mail address. When receiving the e-mail,
Alice could see that the sender address is in fact Bob’s e-mail address, but
it would be nice to prove that the message in the e-mail in fact is Bob’s
writing. In other words, we would like some sort of authentication of the
message itself. Alice and Bob could, by utilizing relevant technology for
e-mail/message authentication such as OpenPGP 1 achieve this kind of
authentication of the messages sent between them. In this scenario, Eve
would not be able to spoof an e-mail seemingly sent from Bob without
Alice being able to detect it.

As seen above, authentication can refer to much more that just user
authentication. I will now move on to explore the different types of
authentication more in depth, and some of the technologies used to achieve
them.

2.1.1 User Authentication

User authentication is the process where a system verifies and validates
a user’s identity at the start of an interaction between them. One of the
most common ways to achieve this is to use a username and password
scheme, as previously described. This authentication scheme relies on
two components: a username which identifies the user, and a password
which helps the user prove to the service that she really is who she
claims to be. The username has to be unique per user, but does not
have to be kept a secret. The password however, has to remain a secret
shared between the user and the service exclusively. The security of this
authentication scheme is based on the fact that the password is kept secret
from everyone else but the user and the system. In this way, this scheme
only operates with one single secret factor, being the password. This
is therefore known as a “single factor authentication scheme”. Having
only one secret factor creates a single point of failure. If the password is
compromised, an attacker would use the password to impost as the real
user, and successfully authenticate herself towards the system as the user.
In order to make an authentication scheme more robust and secure, one can
add one or more additional secret factors. These factors can be divided into
the following broad classes:

• Something you know (e.g. a password)

• Something you have (e.g. a one time password generator)

1OpenPGP - http://www.ietf.org/rfc/rfc4880.txt

12

www.supermail.com
http://www.ietf.org/rfc/rfc4880.txt

• Something you are (a unique biological attribute, such as a fingerprint or
iris)

• Something you do (your unique way of doing something, such as walking)

If one combines two different factors from the classes listed above, one
achieves a “two factor authentication scheme”. If more than three classes
are combined into a single authentication scheme, this is called a “multi
factor authentication scheme”.

For example, through their “2-Step Verification” 2 technology, Google
Inc. allow their users to enhance the security of their accounts by support-
ing various additional authentication factors for their services. Google 2-
Step Verification supports a broad range of different authentication factors
such as one-time codes sent as an SMS to the user’s phone, USB security
keys and one-time codes using an OTP-system3 [13].

When configured, Google 2-Step Verification will require the user to
enter some information obtained using the chosen method in addition to
his or her password. In this way, not only one, but two authentication
factors are required from the user in order to to authenticate. This removes
the password as the single point of failure, and a potential attacker will
have to have access to both the password and the device/method used to
generate the second factor in order to compromise the account.

Google’s one time password implementation is called “Google Authen-
ticator”4, and can be seen in figure 2.1. In addition to be used together
with a Google account, there are several third party server side implement-
ations which enable the Google Authenticator to be utilized for other types
of user authentication such as towards SSH5 or VPN6 services, as seen in
listing 2.1.

Listing 2.1: SSH server asking for a Google Authenticator passcode for user
authentication
mariusph@safir ~ $ ssh marius@kaffemarius . com
V e r i f i c a t i o n code :

This does strengthen the security of the account, and can be further
improved by implementing even more factors.

2.1.2 System authentication

System, or entity authentication is defined as the process of verifying the
identity claimed by some system entity [9]. Just as the user has to prove
its identity to the bank, the bank also has to prove its identity to the user.
In terms of online banking, that would mean that the users of an online

2Google 2-Step Verification - https://www.google.com/landing/2step/index.html
3A One-Time Password System - https://tools.ietf.org/html/rfc2289
4Google Authenticator - https://en.wikipedia.org/wiki/Google_Authenticator
5SSH - Secure Shell, a secure network protocol, often used to facilitate remote

administration of computers using a *nix operating system
6VPN - Virtual Private Network, by using secure network protocol for a point-to-point

connection one can establish a secure tunnel from one network to another over a potential
insecure network

13

https://www.google.com/landing/2step/index.html
https://tools.ietf.org/html/rfc2289
https://en.wikipedia.org/wiki/Google_Authenticator

Figure 2.1: Google Authenticator user interface

banking service could verify the identity of the online banking service’s
website. For websites this is normally achieved by using digital certificates.
A digital certificate is essentially just a cryptographic key tied to an identity,
for example a person or an organization. The key used in a certificate is one
out of two keys in an asymmetric key pair, as described in Section 3.1.3. The
other key, the secret key, is kept secret and is only known by the web server.
Most certificates used by web servers are based on the X.509 format [6]. A
certificate will include information about, but not limited to [6][p. 16]:

• Version number

• Serial number

• Signature algorithm ID

• Validity period

• Subject name

• Public key

• Certificate signature algorithm

• Certificate signature

The X.509 format is a general certificate format, and can be used for
more than just web servers. X.509 certificates used for web servers
have the “Extended Key Usage” property set to “Server Authentication
(1.3.6.1.5.5.7.3.1)”, and are called “SSL certificates”. Despite this, the

14

terms “X.509 certificates” and “SSL certificates” are sometimes used
interchangeably.

When a browser initiates an HTTPS (HTTP over SSL/TLS) connection
towards an HTTPS enabled server, the certificate is sent from the server
to the browser. Based on the information found in the certificate and the
browsers configuration, it will either proceed to establish the connection, or
abort. Since digital certificates can be created by anyone, anyone can claim
to be anyone. One can imagine an attack scenario where an attacker controls
the local network (or at least some resources in the local network). The
attacker could generate a certificate for a domain, let us say facebook.com
and install the certificate on a server under his or her control. By using
techniques such as ARP and/or DNS spoofing, the attacker could redirect
traffic destined for facebook.com towards this server. This is known as a
Man-in-the-middle (MitM) [33][p. 257] attack scenario, an attacker can
inspect, alter or redirect network traffic between a client and a server.
Since the server is HTTPS enabled, and has a certificate for the domain
facebook.com the attacker could intercept and decrypt the traffic before
sending it towards the real facebook.com servers. This makes it clear that
we need some way of knowing whether a certificate is authentic or not,
and which certificates we should trust. In order to solve this problem,
and for these certificates to have any real value, a global PKI (public key
infrastructure) has been established for the type of certificates used by
websites.

The global PKI for SSL certificates is structured as a hierarchy of
certificate authorities (CAs). At the top of the hierarchy we find a set of
what is called “root certificate authorities” (root CAs). The certificates of
these root CAs are included in browsers and operating systems, and are
trusted by default. On the next level, we find “intermediate certificate
authorities” (CAs). These CAs prove their identity as an organization to
the root CAs, and get their certificates signed by the root CAs certificates.
The intermediate CAs can then use their certificate to sign other entities’
certificates, as long as they prove their identity. When a browser loads
a website which presents a certificate, the browser can know if the
certificate is authentic or not by validating the certificate’s signature. This
is illustrated in figure 2.2.

If a banking institution wants to use an SSL certificate to prove its
identity to the user, it generates a certificate request. This request contains
information about the organization, such as name and location, the domain
it would like to use the certificate for and a cryptographic public key. This
request is then sent to a CA which does the job of verifying that the entity
applying for the certificate really owns the domain name it wants to use
in the certificate. Then, and only then, the certificate is signed using the
intermediate CAs certificate, and sent back to the entity which applied for
the certificate. The signed certificate is then installed on the organization’s
web server, and is used in all HTTPS traffic between the web server and
visitors. In this way, the SSL certificate helps users verify that the website
they are visiting is authentic.

15

facebook.com
facebook.com
facebook.com
facebook.com

Figure 2.2: Public Key Infrastructure for certificates

When a user visits the Norwegian bank DNBs website (https://dnb.no),
the website provides a certificate to the browser. This certificate claims
that the website the user is currently visiting is http://dnb.no, and it is
the bank DNB A/S who owns it. This certificate is digitally signed by a
certificate authority which the browser trusts, and the browser will give
the user some visual clue informing that the website being visited is the
website it claims to be. Figure 2.3 illustrates how the URL bar in Firefox
looks when the website of DNB is visited. As seen in the image, a green
padlock combined with green text indicate two things. First, the connection
towards the server is a secure, encrypted connection. Second, this secure
connection has been established using a valid, verified certificate, which is
issued for www.dnb.no.

I have previously in this chapter described what information a SSL/TLS
certificate contains. In listing 2.2 an excerpt of the certificate presented to

16

https://dnb.no
http://dnb.no
www.dnb.no

Figure 2.3: Firefox address bar indicating valid certificate

the browser when visiting www.dnb.no can be seen.

Listing 2.2: Digital certificate presented by https://dnb.no
marius@guile :/tmp/ c e r t s $ echo | \
openssl s _ c l i e n t −showcerts −servername www. dnb . no −connect www. dnb . no : 4 4 3

2>/dev/n u l l | \
openssl x509 −inform pem −noout −t e x t
C e r t i f i c a t e :

Data :
Version : 3 (0 x2)
S e r i a l Number :

6 0 : 2 6 : cd : 7 0 : 5 8 : a9 : 0 f : 1 b : 8 8 : 1 c : d1 : 0 0 : c7 : 4 0 : f0 : 2 8
Signature Algorithm : sha256WithRSAEncryption

I s s u e r : C=US, O=Symantec Corporation , OU=Symantec Trust Network ,
CN=Symantec Class 3 EV SSL CA − G3

V a l i d i t y
Not Before : Jun 22 0 0 : 0 0 : 0 0 2015 GMT
Not After : Jun 21 2 3 : 5 9 : 5 9 2017 GMT

S u b j e c t : 1 . 3 . 6 . 1 . 4 . 1 . 3 1 1 . 6 0 . 2 . 1 . 3 =NO/businessCategory= P r i v a t e
Organization/serialNumber =984 851 006 , C=NO, ST=Oslo , L=Oslo ,
O=DNB Bank ASA, OU=ITDIT , CN=www. dnb . no

S u b j e c t Publ ic Key Info :
Publ ic Key Algorithm : rsaEncrypt ion

Public−Key : (2048 b i t)
Modulus :

0 0 : d5 : 3 c : 6 7 : 5 e : 3 5 : 5 7 : 1 4 : 8 9 : 8 4 : c f : ad : f7 : 6 8 : ca :
. . .
4 f : fd

Exponent : 65537 (0 x10001)
X509v3 extens ions :

X509v3 S u b j e c t A l t e r n a t i v e Name:
DNS:www. dnb . no , DNS: dnb . no

X509v3 Bas ic Cons t ra in t s :
CA: FALSE

X509v3 Key Usage : c r i t i c a l
D i g i t a l Signature , Key Encipherment

X509v3 C e r t i f i c a t e P o l i c i e s :
Po l i cy : 2 . 1 6 . 8 4 0 . 1 . 1 1 3 7 3 3 . 1 . 7 . 2 3 . 6

CPS : h t tps ://d . symcb . com/cps
User Notice :

E x p l i c i t Text : h t tps ://d . symcb . com/rpa

X509v3 CRL D i s t r i b u t i o n Points :

F u l l Name:
URI : ht tp :// s r . symcb . com/s r . c r l

X509v3 Extended Key Usage :
TLS Web Server Authent icat ion , TLS Web C l i e n t

Authent ica t ion
X509v3 Authority Key I d e n t i f i e r :

keyid : 0 1 : 5 9 :AB: E7 :DD: 3A: 0 B : 5 9 : A6 : 6 4 : 6 3 : D6 : CF : 2 0 : 0 7 : 5 7 : D5
: 9 1 : E7 : 6A

17

www.dnb.no

Authority Information Access :
OCSP − URI : ht tp :// s r . symcd . com
CA I s s u e r s − URI : ht tp :// s r . symcb . com/s r . c r t

1 . 3 . 6 . 1 . 4 . 1 . 1 1 1 2 9 . 2 . 4 . 2 :
. . . i . g . v X gp

. N. . t G0E . ! . .] . / C. C ’ 2 (o . t . pa C2 . < . . \ . _4 . = . / 6 L
. − . . . 6 . . q " K.@ v .V . . . / D. > . Fv \ U N. . t
. G0E . H. . K E .C . . ? . Y . . > . . .W. . . U[. x . . . ! . . . B . . . UP. o .=n . . n . # . + . .

cEu . . . gr . . . u . h d . . : . . . (. L . qQ] g . . D.
v .Q.O N. . t 8 F0D . H. h { _ . . , . . * . I . . G . . . ‘ . Q . 2 . . . M. F . #HN. . Fbp

< . . 7 . . r . . . O. f . Z
Signature Algorithm : sha256WithRSAEncryption

5 2 : 6 3 : ea : 2 7 : 9 8 : 7 f : 3 2 : c4 : 1 b : 5 d : 9 9 : 8 8 : 3 b : 8 1 : 6 a : cc : 9 7 : 4 8 :
. . .
4 f : a1 : 2 9 : 3 0

Just as when the browser will tell users when a valid certificate is used,
the web browser will warn users if they visit a website with a certificate
which identity cannot be validated by the browser. Or, if the certificate is
issued for some other domain than the user is visiting, as seen in figure 2.4.
In this case a HTTPS enabled web server (nas.kaffemarius.no) was visited
using Google’s web browser Chrome, but the server is using a self signed
certificate. This certificate has therefore not been signed by any of the root
certificate authorities Chrome is trusting by default. In consequence the
user is warned that the connection towards the server is encrypted and
secure, but the certificate used to establish this connection is not trusted.

Figure 2.4: Chrome warning user that the certificate used is not signed by
a trusted CA

For the SSL certificates to have any value, it is essential that the user
actually verifies the domain name of the website he or she is visiting. For
example, assume that a given user is using the Norwegian bank "Bank
Norwegian". Bank Norwegian has an online banking system, and its web
address is http://banknorwegian.com. A possible attack scenario would arise
if an attacker crafted a website visually identical to the Bank Norwegian’s.
However, behind the scenes it is designed to steal user credentials. The
attacker would register a domain name banknorewgian.com, and point that
domain name to the maliciously crafted website. In the fraudulent domain
the position of the “w” and the “e” is swapped. The differences in the two
domains are subtle and easy to overlook, but crucial. The attacker would
also be able to get issued a valid, signed SSL certificate for the domain.
This would cause the browser to provide the same visual cues to the user
informing her that the visited website is in fact the website it claims to be.

Then the attacker could send an e-mail to the user informing him or
her that they have received a transfer or that they will have to update their
user account details, and encourage them to log in to the online bank. By
embedding HTML in the e-mail, the attacker could include a link which
read http://banknorwegian.com, while it actually was pointing towards
banknorewgian.com, making it even harder to detect. This could easily be

18

nas.kaffemarius.no
http://banknorwegian.com
banknorewgian.com

achieved by using the following HTML code:

<a hre f =" ht tp :// banknorewgian . com"> http :// banknorwegian . com

In an e-mail client which supports HTML rendering, the HTML snippet
above would be displayed as seen in figure 2.5.

Figure 2.5: HTML phising technique

Now the attacker has successfully lured users into visiting the ma-
liciously crafted website. The users are now prompted for their user-
name and password, which is sent to the attacker. Now the attacker has
everything he or she needs to impersonate the user, and log in to the real
Norwegian Bank online system, impersonating them. Attacks similar to
the fictive example described above are common. In December 2013 the
Norwegian bank “Sparbank 1” issued a warning towards its customers,
raising awareness regarding current phising campaign targeting their cus-
tomers[4], which used the exact techniques which are described above. As
we can see, the poor usability of the global SSL PKI mode makes it hard for
users to identify and verify the websites they visit. Attackers exploit this by
creating fraudulent phising websites, and by sending phising e-mails, they
lure users into disclosing sensitive information. This could enable them to
impersonate their identity online.

2.1.3 Data authentication

Sending information or data over the Internet is comparable to sending
a regular letter using postal services. When sending a letter, one would
typically write the message, and put it in an envelope before specifying
the recipient. The first step towards getting the letter to the recipient,
would typically be to put the letter into a mailbox where the postal service
would transfer it further towards its destination. While being in the postal
service’s possession, the letter would travel through several intermediaries
such as postal terminals and similar before reaching its destination. It is
important to point out that when it drops into the first mailbox, the original
sender does not have any control over what happens to the letter. This is
an important point from a security point. The sender does not have any
guarantee that the letter will not be modified as being transferred on its
way to the recipient.

The same rules apply when sending information over the internet.
As soon as information leaves your computer, you have no control over
what happens to it while being routed through the Internet. In many (or
probably most) cases, one would like to have some sort of assurance that
the information received by the recipient is correct and identical to what

19

was originally sent. In other words, we would like means to validate that
the information is authentic. The simplest way to achieve this is to calculate
a checksum of the message, and send that checksum together with the
message. This would allow the recipient, when receiving the message, to
calculate a checksum of the message received. The recipient could proceed
to compare the two checksums, the one received with the message and the
one calculated after the message was received. If the checksums are equal,
the user would know that the message that was received, is identical to
the message that was originally sent. If the checksums differ, the recipient
would know that some kind of modification of the message has occurred
since the first checksum was calculated, and that the message that was
received is not authentic.

A common way to achieve this kind of authenticity, is by using
hash functions. Please see Section 3.1.1 on page 35 for more details on
hash functions. This approach to data authentication is efficient against
unintentional modification. For example, if a postcard was accidentally
ripped in two pieces while being transported by the postal service, and the
recipient only received one of the pieces together with the checksum. In
this scenario, the recipient could, by recalculating the checksum, learn that
the message received was not authentic. However, if a dishonest employee
in the postal service deliberately took the postcard, and modified its
content, the dishonest employee could proceed to recalculate the checksum
and replace it with the original all together, before sending the postcard
onwards. In this scenario, the recipient would receive the message and the
checksum, and by recalculating the checksum the message would appear
authentic. In a situation where someone deliberately modifies the content
of the message, the use of a regular hash checksum to prove authenticity is
insufficient. Instead, this approach can be said to provide integrity, since
it does provide a means for proving that the message is intact, and has not
been modified by mistake.

In a situation where deliberate modification can occur, we need to
improve our hash based scheme in order to detect whether a message is
authentic or not. The simplest way to do that, is to introduce a secret key
shared between the sender and the recipient. Instead of just calculating a
hash of the message, we calculate a hash of a key, followed by the message
itself. This can be expressed as x = h(m||k1). This is also known as a
MAC, (Message Authentication Code), or keyed hash. When the message is
received, the recipient, who also knows the secret key, can recalculate the
hash using the key, followed by the message. If the message is authentic,
the two hashes would match. If there is a mismatch between the hash
calculated by the recipient and the hash received along with the message,
the recipient would know that something was wrong. Since we assume that
only the sender and the recipient know the secret key, no third party would
be able to alter the message and recalculate the hash unnoticed. The only
way to forge a message would be to identify a collision, which we assume
is (when using a cryptographically secure hash algorithm) computationally
infeasible.

By using message authentication codes, recipient A can prove to itself

20

that a message M sent from sender B is authentic or not. This can be said
to prove authenticity. However, since both the sender and the recipient
know what the secret key is, neither of them can prove to a neutral party,
C, whether a given message originated from A or B. If we go back
to our postcard example, we can imagine that the recipient receives a
postcard containing a very insulting, hateful message together with the
corresponding MAC. In this scenario it would seem likely that the sender
simply sent a very nasty postcard, since the MAC received together with
the message proves that the message is authentic. However, it could also
be the case that the recipient sent the postcard to itself for whatever reason.
Maybe the recipient wants sympathy, or even cause some legal troubles
for the person who seemingly sent the postcard. The issue with message
authentication codes in this case, is that neither the recipient nor the alleged
sender is able to prove, to say the law enforcement, who actually sent the
postcard.

In some cases it would be useful to be able to prove to a neutral third
party where a given message originates from. This is what we know as
"non-repudiation". In addition to our postcard example we can imagine
other scenarios where non-repudiation is critical, such as when a customer
registers a purchase while shopping online. In this way the customer
cannot deny purchasing the goods. On the other hand, we would also like
that the store is unable to deny receiving the order and payment, and thus
protecting the customer. As we already have established, we are not able
to achieve non-repudiation using the approaches previously discussed. In
order to achieve this, we will have to utilize more complex approaches
based on asymmetric cryptography.

Asymmetric cryptography utilizes two different keys, in contrast to
symmetric cryptography where only one key is used. These keys are
mathematically bound to each other, and their relation is based on
mathematical problems which we assume are hard to solve, such as
factoring large integers. Each entity in a asymmetric cryptosystem is
assigned a pair of keys. One key, often called the private key, is to be kept
secret from everyone except the owner. The other key, the public key, is
shared with everyone.

Digital signatures are a class of algorithms based on asymmetric
cryptography (please refer to Section 3.1.3) used to prove data origin
authenticity. Depending on the mathematical problem each algorithm is
based on, they operate differently. Common to all however is that one key,
the private key, is used to generate the signature and the other key, the
public key, is used to verify the signature. One popular digital signature
scheme is the RSA digital signature, combining the RSA algorithm which
is described in depth in section 3.1.4, and hash functions.

The RSA algorithm (please refer to section 3.1.4 on page 40 for more
information) utilizes two keys for its operations: one key for encryption
(k1), and one key for decryption (k2). These keys actually consist of two
values each , the key itself and a special value used for the mathematical
operations, called the modulus. The key is different for k1 and k2, while the
modulus is the same in both. When encryping something with one of the

21

keys, the other key will have to be used for decryption. We keep one key for
ourselves, k1. Then the other key, k2, is distributed so that the whole world
knows about it. If we now revisit our postcard example, one might think
that we could use this to prove authenticity just by encrypting the whole
postcard using our secret key (k1) before sending it. Then our recipient,
or any other third party for that matter, could verify that the postcard
originated from us, simply because the other key in the key pair (k2) can
be used to decrypt it. However, there is a technical limitation within the
RSA algorithm itself which forces us to take an alternative approach.

The RSA algorithm cannot directly be used to encrypt/decrypt mes-
sages longer than the size of the modulus used. Currently the RSA Labor-
atories recommend a modulus size of 2048 bits7, which would then limit

the message length to <
2048

8
= 256 characters, assuming one character is

8 bits in size, such as in the American Standard Code for Information In-
terchange (ASCII) character encoding set. One can assume that the length
of postcard does indeed vary, but I am guessing that the vast majority of
postcards will exceed 256 letters in length, which makes this fixed length
limitation quite inconvenient. Of course, one could increase the size of the
modulus (which in practice would be equivalent to increasing the key size),
but that would also affect the performance of the encryption and decryp-
tion operations.

Luckily we already have a means to generate a fixed length signature of
a message of arbitrary length: the hash functions. Instead of encrypting the
postcard in whole before sending it, we could produce an SHA-1 hash sum
of the message (which always will produce a 160 bit output, way below the
modulus size of 2048 bits), and encrypt this hash sum using our secret RSA
key. Then we could send the postcard together with the encrypted hash
sum to our chosen recipient. Upon receiving our postcard and attached
encrypted hash sum, the recipient would start by decrypting the hash sum.
Then the recipient could generate an SHA-1 hash sum of the postcard,
and compare that against the, now decrypted, hash sum received with the
postcard. If the hash sums are equal, this tells the recipient (or any neutral
third party for that matter) that the message is authentic, and that is must
originate from us, assuming that the secret key k1 has been kept safe. In
addition, we could not deny sending the message, since the authentic hash
was encrypted using our secret, private key, once again assuming that the
secret key, k1, has been kept safe. In other words, we have now achieved
what is known as non-repudiation.

2.2 Online banking and data authentication

Authentication, as described in section 2.1.3, refers to both identification
(user and system authentication) and data-origin authentication (or simply
data authentication). As this thesis focuses on data authentication of online

7How large a key should be used in the RSA cryptosystem - http://www.emc.com/
emc-plus/rsalabs/standards-initiatives/how-large-a-key-should-be-used.htm

22

http://www.emc.com/emc-plus/rsa labs/standards-initiatives/how-large-a-key-should-be-used.htm
http://www.emc.com/emc-plus/rsa labs/standards-initiatives/how-large-a-key-should-be-used.htm

banking transaction data, we will now explore some of the technologies
that have been, or are still being actively used today to solve this specific
problem. BankID has been given special attention as it is the predominant
technology used within the Norwegian banking industry as of today.

2.2.1 Transaction Authentication Number

Transaction Authentication Numbers (TAN’s) are probably the most
primitive way to attempt to ensure data authentication for online banking
transactions. The bank will produce a list of valid TAN’s, one for each
customer. This list, typically physically manifested as a single sheet of
paper containing numerous multi digit values, is distributed using mail
or other means of transportation.

Whenever a customer registers a transaction within the online bank,
the user is required to provide one of the TAN’s found in the list issued
by the bank. If the customer is able to provide a valid TAN together
with the transaction details, the bank will proceed to process the requested
transaction. Each TAN is usually only valid once, in order to mitigate
replay attacks.

The use of TAN’s does not really provide any data authentication at all.
TAN’s only prove that someone is in the possession of the list of valid TAN’s
when the transaction is registered. This could be the user, but it could just
as easily be an attacker who has got hold of the list of TAN’s. Further,
since there is no connection between a given transaction and a TAN, a
MitM attack taking place within the browser could just alter the transaction
details behind the scenes, while attaching the valid TAN happily provided
by the user before the request is made towards the bank. This is also known
as a Man-in-the-browser attack (or MitB).

2.2.2 Indexed Transaction Authentication Codes

Indexed Transaction Authentication Codes (henceforth referred to as
iTAN’s) is quite similar to regular TAN’s. Instead of just having a list of
valid TAN’s, each is iTAN’s is numbered, in other words, indexed. When
a user attempts to register a transaction, he or she is required to provide a
specific TAN from the list. iTAN’s are, just like TAN’s, susceptible to MitB
attacks, and provide no additional security. The use of iTAN’s does not
provide any real way of proving the authenticity of a banking transaction.

2.2.3 Indexed TAN with CAPTCHA

As a further improvement of the TAN model, TAN’s in combination with
CAPTCHAs, also known as iTANplus, was developed. CAPTCHA is an
abbreviation for “Completely Automated Public Turing Test to Tell Computers
and Humans Apart”, which are tests that can be generated automatically,
which are simple to solve for humans, but hard to solve for computers [2].
An example of a CAPTHCA can be seen in figure 2.6. In this CAPTCHA,
the text “smwm” is displayed, however both the image itself as well as

23

Figure 2.6: CAPTCHA displaying the text: “smwm”

the letters are distorted in a way which makes it difficult for a computer
to interpret and extract the correct sequence of letters automatically using
Optical Character Recognition (please refer to section 3.2 on page 42). For
humans on the other hand, in most cases, identifying the correct sequence
of letters is quite easy. This makes this test suitable for distinguishing
humans from computers. Standard CAPTCHAs, as the one illustrated in
figure 2.6, can be helpful when trying to limit automatic login attempts
or similar, but does not provide any means to verify the authenticity of a
given piece of data. In order to provide this, CAPTCHAs used in e-banking
are generated based on the transaction details as well as a shared “secret”
between the bank and the customer.

When a user registers a transaction, the server will automatically
generate a CAPTCHA typically containing the transaction details, a piece
of information which is shared between the bank an the customer, e.g., the
customer’s birthday and a dynamic TAN. This image is then sent back to
the user’s browser where it is displayed. Then the user can, by studying
the image provided by the server, either approve or decline the transaction.
The bank will only process the transaction when it has received approval
from the user [18].

The iTANplus approach provides a means of verifying the authenticity
of e-banking transactions. However, according to literature [18], methods
exist for malicious software to alter the CAPTCHAs used for e-banking on
the fly, which makes the technology susceptible to MitB attacks.

2.2.4 Mobile TAN

Mobile TANs (or mTAN’s) are instead of being printed on a sheet of
paper, sent to the customer’s phone each time a transaction is requested.
Whenever a customer registers a transaction, an SMS containing a TAN,
together with some of the transaction details, such as the amount and
recipient, is sent from the bank to the customer’s phone. In this way, the
information is sent over an out-of-bands channel (the telecommunications
networks), and is not directly susceptible to MitB attacks. A mTAN
scenario is illustrated in figure 2.7, together with table 2.1.

Despite this, other ways exist to exploit this model, as was proven
elegantly by the Eurograbber malware. A Eurograbber attack began by
infecting an e-banking user’s computer with malware. This malware
would then launch a phising attack targeting customers of certain online
banking systems. Attackers were then able to trick users to tell them their
phone number and the phone platform they were using. Once the attackers
were in possession of a customer’s phone number, an SMS message was

24

Figure 2.7: mTAN ceremony

Nr. Message/action description
1. User registers transaction in e-banking web application
2. e-banking application sends mTAN message to users phone
3. User verifies the details listed in the mTAN message
4. User sends TAN as approval to e-banking application
5. Transaction is processed when approval is received

Table 2.1: Sequence of messages and actions in the mTAN scenario

sent to their phone urging them to do a “security upgrade”, by installing
a piece of software, for which a URL was included in the message. This
software was no security update, but rather a nasty piece of malware
capable of intercepting and altering incoming SMS messages before they
become visible for the user. In this way, the Eurograbber malware was
able to intercept the SMS containing the mTAN message, and alter it before
notifying the user. As a consequence, users would approve arbitrary
transactions made by the malware residing in his or her computer, instead
of legitimate transactions registered by the user herself. As a result, an
estimated value of more than 36 million Euro was stolen from over 30 000
users of different European banks [14].

2.2.5 TAN Generators

Instead of distributing TAN’s using a sheet of paper, some e-banking
systems offer their customers TAN generators. These are small hardware
devices which generate seemingly random numbers, either based on
time synchronization or mathematical algorithms. TAN generators are
initialized in a way so that it holds a secret shared only with the service
provider it is configured to be used towards. This is essentially an OTP
model, as described in section 2.1.1, expect it is used for approval of e-
banking transactions. That is, the OTP values are used as TAN’s. An RSA

25

SecurID OTP generator can be seen in figure 2.8.

Figure 2.8: RSA SecurID OTP generator

The idea is that when a user registers a transaction within the e-banking
web application, the user will have to provide a valid TAN generated using
the TAN generator in order for the transaction to be processed. Using
TAN generators instead of regular TAN’s (printed on sheets of paper)
may improve the user experience, since they are simple to bring along
due to their small size. However, in terms of proving the authenticity of
banking transactions, they offer no more security than regular TAN’s, and
are susceptible to MitB attacks in the same way as regular TAN’s.

2.2.6 photoTAN

photoTAN is an approach where the details of a given transaction alongside
with a TAN are transferred to the customer’s phone by using visual,
computer readable data. When a customer registers a transaction, the
e-banking web application generates a colourized Quick Response (QR)
code. This QR code contains the transaction details as well as a generated
TAN. The QR code is then scanned using a photoTAN smartphone
application installed in the user’s phone. The photoTAN application will
decode and display the information found in the QR code in the smart
phone’s display. The user can then verify the transaction details on this
display, and if the transaction is valid (that is, the transaction the user has
requested), the user inputs the provided TAN in the web browser, and the
transaction is processed [1]. This is illustrated in figure 2.9

The photoTAN approach allows the customers to use a secondary
device when verifying the transactions details, and assuming that the smart
phone can be trusted, provides a means of verifying the authenticity of e-
banking transactions. However, as seen in section 2.2.4, the Eurograbber
trojan has proved that this is not always the case. The photoTAN approach
is therefore susceptible to advanced attacks where both the phone and the
computer is compromised.

8Retreived from https://www.commerzbank.de/portal/media/a-20-themen/
service-und-hilfe/hilfe-2/grafiken-99/App_2_scanmodus.jpg

26

https://www.commerzbank.de/portal/media/a-20-themen/service-und-hilfe/hilfe-2/grafiken-99/App_2_scanmodus.jpg
https://www.commerzbank.de/portal/media/a-20-themen/service-und-hilfe/hilfe-2/grafiken-99/App_2_scanmodus.jpg

Figure 2.9: Commerzbank photoTAN8

2.2.7 chipTan

The chipTAN approach also utilizes a separate hardware device allowing
users to verify transactions before they are processed by the bank. A
chipTAN generator is a small hardware device, featuring a small keypad, a
display, a credit card slot and a camera, as seen in figure 2.10.

Figure 2.10: chipTAN generator9

9Retreived from http://www-ti.informatik.uni-tuebingen.de/~borchert/Troja/Bilder/
chipTANcomfort.jpg

27

http://www-ti.informatik.uni-tuebingen.de/~borchert/Troja/Bilder/chipTANcomfort.jpg
http://www-ti.informatik.uni-tuebingen.de/~borchert/Troja/Bilder/chipTANcomfort.jpg

As in the previous approaches, the process begins when a customer
registers a banking transaction within his or her e-banking provider. The
e-banking system receives the transaction, and generates a specially crafted
animation which is to be interpreted by the chipTAN device using its
camera. The chipTAN device is locked to a user’s credit card, and will not
operate unless the specific credit card is present in the chipTAN’s credit
card slot. When the specific credit card is present, the user is allowed to
operate the device to scan the animation shown on the computer’s display.
The transaction details are embedded in the animation, which when
interpreted using the built-in camera, is displayed using the chipTAN’s
displayed. The user can verify that the transaction is valid using the
chipTAN, and request that a TAN is generated. This TAN, now being
displayed using the chipTAN, is sent to the bank if the user wishes to
approve the transaction [26].

The chipTAN approach provides a simple and effective way to verify
e-banking transactions. It is not susceptible to MitB attacks, since the
transaction is verified using a separate hardware device. In contrast to the
photoTAN approach (section 2.2.6), the chipTAN model is much harder
to compromise, since the attack surface is limited to the built-in camera
(at least for non-physical attacks). This makes it resilient against attacks
similar to the previously described Eurograbber attack and similar attacks.

2.2.8 BankID

BankID is a service provided by a coalition of Norwegian banks, using a
shared infrastructure maintained by Nets. BankID offers a way for users to
identify themselves, as well as sign electronic documents online. BankID
is implemented as a PKI (Public Key Infrastructure), and every registered
user is assigned a personal certificate stored centralized within the system
itself. In addition to being used for verification of e-banking transactions,
the BankID system can be used for user authentication towards a broad
range of public services such as health services, pension and social services
and tax services through a common login platform ID-porten provided
by Difi (Agency for Public Management and eGovernment) [25]. As seen
in figure 2.11, skatteetaten.no, the portal for tax services supports user
authentication both by using BankID and BankID on mobile.

The BankID service is the predominant technology used to approve
online banking transactions in Norway, and is used in one way or the
other by 3,5 million Norwegians [3]. Despite its broad adoption, there
is little literature available describing how it works in detail, which is in
the nature of a proprietary system such as BankID. In this way, it is not
possible to provide an accurate description of how the system operates.
However, based on details which are publicly known, I will try to provide
a general outline of how it could be operating. It is important to note
that the descriptions found in the following sections are based on my own
experience with BankID used in combination with one e-banking system
in particular (https://dnb.no). Hence, the procedures could differ when
BankID is used in combination with other e-banking systems.

28

skatteetaten.no
https://dnb.no

Figure 2.11: Login alternatives for skatteetaten.no

BankID offers two approaches for approving e-banking transactions.
One is based on a traditional approach using an OTP generator and a
password. In addition, BankID offers an implementation for smartphone
users, which involves an application running from the SIM card for
improved security.

BankID

The traditional BankID approach requires a password in addition to
a one-time password generated using a OTP/TAN generator or smart
card when being used for either identification, authentication or signing.
Thus, this approach is similar to the other TAN-/OTP-based approaches
previously discussed. When a user has requested a transaction in an online
banking system offering BankID, the user will have to confirm or verify
the transaction by entering his or her password and a generated one-time
password before the transaction is processed.

Since the BankID is a standalone system, hosted and operated inde-
pendently from each individual e-banking system, it seems likely that
when a user verifies a transaction in the browser, the browser will commu-
nicate both to the e-banking system, as well as directly to the BankID sys-
tem. Since BankID handles the certificated used to authenticate/sign the
transaction, there will have to be some sort of communication between the
BankID system and the e-banking system transparent from the user’s per-
spective. This work flow is illustrated in figure 2.12, together with table 2.2.

From a theoretical perspective, this approach is susceptible to a MitB
attack, in the same way the TAN based approaches previously discussed.

29

skatteetaten.no

Figure 2.12: Illustration of how BankID could be implemented

Nr. Message description
1. User registers transactions
2. User provides OTP from OTP generator and static password
3. OTP and static password is sent towards BankID, together

with transaction for authentication
4. BankID verifies that the OTP and static password are correct
5. If OTP and static password is correct, the transaction is

signed using the user’s certificate stored within BankID.
Signature is sent to bank

6. When bank receives valid signature from BankID, the
transaction is processed

Table 2.2: Possible BankID work flow

BankID on mobile

BankID on mobile operates in a different manner. The approach requires
the user to have a SIM card preloaded with the a BankID application. This
tells us that the BankID on mobile is implemented as an SIM Application
Toolkit (often referred to as SAT) application. These SAT applications run
directly from the SIM card itself, using the phone’s SIM CPU, which is
separate from the CPU (or CPUs) used to run the operating system on the
phone itself.

When a user has acquired an BankID enabled SIM card, it must be
initialized. This is usually done within the e-banking web interface when
the user is already logged in. In order to initialize the SIM card for a specific
user, the user provides his or her phone number. When the user’s phone
number has been provided, a message is sent (presumably from the central
BankID system) towards the phone, which initiates the setup process. The
initialization process is both quick and simple, the user is only asked to
choose a static PIN, four to eight digits in length on the handset before it is

30

ready for use.
Once BankID on mobile is initialized, it can be used both for user

authentication, as well as transaction authentication. When a user chooses
to use BankID on mobile for user authentication, the user’s phone number
first has to be provided in the e-banking system web interface, as seen
in figure 2.13. When the phone number has been provided, an image

Figure 2.13: BankID on mobile splash screen

containing two code words is being displayed in the browser window, as
seen in figure 2.14. The same two code words are then displayed on the

Figure 2.14: Code words for BankID on mobile being displayed in browser

user’s handset using the BankID SAT application, as seen in left side of
figure 2.18. If the user is able to verify that the same words are being
displayed in both the browser window and on the handset, the user can
now provide his or her static PIN to the SAT application, as seen in the
right side of figure 2.18. This will cause the user to be logged in, and the
web interface will update accordingly.

The procedure for authentication of transactions using BankID on
mobile is quite similar. First, a user registers a transaction within the e-
banking system web interface. When the transaction is registered, the user
must press a "Confirm transaction" button within the web interface. When
pressed, the web interface will update itself and display the transaction
details of the transaction in question, as seen in figure 2.16. The user is now
asked to compare the details displayed in the computer screen to the details
which are about to be displayed on the user’s handset.

A message is now sent to the user’s handset (presumably from the
central BankID system) which will cause the BankID SAT application to
be loaded, and displayed in the phone’s display, as seen in figure 2.17. If

31

Figure 2.15: User authentication using BankID on mobile

the user presses “OK”, the transaction details are displayed in the display,
as seen in the left side of figure 2.18. The user can now compare the
details being displayed in the web browser to the ones being displayed
in the phone’s display. If the user finds the information to be correct, he
or she can authenticate the transaction by providing his or her static PIN,
as seen in the right side of figure 2.18. When the correct PIN is provided,
a message will be sent from the phone to what is presumably the central
BankID system. The central BankID system will then notify the e-banking
system that the transaction has been authenticated, and the web interface
will automatically update accordingly. The transaction is now processed
by the e-banking system.

BankID on mobile seems like a robust solution for data authentication
in the e-banking use case. By utilizing a SAT application running directly
on the user’s SIM card, users of this approach do not have to carry an
extra hardware device around (assuming that most users already carry a
phone anyway). Since the application runs separately from the operation
system of the phone itself, it seems likely that it would be much harder
to compromise this scheme compared to other schemes involving mobile
phones, such as the Mobile TAN approach described in section 2.2.4 on
page 24, as the attack surface is greatly reduced. This makes this system
resilient against MitB attack scenarios.

32

Figure 2.16: Transaction details in web interface

33

Figure 2.17: BankID SAT application – Splash screen

Figure 2.18: BankID SAT application – Authentication of transaction

34

Chapter 3

Technical background

3.1 Cryptography

This chapter contains more in-depth descriptions of some of the concepts
and technologies referred to throughout this thesis, and can be used as a
supplement while reading the subsequent chapters.

3.1.1 Hash functions

A cryptographic hash function, h, is a mathematical function which takes
a message of arbitrary length, and produces a fixed length output deduced
from the message, often referred to as a message digest. This could be
expressed as h(m) = x, as illustrated in figure 3.1.

Figure 3.1: Hash function (SHA1) input and output

Trapp & Washington propose the following requirements [33, p. 218]
which hash functions used in cryptography should satisfy:

1. For any message, m, the digest, x = h(m), can be calculated quickly.

2. For a given x, it is computationally infeasible to find an m′ where
h(m′) = x. In other words, the hash function should be a one-way
function [20, p. 6] where it is computationally infeasible to deduce
the message from the digest. When a hash function satisfies this

35

requirement, it is said to be pre-image resistant. This property is
called pre-image resistance.

3. It should be computationally infeasible to find any two messages,
m1 6= m2 where h(m1) = h(m2). If two different messages produce
the same message digest, this would be what is called a collision. So
if a hash function satisfies this requirement, it is said to be strongly
collision-free. We call this property collision resistance.

Since hash functions output a finite number of symbols, there is an infinite
number of messages which would produce the same message digest.
Requirement three only states that it should be infeasible to find messages
which produce the same message digest. In most cases it would be
adequate if it is computationally infeasible to find a message, m2, for a
given message, m1, where m1 6= m2 and h(m1) = h(m2). This is referred
to as second pre-image resistance [33, p. 219], and when a hash function
satisfies this requirement, it is said to be weakly collision free. At first
glance this might seem as a repetition of the collision resistance property. In
terms of collision resistance, the definition says that it should be infeasible
to find any two messages, m1 6= m2, where h(m1) = h(m2). In terms
of second pre-image resistance, we have one specific message, m1, and it
should be infeasible to find another message, m2 6= m1, where h(m1) =
h(m2).

In order to fulfil the three requirements described above, mathematical
hash functions (or algorithms) are carefully constructed using primitive
operations such as bitwise AND (∧), bitwise XOR (⊕), modulo ((mod)),
bitwise OR (∨) and block shifting (� or �), where every block consists
of n bits. The inner workings of most hash algorithms are quite complex,
and is beyond the scope of this thesis. A range of different hash algorithms
exists such as MD51, SHA2 and RIPEMD3.

3.1.2 Symmetric cryptography

Symmetric cryptography is an umbrella term for cryptographic techniques
where the same key is used for both encryption and decryption. One of the
oldest known encryption schemes is called “Caesar cipher”, and is a simple
example of a symmetric cryptosystem. In this system, every letter in the
message (also known as the plaintext) is shifted n number of characters
to the left according to its alphabet, in order to be encrypted. In order to
decrypt an encrypted message (also known as the ciphertext), each letter in
the ciphertext is shifted n number of characters to the right. If the English
alphabet is encoded such that A = 0, B = 1 . . . Z = 25, we end up with the
following table:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1MD5 - https://tools.ietf.org/html/rfc1321
2SHA - https://tools.ietf.org/html/rfc3174
3RIPEMD - https://www.cosic.esat.kuleuven.be/publications/article-317.pdf

36

https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc3174
https://www.cosic.esat.kuleuven.be/publications/article-317.pdf

This allows us to formulate the encryption process mathematically as
encryption(m, n) = m + n mod 26, where m is the letter to be en-
crypted and n is the key. The decryption process can be described as
decryption(m, n) = m− n mod 26. mod 26 is used in both calculations
since (25 + 1) ≡ 0 mod 26. If one were to encrypt the message “APPLE”
using the key 7, using “Caesar Cipher”, one would end up with the follow-
ing result:

encrypt (’APPLE’ , 7) = HWWSL

Similarly, the decryption of the ciphertext would yield the following result:

decrypt (’HWWSL’ , 7) = APPLE

From a security and cryptoanalytic standpoint, The “Caesar cipher”
is completely insecure, and is only used to illustrate what a symmetric
cryptosystem looks like. Modern symmetric cryptosystems, such as
AES4 and Blowfish5 utilize far more advanced mathematical principles
which is a topic far beyond the scope of this thesis. The key point is that a
single key is used for both encryption and decryption. This key has to be
pre-distributed to both the sender and the recipient prior to any message
encryption/decryption. In consequence, anyone with knowledge of the
key is able to both encrypt and decrypt messages. For most situations, this
is not necessarily a bad thing. However, if a situation requires that one is
able to prove who encrypted a given message, a symmetric cryptosystem
is unable to fulfil this requirement.

Considering the previous example where the message “APPLE” is
being encrypted using “Caesar cipher” and the key used is 7. Assuming
there are two parties, A and B, where A wants to encrypt the message
“APPLE”, then send it to B. Both A and B will have to have knowledge
of the secret key, k1 = 7. A will need it to encrypt the message, and B will
need it to later decrypt the message. If a third party, such as C is introduced,
there is no way for A and B to prove to C where the encrypted message
originated from, since both have knowledge of k1. The ability to produce
this proof, is what is called “non-repudiation” [19]. In order to achieve
this kind of message origin authentication, another class of cryptography
is needed; asymmetric cryptography.

3.1.3 Asymmetric cryptography

In contrast to symmetric cryptography where the same key is used
for both encryption and decryption, asymmetric encryption (sometimes
referred to as public key encryption) schemes utilize two different keys:
one for the encryption process and another for the decryption process.
This can be achieved by utilizing what is called “trap-door functions” in
mathematics. As described in section 3.1.1 on page 35, one-way functions
are mathematical functions where it is computationally infeasible to find its

4AES - http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
5Blowfish - https://www.schneier.com/academic/archives/1994/09/description_of_a_

new.html

37

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html
https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html

inverse. Consider a one-way function f , it is easy to compute x = f (y), but
is hard to compute y = f−1(x). A trap-door function is similar to a one-
way function, but it differs in the way that those who know where the secret
lever is located, are able to escape the dungeon. For a trap-door function,
t f , it is easy to compute x = t f (y), but hard to compute y = t f−1(x), unless
we have knowledge of some piece of secret information (the lever), k. If we
have knowledge of k, it is easy to compute y = t f−1(x, k).

According to the fundamental theorem of arithmetic, every natural
number (all numbers greater than 1, which is not a prime itself) is a product
of a unique prime factorization [34]. For example, 8 = 2 · 2 · 2. Be that
as it may, the theorem does not provide any method as to how these
factorizations are found. As of today, no efficient algorithms for finding
the prime factors for very large integers using conventional computers
are known. Therefore, this is assumed to be computationally hard and is
known as the “integer factoring problem”. This can be used to illustrate a
trap door function. Assume that only pen, paper and a simple calculator
are available. Multiplying two primes, 113 and 367 using the calculator
is a simple task, in terms of computational complexity. Within less than
a second we learn that 113 · 367 = 41471. Reversing this process, that is,
decomposing the composite number into its prime factors knowing only
the final product is on the other hand believed to be very hard. The integer
1689025133569, is a product of two primes, and therefore a natural number.
Finding out which two prime factors this integer consists of is a daunting
task using just pen and paper and a calculator. As there is no simple way
to deduce the prime factors from the final product, one would have to

try multiplying combinations of all primes, 2, 3 . . .
1689025133569

2
. This is

what is called a brute-force approach (sometimes known as an exhausting
key search), as it in a worst-case scenario would imply testing of every
possible combination (traversal of the entire key space). However, if it was
revealed that one of the two prime factors is in fact 1299541, it would be

easy to (by using a calculator) see that
1689025133569

1299541
= 1299709. This

single piece of information makes it easy to find the second prime factor.

The example described above is only valid in a non-computer scenario,
due to the fact that a computer would have had no problem to find the
two prime factors in the given integer using a brute force approach. There
even exist several algorithms to factor composite numbers which are more
efficient than a brute-force approach. However, given a large enough
integer, this becomes infeasible for even the fastest computers and most
efficient algorithms publicly known to this date. In this context a large
integer is typically greater than 1024 bits. The current record for integer
factorization was obtained in 2009 when a group of researchers over the
course of three years were able to factor a 768 bit (or 232 digits) integer.
The computational resources used for this task is equivalent to 2000 years
of computing on a common single core 2.2 GHz processor computer [15].

Although the previous example is a nice way to illustrate a trap-
door function, it does fail to address how one can use these functions

38

as a foundation for asymmetric cryptosystems. In 1976 Withfield Diffie,
Martin Hellman and Ralph Markele described a system for key agreement
over insecure communication channels. The system is now known as
the “Diffie-Hellman key exchange”6 (or D-H). D-H allows two or more
entities to agree on a shared secret key despite the assumption that any
communication between them is intercepted by a third party. This system
is based on another mathematically problem called the “discrete logarithm
problem”.

Given the equation bk = g, where the values b and g are members of
a finite group, G. The k which solves this equation is called the discrete
logarithm. When big enough numbers are used, this is assumed to be very
hard.

Assume Alice and Bob want to establish a shared secret key. They are
both in the same room as Eve, so Eve can hear everything Alice and Bob say
to each other. First Alice and Bob agree to use the base b = 3 and modulus
p = 31. Alice and Bob then proceed to perform the operations described
in figure 3.1.3. The figure also illustrates what information is visible for the
intercepting entity, Eve. As seen in the figure, if Eve was to intercept the

Step Alice Eve Bob
1 Alice chooses the

secret key 9
Bob chooses the secret
key 12

2 Alice computes A =
39 mod 31 = 29

Bob computes B = 312

mod 31 = 8
3 Alice sends A to Bob A→
4 ← B Bob sends B to Alice
5 Alice computes S =

B9 mod 31 = 4
Bob computes S =
A12 mod 31 = 4

6 Alice’s S = 4 Bob’s S = 4
7 Alice encrypts m us-

ing secret key S
menc →

8 ← menc Bob encrypts m using
secret key S

Table 3.1: Key agreement using Diffie-Hellman key exchange

initial key establishment denoted in step 1 to and including step 6, she only
learns about A and B. For Eve to figure out the secret key shared between
Alice and Bob, she will have to find the k which solves 3k = 31 mod 31 or
3k = 9 mod 31. As previously described, this is referred to as finding the
discrete logarithm. In this example, we are using quite small numbers in
order to illustrate how the protocol operates. Given the values used in this
example, it would be feasible for Eve to find k using a brute-force approach
with ease. However, when the numbers used are big enough, finding the
discrete logarithm is assumed to be very difficult.

6In "An overview of public key cryptography" (2002) Martin Hellman suggested that the
algorithm should be called "Diffie-Hellmann-Merkele key exchange, in order to emphasise
Markele’s contribution.

39

Now Alice and Bob have one shared secret key. This key can now
be used in a symmetric cryptosystem, allowing Alice and Bob to secure
communication between them over an insecure channel.

As with the previous example, the numbers used in this example are
too small for any practical use.

Today D-H and closely related systems for asymmetric key exchange
are widely used to establish the key used in HTTPS (HTTP over SSL/TLS),
which allows web traffic to be encrypted between clients and servers.

As described in this section, mathematical problems exist which are
hard to solve, even infeasible for the fastest of supercomputers. These
problems can be used to construct asymmetric cryptosystems, such as the
Diffie-Hellmann key exchange. In the next section, Section 3.1.4 on page 40,
it will become evident how the integer factorization problem is the basis for
one of the most recognized asymmetric cryptosystem of our time.

3.1.4 The RSA algorithm

The RSA algorithm was invented in the academic community by Ron
Rivest, Adi Shamir, and Leonard Adleman, and published in a research
paper in 1977. Thus, RSA is an acronym for Rivest, Shamir and Adle-
man. However, as revealed in 1997 when documents released by CESG
(Communications-Electronics Security Group), a British governmental
agency, showed that Clifford Cocks had described an algorithm very sim-
ilar to the RSA algorithm as we know it today in an internal document
written in 1973 [33, p. 164-165]. The RSA algorithm utilizes two different
keys (one for encryption and a separate one for decryption), which makes
it an asymmetric cryptosystem.

Euler’s Totient Theorem lays the foundation for the RSA algorithm.
This theorem states that given two integers, x and y, which are relatively
prime, that is their GCD (Greatest Common Divisor) is 1. If x is less than
y, then x in the power of Euler’s totient7 of y is congruent to 1, modulo y.
This theorem can be formalized in the following way: that if gcd(x, y) = 1
and x < y, then xφ(y) ≡ 1 (mod y).

According to the law of exponents, we can expand this rule. The
expression xφ(y) · xφ(y) ≡ 1 · 1 (mod y) can be rewritten as x(φ(y)+φ(y)) ≡
1 (mod y). This can be further simplified by rewriting it as x(2·φ(y)) ≡
1 (mod y). Since x(3·φ(y)) ≡ 1 (mod y) we can deduce an even more general
expression x(i·φ(y)) ≡ 1 (mod y), where i can be any number.

In this way, we see that i · φ(y) generates the set of integers, S, which
are divisible by φ(y), n | φ(y). We can then rewrite the statement from the
previous paragraph in the following manner: xn∈S ≡ 1 (mod y). Since
xn∈S · x ≡ 1 · x (mod y), xS+1 ≡ x (mod y), we seen that we have a
function which takes a number x, raises it to a power of S + 1, and when
the calculation is done in (mod y), we end up with the same number, x,
which we started out with.

7Euler’s totient function returns the number of positive integers between 1 and < n
which are coprime to n. This functions is denoted as φ(n)

40

If we find two values k1 and k2, so that k1 · k2 ≡ 1 (mod φ(y)). Then
xk1·k2 ≡ x (mod y), which also can be expressed as (xk1)k2 ≡ x (mod y).
The calculations in the last expression can be divided into the two separate
steps:
Step 1: xk1 = c (mod y).
Step 2: ck2 = x (mod y).

If we imagine that the value x holds is some piece of data some entity
would like to securely transmit to us, we can utilize Step 1 as the encryption
process, and Step 2 as the decryption process.

This can be illustrated by using some sample values. First we chose
two different prime numbers, p1 = 7 and p2 = 11. Then we calculate
y = p1 · p2 = 77. We use two prime numbers for two reasons. Firstly, we
want y to be hard to factor. Secondly, we can quickly calculate φ(y) since p1
and p2 are primes, using the following formula φ(y) = (p1− 1) · (p2− 1) =
60. Now we need to find the appropriate values for k1 and k2, so that
k1 · k2 ≡ 1 (mod φ(y)). We start with the value 7, so that k1 = 7. Now
we have to solve k2 for the equation 7 · k2 ≡ 1 (mod φ(y)). To make this
process a bit more simple, we can, as previously described, rewrite the
equation as 7 · k2 = i · φ(y) + 1, or 7 · k2 = i · 60 + 1, where i can be any
number. After some trial and error, we see that 7 · 43 = 301 which is equal
to 5 · 60 + 1 = 301, so that 7 · 43 = 5 · 60 + 1. Now we have our values
for k1 = 7 and k2 = 42. These, together with y = 77 make up the keys in
the RSA algorithm. k1 and y represents the private key. k1 is therefore kept
secret. k2 together with y constitutes the public key. In other words, k2 is
known by anyone.

Imagine a scenario where someone would like to send us a message
only we would be able to read. Since both k2 and y is available, anyone
could create such a message. However, only those of us who have
knowledge of k1 are able to decrypt the message. Let us imagine that
someone wants to encrypt the string “CAKE” and send it to us. As
previously described, Euler’s theorem states that x has to be < y, as well
as gcd(x, y) = 1. Due to this, we generate a list of values which fulfils these
requirements and assigns one for each letter in the alphabet. This list can be
seen in listing 3.1. Any value in the range 2 · · · (y− 1) which is not assigned
to a letter, is denoted as “?”.

Listing 3.1: Alphabet encoded using appropriate values
2 3 4 5 6 8 9 10 12 13 15 16 17 18 19 20 23 24 25 26 27 29 30 31 32 34 N
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ?

Using this list, each letter in the string “CAKE” corresponds to the values
4,2,15,6. These values can be encrypted separately using the the equation
described in Step 1:
C = 443 = 77371252455336267181195264 = 53 (mod 77)
A = 243 = 30 (mod 77)
K = 1543 = 64 (mod 77)
E = 643 = 62 (mod 77)
After these calculations, we end up with the values 53, 30, 64 and 62.
According to the list we have generated, this would correspond to the

41

string “?W??”. This will now be referred to as the ciphertext, or encrypted
data. Now, imagine these values were sent to us using an insecure channel,
where some third party was able to acquire a copy of the ciphertext. The
values, 53, 30, 64 and 62, translate to the string “?W??”, which does not
make much sense to anyone. However, when we receive the message, we
can utilize the previously described equation in Step 2, to recover the plain
text:
? = 537 = 1174711139837 = 4 (mod 77)
W = 307 = 2 (mod 77)
? = 647 = 15 (mod 77)
? = 627 = 6 (mod 77)
Again, by using the list defined in listing 3.1, we build the string “CAKE”,
which is the string that was originally encrypted by the sender.

The implementation of the RSA algorithm explained in this text is
known as “textbook RSA” or “schoolbook RSA”, as it from a cryptanalytic
perspective is completely insecure. Since each letter is encrypted one by
one, the approach us susceptible to traditional cryptanalysis, or an attacker
could just generate the whole alphabet in advance, since the public key
is known by everyone. In this case, an attacker would have no problem
decrypting the encrypted message. In order to mitigate this, professional
grade implementations of the RSA algorithm implement padding schemes
which removes this deterministic behaviour. Further, the values used in
this example are way too small for the system to be secure. Just by using a
pen and paper, it is simple to find the two prime factors for the 77, the value
used for y. As previously described, the security of RSA is based on the
assumption that it is computationally infeasible to factor large composite
numbers. “Large composite numbers” in this context is order of > 2024 bits,
which is RSA’s currently recommended key size for the RSA algorithm, as
described previously in section 2.1.3 on page 19.

3.2 Optical Character Recognition

Optical Character Recognition (OCR) is the process of transforming visual
text into digital information. OCR software is able to accomplish this by
analysing the shapes of graphic letters in images of text, and transform
them into alphanumeric characters in digital form [5], as seen in figure 3.2.
In this figure, I have taken a picture of some made-up transaction details on
a computer screen. This image is then transferred to a computer, where it
is processed using an OCR engine. As seen in the figure, the OCR software
is able to convert the text found in the image, into its digital representation
with high accuracy. Automatic, computer-based OCR can be used for a
wide variety of applications, including digitalization of documents [7][p.
177], license plate recognition [32] and text-to-speech aid tools for the vision
impaired [10]. Optical Character Recognition technology has improved
immensely since 1912 when Emmanuel Goldberg first invented a machine
which was able to transform typed messages into telegraphic messages.
Nearly forty years later, in 1951, David Shepard presented an OCR machine

42

Figure 3.2: OCR overview

able to read just over twenty characters from a text written on a typewriting
machine [7]. During the 1960s OCR was adopted to help solve everyday
issues, such as sorting letters based on city/ZIP code within the postal
industry [31]. Today, OCR technology comes in different shapes and
forms, ranging from standalone appliances to software implementations
for consumer grade hardware such as smartphones and tablets. Despite
the fact that OCR as a technology has matured for over a century, some
fundamental problems remain unresolved which limits the practical use
and adoption due to the lack of satisfactory accuracy and consistency.
First and foremost the effectiveness of OCR relies on the quality of the
source data, the raw image. If the raw data contains distortion, this can
cause limited accuracy which in turn will cause faulty results. The process
of taking a picture of text using a camera, or digitalizing a whole text
document using a scanner will introduce interference and act as noise
in the digital representation. Even though this kind of noise does not
cause humans any problems to understand the semantics in the digital
representation, it can cause issues for a computer trying to extract the text
from the image.

Even if the source data is perfect, the diversity of different types of text
font faces used has implications to the accuracy of OCR technology. In
order to illustrate this, I conducted a small experiment. On the sample
computer, running Ubuntu Linux (14.04 LTS), 540 different font faces were
present. 462 of these are able to represent the English characters. Using
the “ImageMagick”8 library and some bash-fu9, we created 462 images
containing the English sentence “The cake is a spoon.”, each image using

8ImageMagick - http://www.imagemagick.org/script/index.php
9bash-fu - http://nb.urbandictionary.com/define.php?term=bash-fu

43

http://www.imagemagick.org/script/index.php
http://nb.urbandictionary.com/define.php?term=bash-fu

a unique font face. I then attempted to extract the text back from these
images using the free, open source OCR engine Tesseract OCR, using the
default configuration. Tesseract was chosen because we were already aware
of an implementation of this engine for the Android platform. In this way,
these experiments could be relevant for the implementation of the OCR
functionality in the OffPAD application, which is described in section 5.2
on page 71.

In the experiments I only differentiate between successful and unsuc-
cessful attempts, where a successful attempt returned the sentence with a
100% accuracy. This means that each letter in the OCR result is identical to
the corresponding letter in the source string. For example, an OCR result of
“The cake is a spoon.” is considered successful, whereas a result of “THE
CAKE IS A SPOON.” is considered unsuccessful.

In our experiment the correct string, “The cake is a spoon.”, was
extracted successfully from 93,50% of the images. From the remaining
6,49% of the images, the extracted text was less than 100% accurate, or
completely incorrect, and was considered unsuccessful. A small sample
of these images, alongside with the text that was extracted can be seen in
table 3.2.

In the first part of the experiment, the images used were quite suitable
for OCR, since they do not contain any distortion and the text is perfectly
horizontally aligned within the image. I was curious to see how the OCR
processing would perform when the source images were suboptimal. First
I wanted to see how the horizontal alignment of the text would affect the
OCR processing. This would simulate a scenario where one is taking a
picture of some text, without holding the camera in perfect alignment with
the text. In order to test this, new images were created where the text was
rotated 1◦, 2◦, 3◦, 5◦and 10◦, for all the same fonts which were used in the
first part. In total 2310 new images were created, 463 for every degree.
Refer to table 3.3 to see how the rotation affected the image.

The OCR extraction test used in Part I of the experiment was repeated
for the images where the text had been rotated horizontally. In the results
from the second part of the experiment, I found that horizontal rotation
does in fact affect the accuracy of the OCR process. With only 3◦ horizontal
rotation, the OCR software was unable to extract the correct text for over
50% of the images. When applying a rotation of 10◦, I was only able to
achieve a successful extraction from one out of the images. The results
from part II of the OCR experiment can be seen in figure 3.3. Part II of the
experiment shows that horizontal rotation of the text greatly reduces the
number of font faces suited for OCR, and affect OCR accuracy.

For the third part of the experiment, I wanted to see how vertical
rotation of the text would impact OCR performance. This would simulate
a scenario where one is tilting the camera when taking a picture of some
text. This is illustrated in figure 3.4. In the top of this figure, we see what
the text looks like without any tilt. In the center of the figure, we see how
the text is displayed when a 45◦ tilt has been applied to the same text. I
created new images where I applied 0◦ , 15◦ , 45◦and 60◦ tilt. In total 1848
images were created. The same OCR test used in part I and part II of this

44

Table 3.2: OCR experiment - Part I
Extracted text Image
The cake is a spoon.

“I0 cake is a SIIIIIIII.

The cake 2’8 a spoon.

Thecake’waopoon.

The cake is a spam.

experiment was conducted on these images.
As seen in the results, vertical rotation did not affect the OCR processing

in the same degree as the horizontal rotation did. However, a gradual
performance drop is seen when the degrees of rotation increase.

These experiments have little scientific value due to the way they were
conducted. For instance, the results from the OCR processing were never
cross-checked against what a human would interpret from the images.
However, the results do at least indicate that OCR processing (at least not
with the OCR software that was used during the experiments) is as of today
an imperfect technology. The quality of the source data has an impact on
reliability, and the simulations indicate that the horizontal or vertical tilt
does affect the performance of the OCR processing. That being said, since
only one OCR engine was tested, it might well be that other OCR software
libraries would perform better in similar experiments.

While conducting these experiments, another key observation was
made. When acquiring a picture for a computer display, there was a
huge difference in the amount of visual noise which was introduced in

45

0 2 4 6 8 10
0

100

200

300

400

500

Horizontal rotation in degrees (◦)

U
ns

uc
es

sf
ul

O
C

R
ex

tr
ac

ti
on

s

Figure 3.3: Results from OCR experiment - Part II

Figure 3.4: Text displayed with and without 45 ◦pan

46

Table 3.3: OCR experiment - Part II - Horizontal text rotation
Horizontal rotation Image

0◦

1◦

2◦

3◦

5◦

10◦

the image depending on display type. It was attempted to acquire images
from two types of computer displays: LCD (Liquid crystal display) with
matte coating and LCD with glossy coating. These types of LCD screens
are commonly used in both laptops and workstations. The advantage with
LCDs with glossy coating is that color and contrast appear more vivid,
however a major drawback is that this type of display reflect more light
than its matte counterpart [12]. This causes a major problem when taking
an image of the display using a camera, as this reflected light introduce
visual noise. This is illustrated in figure 3.6. In the left side of this figure, a
picture is taken of a matte display, whereas on the right side it is acquired
from one with a glossy coating. It is necessary to point out that the light
conditions were not identical when the two pictures were taken. The matte
display could reflect more light when used in the light conditions used for
the glossy display, just as the glossy display could reflect less light when
used in the light conditions used for the matte display. In other words, this
illustration is only used to emphasize the problem.

47

0 10 20 30 40 50 60
0

100

200

300

Tilt rotation in degrees (◦)

U
ns

uc
es

sf
ul

O
C

R
ex

tr
ac

ti
on

s

Figure 3.5: Results from OCR experiment - Part III

Figure 3.6: Difference in reflection between matte LCD and glossy LCD

48

In addition to Tesseract, there are several different OCR software
alternatives available. Some are proprietary, closed source products such
as ABBYY FineReader10 and Transym TORC11. Others are open source
projects, with less restrictive licensing developed by volunteers from across
the globe. The “Tesseract OCR” project is one of the latter, however, it
was originally developed and maintained by HP Inc. from 1984 to 1994.
By the end of 1994, development ceased completely, and it wasn’t until
2005 the code base was released as open source for the public [28]. As a
consequence, several forks12 of the project appeared, including “tess-two”
which is an implementation of the Tesseract OCR engine for the Android
platform.

10ABBYY FineReader - http://www.abbyy.com/
11Transym TOCR -http://www.transym.com/
12A software fork is the term describing a software project which is a result of copying

the complete code base from an existing project, and then is developed independently from
the original project

49

http://www.abbyy.com/
http://www.transym.com/

50

Part II

OCR Based Data
Authentication

51

Chapter 4

Design

The prototype was designed based on the use case provided by the OffPAD
project. In this use case, users are able to authenticate online banking
transactions made on any (possibly infected) computing device by using a
separate hardware device (from now on only referred to as the OffPAD) in a
secure manner. The basis for the use case is a specific attack scenario where
a user is using a compromised client terminal (computer) when conducting
online banking activity, as seen in figure 4.1. For this use case, it is assumed

Figure 4.1: Attack scenario

that an OffPAD has already been provisioned to the user, and has been
initialized so that the device itself is able to conduct owner authentication
of the user based on a biometric modality, such as a fingerprint or iris
recognition. It is assumed that the service provider (in this scenario, the
bank) is aware of some unique cryptographic element found inside the
specific OffPAD, such as the public key in an asymmetric key pair. As a
part of the use case, a user will use a web-based online banking service

53

Nr. Message description
1. User types the transaction data in a browser window on the

client computer
2. The transaction data is intercepted by a trojan within the

client computer
3. The trojan displays the transaction data provided by the

user on the client computer display
4. The trojan alters the transaction data before sending it to the

online bank

Table 4.1: Sequence of messages and actions in the attack scenario

to register a banking transaction with a client terminal. It is assumed that
the terminal is infected by malicious software (from now on referred to
as malware), which is capable of altering the transaction provided by the
user without the users’ knowledge. This alteration occurs inside the web
browser of the infected terminal, and is known as a Man-in-the-Browser
attack. While different online banking systems operate differently, it is
common that the user is displayed the transaction that has been entered in
the browser window, in order for the user to confirm the transaction before
it is processed within the banking system. It is assumed that the online
banking service uses this method to authenticate transactions. While the
transaction is being displayed on the computer screen and is confirmed
by the user, the malware crafts and sends a different, arbitrary transaction
towards the bank, as seen in figure 4.1 2 , 3 and 4 .

As a means to mitigate this attack, it has been proposed to use the
OffPAD as a security measure by using it to authenticate the transaction. In
order to transfer the transaction details from the assumed insecure device
to the separate secure hardware device, a picture is taken of the computer’s
display. By using optical character recognition (OCR) the details are
extracted from one device to the other. Please refer to section 3.2 on page 42
for a general description of optical character recognition. This is intended
to provide, what we call, the “what you see is what you sign” (WYSIWYS)
property.

After the transaction details have securely been transferred to the
OffPAD, the user can then verify the transaction since it is assumed that
we can trust the OffPAD to display the authentic data (what has been
displayed on the screen). If the user finds the data displayed valid, it can
confirm or authenticate the transaction by providing a biometric identifier,
such as a valid fingerprint. After being authenticated by the user on
the secure device, the authentication is sent towards the bank either via
the insecure client device, or via another means of data transportation.
Since the OffPAD is capable of performing cryptographic operations, the
authentication itself is secured from any MitM attacks. In the document
Deliverable 5.2A (please refer to Appendix A on page 101) the OffPAD
project provides a high level description of how the OffPAD is utilized in
order to authenticate data in such a use case. This ceremony is further

54

described in table 4.2 together with figure 4.2.

Figure 4.2: Ceremony using the OffPAD for data authentication in an online
banking use case

Nr. Message description
1. User types the transaction data in a browser window on the

client computer
2. User activates the OffPAD to take a snapshot of the browser

window
3. Snapshot is taken of the text displayed in the browser

window on the VDU
4. The OCR function recovers the transaction data from the

snapshot
5. MAC generation with the transaction data and the user-

password as input
6. OffPAD sends the MAC to the client computer
7. Client computer sends transaction data together with MAC

to server
8. Server verifies that the MAC corresponds to the received

transaction data

Table 4.2: Sequence of messages and actions for data authentication
ceremony

In the use case three main components have been identified: the client
machine, the OffPAD and the online banking web application. These
components can be divided into two groups: 1) the client side (the user)
and 2) the server side (the service provider’s systems). This is visualised
in figure 4.3. In order to create a realistic test scenario for any usability
testing, the prototype must implement both the client side and the server
side. For the server side we only provide a mock-up of an online backing
which includes the needed software for our ceremony. Any realistic server-
side application would need this software module.

55

Figure 4.3: Prototype design overview

4.1 Client side

As previously noted, the client side of the prototype consists of both the
OffPAD itself and the web application present on the user’s terminal.
During the OffPAD project, there have been several proposals to what
the OffPAD should actually be. At first it was discussed to implement
the OffPAD as a lightweight smart card. Later it was discussed to
implement the OffPAD as either a smartphone or a tablet. A high fidelity
prototype of an Android tablet and smart phone version was produced
in small numbers. Before the project was put on hold in January 2016,
it was decided that the OffPAD was to be implemented as a smartphone
backcover. The backcover was to communicate with the user’s smartphone
using USB, as seen in figure 4.4. This formfactor is still used in the
continued OffPAD project from October 2016.

For the communication between the OffPAD backcover and the smart-
phone, several technologies were considered. Wireless technologies such
as NFC (Near field communication), Bluetooth and WI-FI were seemingly
good candidates. These are all very mature, tried and tested technologies,
which are widely adopted. However, common to all wireless technolo-
gies, these are also subject to over-the-air attacks (OAT). OAT attacks are
becoming more common, and several severe attacks has been presented
lately [11]. If the OffPAD were to implement a wireless technology, and
there is found a vulnerability in this technology in the future, an attacker
could potentially compromise the device with only limited physical prox-
imity to it. Considering this, the project felt that a wired technology such as
USB would be a better alternative. By using a wired technology an attacker
would have to be in very close physical proximity to the device in order to
attack it. This would require a physical cable between the devices, which

56

could impact how users perceived it in terms of usability. However, since
the backcover was to be attached to the smartphone anyway, the project
felt that having them interconnect using a short physical cable would have
little implication on the usability of the device.

The smartphone (figure 4.4 1) would provide means for acquiring im-
ages of the data which is to be authenticated and means for communicat-
ing the resulting signature back towards the online banking system. This
could be done either by relaying the information back to the client machine,
or directly using the phones inbuilt WWLAN or WI-FI capabilities. OCR,
being both a CPU and memory intensive process is also to be conducted
on the smartphone. In this way the CPU and memory requirement for
the OffPAD were dramatically reduced, compared to a scenario where the
OffPAD itself was to perform OCR on a raw image provided by the phone.
This also meant that the OffPAD could be produced at a much lower cost in
addition to reduced power footprint. It is assumed that the cost per device
will impact the degree of adoption of this technology by service providers.
The secure OffPAD backcover (figure 4.4 2) should only be responsible
for displaying the user the data which is to be authenticated in a secure
environment and perform the cryptographic operations on the data.

Figure 4.4: Smartphone with OffPAD secure backcover

Since the project came to a halt before the final design of the OffPAD
backcover was ready, there was only a general idea of what it would look
like and the features it would hold. A simplified sketch of the OffPAD
backcover can be seen in figure 4.5. The OffPAD backcover was to have a
small, low power CPU and a modest amount of memory. It would be able
to conduct cryptographic operations such as digital signing, hashing and
verification of digital signatures. Each device would have a unique digital
certificate and corresponding key stored in non-volatile memory. The work
on the OffPAD backcover has been resumed in October 2016.

The project planned to implement the display as a small e-ink screen
(figure 4.5 1). This was due to the low power consumption compared to
other display technologies, which would improve battery life. There was
a general consensus within the project group that this could improve the
overall usability of the device.

Figure 4.5 2 refers to the integrated finger print scanner. The idea
was that in order to authenticate any data using the OffPAD, the user

57

itself would have to authenticate using this finger print scanner together
with a PIN. We call this “owner authentication". In this way the OffPAD
would provide three factor authentication towards any service provider as
it would fulfil the three requirements described in Section 2.1.1 on page 12:

1. Something the user has (the OffPAD itself and its unique certificate
and corresponding key)

2. Something the user knows (the PIN)

3. Something the user is (fingerprint/biometric modality)

Figure 4.5: OffPAD backcover

As seen in figure 4.5 3 , the OffPAD also comes with a small keypad
for user interaction, such as when the user would have to enter the PIN to
authenticate a transaction.

Figure 4.5 4 refers to the µUSB cable which interconnects the OffPAD
and the smartphone it is being used together with.

At the time of writing, no high fidelity prototype of the backcover
has been produced. A proof-of-concept prototype was developed in very
limited numbers, and was not available for this Master’s project.

Since the physical manifestation of the OffPAD was somewhat un-
known during the early phases of our work, a decision was made to
implement the OffPAD as a software application for the Android smart-
phone platform. The application simulates the cryptographic operations
the OffPAD would conduct if it were to be produced. The smartphone’s
display would be used to interact with the user, as opposed to a separate
e-ink display. The application will also have to implement OCR capabilit-
ies in order to extract the transaction data from an acquired picture of the
transaction. In this way, it was possible to showcase some of the features
proposed for the OffPAD, without having a real prototype of the product at

58

hand. This however, will potentially create an unrealistic user experience
during any usability tests, and therefore could limit the transferability of
the results derived from these tests.

The second component of the client side is the online banking web
application which is running in the user’s web browser. This component
is from now on referred to as the “front-end”. This web application will
initially be delivered to the user’s machine from the bank’s web server. As
soon as it is downloaded, it is assumed that it can be tampered with by
any malicious software present on the user’s machine. In order to create
a realistic user setting, the web application must at least implement the
following features:

• Let users register transactions

• Let users view the current balance

• Let users view the transaction history

• Let users view authentication attempts of previously registered
transactions

4.2 Server side

In the prototype, the server side back-end will mimic the logic of a simple
online banking system. The back-end is responsible for making changes
to the account data stored in the database, based on the requests coming
from the client web application and the OffPAD client. In other words, the
back-end consists of both the software running on the web server, as well
as the database itself. The back-end must therefore support the following
functionality:

• Maintain a database containing information regarding users, ac-
counts, transactions and authentication attempts

• Validate transaction data from the web application

• Receive transaction details and signature from the OffPAD applica-
tion

• Verify the authenticity of the data received from the OffPAD applica-
tion using the signature

59

60

Chapter 5

Implementation

After identifying the main requirements for the prototype based on
discussions within the OffPAD project and literature provided by the
group, the phase of development began. The development process can
be said to be based on what is known as the “waterfall model” in software
engineering [29, p. 29-32]. This process in illustrated in figure 5.1.

Figure 5.1: Waterfall Model for Software Development

Prior to writing any actual code, the requirements were gathered, and
the design for the prototype was developed, as described in the previous
chapter (chapter 4 on page 53). These activities are denoted as the two
first steps in the waterfall model: “Requirement Definition” and “System and
Software Design”. This also involved deciding on the technologies which
would be most suited for the implementation.

During the next stage, “Implementation and Unit Testing”, the separate
parts of the prototype were developed separately. As previously described,
the prototype can be divided into the following components: the front-end,
the back-end and the OffPAD Android application. In addition to these
three components, the database was treated as an individual component
throughout the development process. The front-end and back-end together
constitute the web application, in consequence they were treated as one
component throughout the development phase. Since both the web
application and the OffPAD Android application utilize the database, this

61

was implemented first. Following the database, development of the web
application begun. When both the database and the web application were
operational, development of the OffPAD Android application was started.

When all of the components were finalized, the “Integration and System
Testing” phase begun. Testing the individual components together as a
complete system identified previously unknown flaws and bugs in the
individual components which had to be corrected. In essence, this led
me back to a new iteration of the “Implementation and Unit Testing” phase.
Some flaws also required alterations in the database design. This led
development back to the “System and Software Design” phase.

At the time of writing, the status of the prototype is in the “Integration
and System Testing” phase. It was used in a pilot usability study (please
refer to chapter 6 on page 85). This pilot study reveals several flaws in both
design and implementation of the prototype, which should be corrected.

5.1 Web application

The web application portion of the prototype was developed to run on a
LAMP1 stack running in a virtual machine. The operating system used
for the virtual machine was Debian 7, which was the latest stable release
of Debian2 when the development began. Virtualization was achieved
using Oracle VirtualBox3. This virtual machine acts as the web server
and database server for the prototype. This virtual machine was also
configured to communicate with the smartphone running the OffPAD
Android application using a USB WiFi dongle.

The back end consists of a relational database instance (MySQL), and an
application written in PHP for handling the business logic. The front-end,
the web application being served to the user’s browser was created using
HTML, CSS and JavaScript.

5.1.1 Database design

I began designing the database schema for the web application, based on
the identified requirements. A brief overview over the database as a whole
can be seen in figure 5.2. Data types and related configurations can be seen
in figure 5.3. Both diagrams were generated using Schemaspy4. Some
columns have been added since the first draft of this design, and others
have been modified during the course of development.

According to this design, information about every user is stored in
the “users” table. Each user is identified by a unique UserID, which acts
as the primary key for the table. Other information such as each user’s
username, first and last name and e-mail address is also stored. Passwords
are not stored in plain text in the database, but rather the hash sum of each

1LAMP - Linux, Apache, MySQL and PHP
2Debian Linux - https://www.debian.org/
3Oracle VirtualBox - https://www.virtualbox.org/
4Schemaspy - http://schemaspy.sourceforge.net/

62

https://www.debian.org/
https://www.virtualbox.org/
http://schemaspy.sourceforge.net/

Figure 5.2: Database design overview

Figure 5.3: Table and column overview

password is stored. The Pubkey column contains the user’s public key.
Public keys are X.509 certificates stored using the binary blob data type.

The “administrators” table contains reference to the registered users
(users found in the “users” table) which also have administrative rights
within the web application. The users listed here are granted special
permissions, such as viewing or modifying the server’s key pair. Being
able to have this feature is not a necessity for the prototype itself, but it was

63

a helpful feature during the development process.
Each registered user disposes 0 . . . n banking accounts listed in the “ac-

counts” table. Every account has a unique account identifier (AccountID).
The monetary value tied to each account is represented by the Balance
column. The user disposing the account is denoted by the UserID column.
The idea behind the AccountName field was originally to allow users to
add names to their accounts, i.e., “Savings” or “Household”. During the
course of development it was decided that it would be more realistic in a
user test scenario if each account was assigned an arbitrary real-life identi-
fier used by banks. Due to this, this field is in fact used to store the fictive
account number, i.e., the number used to identify a given bank account.
The format for this identifier varies from country to country, e.g., in Nor-
way an eleven-digit identifier using the following format has been used
since 1967: xxxx.yy.zzzzz[4]. This allowed an account to be referenced as
“0112.18.97812”, as an example.

Each banking transaction is registered in the “transactions” table. Each
transaction is identified by a unique transaction ID (TransactionID. The
user ID of the user requesting the transaction is also stored with the ID for
the source and destination account. The Value column is used to specify
the amount of money which is to be transferred from the source account
to the destination account. The Status field is used to denote whether a
transaction has been processed by the back-end or not. The idea was that
once a transaction has been requested by a user, the transaction would get a
“Requested” status, and it would not be processed until the transaction was
authenticated using the OffPAD Android application. When the back-end
received this authentication, and verified it as authentic, it would change
the status to “Authenticated”, before any processing would occur.

In order to store information about any failed authentication attempts
a separate table, “failed_authentications” was implemented. This table is
similar to the “transactions” table, but has an additional column for saving
the time stamp for when a failed authentication attempt was made. This
allows users to review any failed authentication attempts.

5.1.2 Back-end & Front-end

The web application as a whole consist of what is usually called a back-
end and a front-end. The front-end is what is visible to the user while
using the web application. Typically that would be anything which is
processed and displayed by the user’s browser. In this way, the front-end
acts like a front for the web application. Generally, a front end is built using
technologies such as HTML5 (HyperText Markup Language), JavaScript6

and CSS7 (Cascading Style Sheets). The server will create and deliver
documents crafted using these technologies to the the web browser which

5HTML - https://www.w3.org/html/
6JavaScript - https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_

JavaScript
7CSS - https://www.w3.org/Style/CSS/

64

https://www.w3.org/html/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://www.w3.org/Style/CSS/

will do the job of processing the information found in these documents and
render the web page, which is then visible in the browser display.

The back-end however, can be described as the part of the system the
user cannot see, which handles the inner workings of the web application.
Imagine the following scenario: a user visits a given web page. The server
delivers an HTML document which instructs the web browser to render a
page with an input field for the user’s first name and a “Submit” button.
The HTML document, now being displayed in the user’s browser is now
the front-end for the web application being served. Now, if the user enters
his or her name into the input field, and presses the “Submit” button, a
new request is made to the web server. This request now contains the
name which was provided by the user. The code on the server-side which
handles this request can be considered to be the back-end. This code
could be written in i.e., Ruby, Python, Java or PHP, which all are popular
server-side (also known as back-end) languages in web development. For
example, this code could take the provided name and store it in a database,
or check its popularity against some other database. The key point is that
all of this is happening without being visible to the user. Let us imagine
that the code handling this specific request only takes the name, and adds
a prefix somewhere along the lines of “Greeting, ”. Then constructs a
new HTML document containing this prefix concatenated with the name
provided which is sent back to the user’s browser. This document is, as
before, rendered by the browser and a page greeting the user is displayed
in the browser window. Now this page can be considered to be the front-
end of the web application. Now, this makes it clear that a web application
can (but does not have to) consist of both a front-end and a back-end, which
interact using HTTP requests/responses.

Henceforth during this section, web application, front-end and back-end
are used interchangeably. When the term web application is used, it refers
to the application as a whole, in other words the front-end and back-end
combined. The term front-end will refer to the UI (User Interface) provided
to the user through his or her browser. The back-end refers to any code
invisible to the user. The complete source code tree can be found in online
using the following link: www.kaffemarius.com/Web_Application.tar.gz. If
prompted for a username and password, masterthesis and masterthesis2016
should be provided.

For the back-end, the PHP8 (PHP: Hypertext Processor) language was
chosen due to its gradual learning curve, which seemed like a good al-
ternative for those who have little or no experience with web program-
ming. The version of the PHP engine used throughout development was
PHP 5.4.36-0+deb7u3. As for the technologies for the front-end the de facto
standards, HTML, CSS and JavaScript were all used. A third party front-
end framework, Bootstrap9 (version 3.3.2), was used as a helpful tool when
implementing the design.

The name “Krokstad Sparebank” was chosen for the mock-up bank,

8PHP - https://secure.php.net/
9Bootstrap - http://getbootstrap.com/

65

www.kaffemarius.com/Web_Application.tar.gz
https://secure.php.net/
http://getbootstrap.com/

therefore the URL www.krokstadsparebank.no is referenced both throughout
the text as well as in some of the figures provided. The prototype was
configured in such a way that the domain krokstadsparebank.no points to
the IP address of our virtual web server which is serving the actual web
application.

Figure 5.4: Web application - Login page

The front-end of the web application offers a simple login screen when
first loaded. In this way, a user is able to log in using his or her username
and password, as illustrated in figure 5.4. For this prototype we found
that a username & password scheme was sufficient, and multi-factor user
authentication was not implemented, which would be recommended for
a real-life online banking system. Any user will have to be registered in
advance, before attempting to log in. When a user has logged in, she gains
access to more functionality, such as registering new transactions, review
account balance and transaction history, and review transaction logs. As
seen in figure 5.5. In addition, the user is able to upload her public key,
which is required for the web application to validate the digital signatures
used for the authentication of the transactions. It is required that the
certificate provided by the user is formatted as an X.509 certificate. This
is illustrated in figure 5.6.

The left side of figure 5.7 illustrates the page used for registering new
transactions, whereas the left side of this figure illustrates the transaction
details page the user is redirected to whenever a new transaction is
submitted. This page, the transaction details page, is the page the user
would capture an image from using a smart phone for authentication
using the OffPAD Android application. When a new transaction is
registered within the backend, it will, as previously mentioned, be put

66

www.krokstadsparebank.no
krokstadsparebank.no

Figure 5.5: Web application - Functionality when logged in

Figure 5.6: Web application - User info

in a “pending” state. This means, in context of this web application, that
the transaction will not be processed before the web application receives a
valid authentication for the transaction in question. This, as we know, is

67

Figure 5.7: Web application - Transaction registration and transaction
details

done using the OffPAD application running on an Android smartphone,
and is described in depth in section 5.2 on page 71.

Any transaction authentication attempts towards the web application
is handled by the code defined in the authenticate.php file. This
process is initiated by a HTTP request towards the URL http://www.
krokstadsparebank.no/authenticate.php, made from the OffPAD Android
client. The PHP code expects an HTTP POST10 request, which includes
a UserID, a TransactionID, the encrypted transaction as well as a digital
signature of the transaction details, as seen in listing 5.1.

Listing 5.1: PHP code handling authentication attempts
i f ($_SERVER [’REQUEST_METHOD’] != ’POST ’) {

http_response_code (FAILURE) ;
echo " Unsupported request method .\n " ;
wr i te_ to_ log (" Got non−POST request . Doing nothing ") ;

}
e l s e {

// Request was of type POST . 4 paramaters must be s e t : UserID ,
TransacionID , EncryptedOCR and SIG of EncryptedOCR .

$user id = $_POST [’ userid ’] ;
$ t r a n s i d = $_POST [’ t r a n s a c t i o n i d ’] ;
$ t r a n s a c t i o n = base64_decode ($_POST [’ t r a n s a c t i o n ’]) ;
$s ignature = base64_decode ($_POST [’ s ignature ’]) ;
// Write to t e s t f i l e to disk , j u s t f o r t roubleshoot ing
$ f i l e = fopen ("/ var/www/krokstadsparebank . no/logs/ s i g . tmp " , "w") ;
f w r i t e ($ f i l e , $s ignature) ;
f c l o s e ($ f i l e) ;

Since the transaction details are encrypted using the web server public key,
the web application will decrypt the details using its private key, which
is stored as a file on the server itself. When the transaction details are
decrypted (and stored in memory as plain text), the server will verify that
the corresponding signature is valid, and that it was produced using the
user’s private key (which we assume is safely stored within the OffPAD
application itself). This is achieved in the verify_transaction_integrity
function, defined in authenticate.php, which can be seen in listing 5.2.

10HTTP POST - https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

68

http://www.krokstadsparebank.no/authenticate.php
http://www.krokstadsparebank.no/authenticate.php
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

Listing 5.2: Function for verifying digital signature of transaction details
func t ion v e r i f y _ t r a n s a c t i o n _ i n t e g r i t y ($ p l a i n t e x t , $s ignature , $user id) {

$pubkey = get_pubkey ($user id) ;
i f (empty ($pubkey)) {

/* No pubkey found . E i t h e r because of i n v a l i d UserID , or t h a t the
user haven ’ t uploaded any pubkey information */

return array (" r e t " => f a l s e , "msg" => " V e r i f i c a t i o n F a i l u r e .
I n v a l i d user ID , or empty pubkey .\n ") ;

}
$ r e t = o p e n s s l _ v e r i f y ($ p l a i n t e x t , $s ignature , $pubkey , " sha512 ") ;
i f ($ r e t == 1) {

re turn array (" r e t " => true , "msg" => " V e r i f i e d OK.\n ") ;
}
e l s e i f ($ r e t == 0) {

re turn array (" r e t " => f a l s e , "msg" => " V e r i f i c a t i o n F a i l u r e .
I n c o r r e c t s ignature .\n ") ;

}
e l s e {

re turn array (" r e t " => f a l s e , "msg" => "An e r r o r occured while the
system t r i e d to v e r i f y the i n t e g r i t y of the t r a n s a c t i o n .\n ") ;

}
}

As seen in the listing, the public key for the user who is attempting to
authenticate the transaction is retrieved from the “Pubkey” column for
the corresponding user in the “users” table in the database (please refer to
section 5.1.1 on page 62 for the complete database design). If a key is found
in the database, by using the OpenSSL library 11, the provided signature
is tested against the provided transaction details using the key. If the
signature is found to be valid, the transaction is processed further by using
the process_authentication_request function. However, if the signature is
not found to be valid, the authentication attempt is aborted, while an error
is sent back to the OffPAD application which sent the request.

In the process_authentication_request function the transaction the user
has requested to authenticate is retrieved from the database by using the
provided transaction ID. Since the transaction from the OffPAD application
is sent in a predefined format (refer to section 5.2.3 on page 80), the data has
to be parsed before further processing. When it has been parsed, every field
in the transaction stored in the database, is compared to the corresponding
field provided by the OffPAD application. If every field matches, then
the transaction is authenticated. If there is any divergence between the
fields, the transaction will not be authenticated, and an unsuccessful
authentication attempt will be logged in the “Failed_authentications” table.
func t ion p r o c e s s _ a u t h e n t i c a t i o n _ r e q u e s t ($userid , $ t r a n s a c t i o n i d ,

$ t r a n s a c t i o n) {
//1. Fetch the r e g i s t e r e d t r a n s a c t i o n from DB
$trans_from_db = s e r v e r _ g e t _ t r a n s a c t i o n ($ t r a n s a c t i o n i d) ;
//2. Parse $ t r a n s a c t i o n
$trans_from_request = t r a n s a c t i o n _ s t r _ t o _ a r r a y ($ t r a n s a c t i o n) ;
i f ($ trans_from_request [’ re t ’] != t rue) re turn $trans_from_request ;
//3. Compare each f i e l d in the t r a n s a c t i o n from DB with every f i e l d in

$ t ra n s a c i on
i f ((strcmp ($trans_from_db [’ userid ’] , $ trans_from_request [’ userid ’]) ==

0) && (strcmp ($trans_from_db [’ src_account ’] ,
$ trans_from_request [’ src_account ’]) == 0) && (strcmp (

$trans_from_db [’ dst_account ’] , $ trans_from_request [’
dst_account ’]) == 0)

11OpenSSL and PHP - http://php.net/manual/en/book.openssl.php

69

http://php.net/manual/en/book.openssl.php

&& (strcmp ($trans_from_db [’ kid ’] , $ trans_from_request [’ kid ’]) ==
0) && (strcmp ($trans_from_db [’ amount ’] , $ trans_from_request [’
amount ’]) == 0)) {
//4 I f match ; Mark the t r a n s a c t i o n as approved , add to the

a u t h e n t i c a t i o n t a b l e and return true
$ r e t = server_mark_t ransac t ion_as_authent i ca ted ($ t r a n s a c t i o n i d

) ;
i f ($ r e t [’ re t ’] == f a l s e) {

re turn $ r e t ;
}
re turn array (" r e t " => true , "msg" => " Transact ion

authent i ca ted .\n ") ;
}

// I f NOT match ; log the attempt to f a i l e d _ a u t h e n t i c a t i o n t a b l e and
return f a l s e

// Log attempt .
$tmp = lo g_ au the nt i c a t io n_ a t te mp t ($trans_from_request) ;
i f ($tmp [’ re t ’] != t rue) wr i te_ to_ log ("MySQL e r r o r : " . $tmp [’ error ’] . " \ n

" . $tmp [’ sql ’]) ;
re turn [" r e t " => f a l s e , "msg" => " Mismatch .\n "] ;

}

When a transaction is authenticated, it is put in a “authenticated” state.
In a real-life setting, that would mean that the transaction would be
processed (value is transferred from the source account to the destination
account). In this prototype, nothing actually happens after a transaction
has been marked as “authenticated”, other than being marked.

Figure 5.8: Web application - Transaction overview field

All transactions, both those that are registered but have not yet been
authenticated as well as those who are, are visible in the “Transaction
Overview” page (which can be found in the drop-down menu illustrated
in figure 5.5). This page, the transaction overview page, can be seen
in figure 5.8. Transactions listed in the “Pending authentication” table
are those that still require a valid authentication. Right below, in
the “Authenticated” table, those transactions which already have been
authenticated are listed. As seen in the figure, an “Authentication Log”
is available in the leftmost column in each table. When a user presses
this column, a new page displaying the authentication history for the

70

transaction in question is loaded, as seen in figure 5.9. The top row displays
the transaction which has been received from the web browser, marked
in blue. The two rows below, outlined in red, are two authentication
attempts where the transaction details do not match the ones that were
received through the web browser. In this way a user can investigate why

Figure 5.9: Web application - Authentication history

a given transaction fails to authenticate. One reason could be that there
is some malware running inside the client computer, which is altering the
transaction within the browser before it is sent to the bank, as described in
chapter 4 on page 53. Another plausible explanation for why a transaction
will not authenticate is that the OCR processing conducted using the
OffPAD application (as described in section 5.2.2 on page 75) has failed
to extract the correct information, and the user has failed to notice it before
attempting to authenticate.

5.2 Android client

The Android application was developed using Android Studio12, which
is an IDE (Integrated Development Environment) for the Android plat-
form. The version of the Android SDK (Software Develpment Kit) changed
throughout the development process, but the final version of the applica-
tion was compiled using the version 23 in combination with Android Stu-
dio version 2.0.

The application was originally tested and developed using a Sony
Xperia Z3 Compact13. Due to a savage encounter with a bathroom floor
a second phone, a Sony Xperia Z5 Compact14, was used in the later stages
of the project. The version of the Android OS changed (naturally, due to
software updates from the manufacturer) during the project, but the final
version of the application was tested in a version 6.0.1 environment.

For the required OCR capabilities a third party software library, tess-
two15 (version 5.1.0-53-g08b4d41), was used. This project is according to
their own web site a fork of the Tesseract Tools for Android16 project, which
in turn is a implementation of the Tesseract OCR engine for the Android
platform.

12Android Studio - https://developer.android.com/studio/index.html
13Sony Xperia Z3 Compact - http://www.sonymobile.com/us/products/phones/

xperia-z3-compact/
14Sony Xperia Z5 Compact - http://www.sonymobile.com/global-en/products/phones/

xperia-z5-compact/
15tess-two - https://github.com/rmtheis/tess-two
16tesseract-android-tools - https://git.io/vXUG1

71

https://developer.android.com/studio/index.html
http://www.sonymobile.com/us/products/phones/xperia-z3-compact/
http://www.sonymobile.com/us/products/phones/xperia-z3-compact/
http://www.sonymobile.com/global-en/products/phones/xperia-z5-compact/
http://www.sonymobile.com/global-en/products/phones/xperia-z5-compact/
https://github.com/rmtheis/tess-two
https://git.io/vXUG1

The tess-two software, just as tesseract, requires a training data file in
order to perform OCR processing. A training data file contains language
and font specific information which helps the software identify and extract
the correct information. For the prototype, it was decided to use a stock,
training data file for the English language published by the tesseract
project17. This file was then transferred to the smart phone’s internal
storage.

Since it is assumed that the OffPAD client already has been initialized
in a way so that it holds a cryptographic secret, an RSA key pair for
the OffPAD client was generated using the openssl library on a separate
computer. The private key was converted to a PKCS8 format, and
transferred to the smart phone’s internal storage, together with the server’s
public key formatted in the PEM format. The public key for the OffPAD
client was added to the dummy user already registered in the web
application.

Having to manually copy these three files, the training data file, server’s
public key and the client’s private key, is impractical for any real use
scenario. This information should be stored within the application itself
for more granular control, as well as better usability. However, this would
require a more advanced system (at least for management of the different
keys used), which is outside the scope of this prototype.

Applications for the Android platform consist of one or more activities.
In this context, one can think of an activity as a separate application being
responsible for a small set of features, which can be invoked by other
activities within the application. This is similar to a function or procedure
in a traditional computer program written in i.e., C or Lisp. Much like
functions, an activity can receive data when being invoked (just like a
function can be fed with arguments or parameters when being called), and
return data back to its caller when exiting (similar to a function’s return
value).

In this way, it is possible to structure the OffPAD application according
to the different steps in the work flow e.g., one activity for taking a picture,
one activity for the authentication towards the web server. Based on the
work flow presented in the security ceremony provided by the OffPAD
project (see figure 4.2 on page 55), the following possible activities were
identified:

• Main activity (default screen)

• Acquire Picture activity

• Conduct OCR activity

• Verify Transaction Details activity

• Authenticate activity

17tesseract-ocr-3.01.eng.tar.gz - https://tesseract-ocr.googlecode.com/files/
tesseract-ocr-3.01.eng.tar.gz

72

https://tesseract-ocr.googlecode.com/files/tesseract-ocr-3.01.eng.tar.gz
https://tesseract-ocr.googlecode.com/files/tesseract-ocr-3.01.eng.tar.gz

Based on the compiled list of possible activities which could be
implemented in the application, sketches for each of the activities’ UI (user
interface) were produced. For this, the open source GUI (Graphical User
Interface) prototyping software “Pencil”18 was used. An example of these
sketches can be seen in figure 5.10. All the UI sketches produced during
this stage can be seen in Appendix B.

Figure 5.10: Application UI sketches - Part I

Based on these sketches, development of each activity began. It was
early discovered that there was a built-in activity in the Android SDK19

for acquiring images using the camera, if present. Due to this, there was
no need to create a new activity for acquiring images from scratch. It
was also decided to combine two of the possible activities, the “Verify
Transaction Details” activity and the “Authenticate” activity, to a single
activity: “Authenticate Activity”. As a result, the prototype ended up with
fewer activities than initially planned. Figure 5.11 illustrates the different
activities which ended up being implemented in the application, and how
they relate to each other.

What follows is a short description of each activity, its purpose and
elaboration of some of the technical details. The complete source code for
the application is found online at www.kaffemarius.com/OffPAD_Android_
Application.tar.gz. If prompted for a username and password, masterthesis
and masterthesis2016 should be provided.

18Pencil - http://pencil.evolus.vn/
19MediaStore.ACTION_IMAGE_CAPTURE - https://developer.android.com/reference/

android/provider/MediaStore.html#ACTION_IMAGE_CAPTURE

73

www.kaffemarius.com/OffPAD_Android_Application.tar.gz
www.kaffemarius.com/OffPAD_Android_Application.tar.gz
http://pencil.evolus.vn/
https://developer.android.com/reference/android/provider/MediaStore.html#ACTION_IMAGE_CAPTURE
https://developer.android.com/reference/android/provider/MediaStore.html#ACTION_IMAGE_CAPTURE

Figure 5.11: OffPAD Android application activities

5.2.1 Main Activity - MainActivity.java

The main activity is the starting point of the application, and is starting
point of the application when it is launched. The main application offers a
simple GUI where the user is able to start either the process of capturingan
image (which will later be used for the OCR processing), or to start OCR
processing (which requires a valid reference to an already captured image).
The user interface provided by the main activity is seen in figure ??.

For the image acquirement, the built-in MediaStore.ACTION_IMAGE_CAPTURE
activity (see previous section) is used, as seen in figure ??. The functional-
ity for OCR processing has been implemented in the OCR Activity, which is

74

Figure 5.12: Main Activity UI - I

described in the next section. In addition to this, the user is able to custom-
ize some runtime settings, such as activate or deactivate automatic contrast
increase for the images used in the OCR processing.

When the camera activity returns an acquired image to the main
activity, the UI is updated to reflect this, as illustrated in figure 5.14.

5.2.2 OCR Activity - OCRActivity.java

The OCR activity is called from the main activity, using the “OCR”
button in the UI. This is only possible when the main activity has re-
ceived a reference to a captured image from an instance of the Me-
diaStore.ACTION_IMAGE_CAPTURE activity, which comes with the An-
droid SDK. The code snippet responsible for invoking the OCR activity can
be seen in listing 5.3.

Listing 5.3: Main activity invoking OCR activity
publ ic void dispatchOCRActivi tyIntent (View view) {

I n t e n t i n t e n t = new I n t e n t (t h i s , OCRActivity . c l a s s) ;
i f (mCurrentPhotoPath != n u l l && ! mCurrentPhotoPath . isEmpty ()) {

. . .
i n t e n t . putExtra (" f i l e P a t h " , mCurrentPhotoPath) ;
s t a r t A c t i v i t y (i n t e n t) ;

}

75

Figure 5.13: Built-in Camera Activity UI

e l s e {
I n t e n t i = new I n t e n t (t h i s , Warning . c l a s s) ;
i . putExtra (" message " , "No p i c t u r e i s a c t i v e . P lease capture an

image before proceeding to OCR Analysis ") ;
s t a r t A c t i v i t y (i) ; }

}

When the OCR activity is invoked with a reference to an image file, it
will first set up the UI, before what is called an “asyncronous task” in
the domain of Android programming is prepared for conducting the OCR
processing. An asyncronous task in this context can be thought of as a
simplified thread known from traditional computer programming. If we
imagine a simple, single core CPU (Central Processing Unit), also just
known as the “processor” in a computer, we know that it can only execute
one instruction at the time. In this way, it would seem impossible that
a computer would be able to do more than one thing at once. This is in
fact true, yet while using a computer one can browse the web, listen to
music and work on a text document seemingly all at once. What is actually
happening behind the scenes is that each program is allocated short periods
of computing time on the CPU which allows their instructions to be
executed. It is usually the operating system which manages the process of
this switching between programs, and it happens so often (at least for user
experience centred operating systems such i.e., Windows or GNU/Linux)

76

Figure 5.14: Main Activity UI - II

that it appears that multiple things are being executed in parallel.20

The use of the asyncronous task allows the UI to be updated in order to
give feedback to the user, while at the same time, OCR processing occurs.
Some relevant parts of the asyncronous task can be seen in listing 5.4.

Listing 5.4: Asyncronous OCR task definition
p r i v a t e c l a s s OCRAnalysisTask extends AsyncTask<Str ing , Void , Transact ion >

{

S t r i n g TAG = " OCRAnalysisTask " ;
. . .

Context contex t ;

publ ic OCRAnalysisTask (Context contex t) {
t h i s . contex t = contex t ;

}

@Override
protec ted void onPreExecute () {

progressDialog = new ProgressDialog (contex t) ;
progressDialog . setMessage ("OCR Analysis in progress . P lease

wait . . . ") ;
. . .

progressDialog . show () ;

20One can achieve true parallel execution using a single CPU with multiple cores, or
multiple CPUs in a single computer.

77

}

@Override
protec ted Transact ion doInBackground (S t r i n g . . . f i l e) {

S t r i n g f i l e P a t h = f i l e [0] ;
i f (f i l e P a t h == n u l l) {

re turn n u l l ;
}

TessBaseAPI tessBaseAPI = new TessBaseAPI () ;
f i n a l S t r i n g tra in ingDataPath = "/mnt/sdcard/no . kaffemarius .

marius . offpadvda / " ;
tessBaseAPI . setDebug (t rue) ;
tessBaseAPI . i n i t (tra iningDataPath , " eng ") ;

. . .
Bitmap bitmap = ImageUti ls . loadImageFromFile (f i l e P a t h) ;
bitmap = ImageUti ls . i n c r e a s e C o n t r a s t (bitmap , 3 , 0) ;

i f (bitmap == n u l l) {
re turn n u l l ;

}

tessBaseAPI . setImage (bitmap) ;
S t r i n g t e x t = tessBaseAPI . getUTF8Text () ;

. . .
tessBaseAPI . end () ;

Transact ion t r a n s a c t i o n = Transact ion . parseRawOCRdata (t e x t) ;
re turn t r a n s a c t i o n ;

}

As seen in listing 5.4 there are references to two previously unmen-
tioned classes, namely the ImageUtils (ImageUtils.java) and the Transaction
(Transaction.java) classes. The ImageUtils class contains functions which
were created to facilitate some pre-OCR image processing. As seen in list-
ing 5.4, the function ImageUtils.IncreaseContrast is called before any OCR
processing occurs, if enabled in the “Settings” menu.

This will increase the contrast of the image which, at least in my
experience, will improve the accuracy of the OCR process. This code
was originally written by StackOverflow user “Ruslan Yanchyshyn”21.
There were also some ideas for other image manipulation functionality
including, but not limited to automatic removal of visual noise22 and image
binarization 23. During development, only the functionality to increase the
contrast was implemented due to time constraints.

The second class referenced, the Transaction class is used to represent
banking transactions within the application, and its definition can be seen
in listing 5.5.

Listing 5.5: Transaction class definition
publ ic c l a s s Transact ion {

p r i v a t e s t a t i c S t r i n g TAG = " Transact ion " ;

S t r i n g t r a n s a c t i o n I D ;

21How to programmatically change contrast of a bitmap in android? - http://
stackoverflow.com/a/17887577

22Image Denoising - http://opencv-python-tutroals.readthedocs.io/en/latest/py_
tutorials/py_photo/py_non_local_means/py_non_local_means.html

23Binary Image - https://en.wikipedia.org/wiki/Binary_image

78

http://stackoverflow.com/a/17887577
http://stackoverflow.com/a/17887577
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_photo/py_non_local_means/py_non_local_means.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_photo/py_non_local_means/py_non_local_means.html
https://en.wikipedia.org/wiki/Binary_image

S t r i n g userID ;
S t r i n g srcAccount ;
S t r i n g dstAccount ;
S t r i n g amount ;
S t r i n g KIDNumber ;
S t r i n g date ;

. . .
}

As seen at the end of the asyncronous OCR task, a call to Transac-
tion.parseRawOCRdata() is made, with the raw output received from
the OCR processing sent as an argument. This function will attempt to
parse and identify the different transaction fields from the text, while do-
ing some validation of the data. If the data received cannot be a valid
transaction (i.e., there are more fields in the data than what is expected),
an error is returned. If the received data seemingly is a valid transaction,
Transaction.parseRawOCRdata() will create a new instance of the Trans-
action class containing the transaction details extracted during the OCR
processing, and return a reference to this object back to the caller.

Figure 5.15: Screenshot - OCR Activity

When a valid transaction has been identified, it is displayed within
the OCR activity’s GUI, together with a friendly reminder for the user
to verify the transaction details, as seen in figure 5.15. The user now
has the possibility to proceed to authenticate the transaction towards
the web server by invoking the Authenticate activity, by pressing the
“Authenticate” button. The authenticate activity is described in the next
section.

79

5.2.3 Authenticate Activity - AuthenticateActivity.java

The Authenticate activity can be invoked by the OCR activity when a
valid transaction has been identified during OCR processing. This valid
transaction, represented by an instance of the Transaction class, is made
available to the authenticate activity upon invocation.

In this prototype, in contrast to the description provided by the OffPAD
project, authentication begins immediately after the authentication activity
has been invoked. According to the description provided by the OffPAD
project, the user would have to provide some biometric identifier (such
as a fingerprint) in order to authenticate the transaction. Due to the lack
of a fingerprint reader on the first phone used for the development, this
functionality was omitted.

As used in the OCR activity, an asyncronous task is used within the
authentication activity for performing the authentication.

First, the preloaded keys, the server’s public key and the user’s private
key, is loaded from the internal storage into memory. Then, a string rep-
resentation of the transaction is created, using the Transaction.toString()
function, seen in listing 5.6.

Listing 5.6: Custom toString function for the Transaction class
@Override
publ ic S t r i n g t o S t r i n g () {

re turn t r a n s a c t i o n I D + " ; " +
userID + " ; " +
date + " ; " +
srcAccount + " ; " +
dstAccount + " ; " +
KIDNumber + " ; " +
amount ;

}

For example, calling the Transaction.toString() on the transaction object
illustrated in figure 5.15, would produce a string similar to the one shown
in listing 5.7. Note that the date field would vary, as it is calculated during
execution.

Listing 5.7: String representation of transaction
7 ; 1 ; 1 4 7 1 9 5 0 1 8 9 ; 0 4 2 9 . 1 5 . 8 7 4 2 6 : 0 4 2 9 . 1 5 . 8 7 4 2 7 ; 0 ; 1 0 0

After a string representation of the transaction has been created, a
digital signature24 is created using the string representation together with
the user’s private key. Then, the string representation is encrypted using
RSA encryption and the server’s public key. PKCS#1 v 1.5 padding is
used to remove the deterministic vulnerabilities found in textbook RSA as
previously described in section 3.1.4 on page 40.

Then a single HTTP POST request is made to the web server, containing
the user’s user ID, the ID for the transaction the user wishes to authenticate,
and the encrypted transaction and digital signature encoded using Base64
encoding25, as seen in listing 5.8.

24The digistal signature produced is a SHA512 with RSA
25Base64 encoding - https://en.wikipedia.org/wiki/Base64

80

https://en.wikipedia.org/wiki/Base64

Listing 5.8: HTTP POST request layout
data = " user id =" + URLEncoder . encode (t r a n s a c t i o n . getUserID () , "UTF−8") +

"& t r a n s a c t i o n i d =" + URLEncoder . encode (t r a n s a c t i o n . getTransact ionID
() , "UTF−8") +

"& t r a n s a c t i o n =" + URLEncoder . encode (b64encodedTransaction , "UTF
−8") +

"& s ignature =" + URLEncoder . encode (b64encodedSignature , "UTF−8") ;

The web server will receive the HTTP POST request (unless any net-
work error occurs), and attempt to validate the authentication, as described
in section 5.1.2 on page 64. In the case of successful authentication, the UI
will be updated and the user will be informed that the authentication has
been validated by the web application, and that the transaction will be pro-
cessed. In the case of an unsuccessful authentication attempt, the UI will
update and the user will be informed that the web application found was
not able to verify the authentication attempt based on the data received.
The user is also informed to visit the bank’s web site for more information.
These two scenarios are illustrated in figure 5.16.

Figure 5.16: Authenticate Activity UI

5.3 Communication between webserver and smart-
phone

Since the prototype web server is running as a virtual machine within a
local computer, and the OffPAD application is running on a stand alone
device (Android smart phone), it was required to have a way for these two
separate components to be able to communicate in a lifelike way in order
for the user experiments to be perceived as realistic for the participants.

81

By using hostapd26 software, the virtual machine was configured to
offer a WiFi network. This required a separate USB WiFi adapter27 to be
attached to the virtual machine, and act like network interface. The virtual
machine was then configured to route any traffic received on this interface
trough the main virtual network interface using NAT28 (Network Address
Translation). Any traffic towards this interface, the main virtual network
interface, would be routed through the physical network interface on the
host machine, providing internet access to any devices connected to the
wireless network provided by the USB WiFi adapter.

The dnsmasq29 software was installed in the virtual machine, and
configured to serve any DNS30 (Domain Name System) request arriving
to the interface hosting the wireless network. In this way, any attempts
to resolve the domain name krokstadsparebank.no while connected to the
wireless network would get the IP address of the virtual machine in
response. This configuration is illustrated in figure 5.17 on page 83.

26hostapd - https://wireless.wiki.kernel.org/en/users/documentation/hostapd
27In our configuration, a D-Link DWL-G122 was used
28NAT - http://www.cisco.com/c/en/us/support/docs/ip/network-addresstranslation-nat/

26704-nat-faq-00.html
29dnsmasq - http://www.thekelleys.org.uk/dnsmasq/doc.html
30DNS - https://en.wikipedia.org/wiki/Domain_Name_System

82

krokstadsparebank.no
https://wireless.wiki.kernel.org/en/users/documentation/hostapd
http://www.cisco.com/c/en/us/support/docs/ip/network-address translation-nat/26704-nat-faq-00.html
http://www.cisco.com/c/en/us/support/docs/ip/network-address translation-nat/26704-nat-faq-00.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://en.wikipedia.org/wiki/Domain_Name_System

Figure 5.17: Setup configuration

83

84

Chapter 6

Testing

The focus for the usability study was to answer the third and final
research question described in section 1.2 on page 7 in chapter 1: “Which
level of user friendliness can be achieved with this solution?”, i.e., does the
prototype provide a satisfactory user experience for users of the system.
While working on this project, it soon became apparent that, due to time
constraints, a full scale usability test would not be conducted. However,
as with any HCI (Human-Computer Interaction) usability research, it is
recommended to conduct what is called a “pilot study”.

A pilot study is a downsized version of the planned study, using a
small number of participants. The objective of pilot studies is to reveal and
identify any flaws in the design of study, in order for them to be corrected
before a full scale study is conducted. [27, p. 292-294]. In addition, when
working with a prototype, a pilot study may reveal crucial flaws in the
design of the prototype itself.

This chapter is divided in four main sections. Section 6.1 addresses the
way in which the study was designed. Section 6.2 describes how the study
was conducted in practice. Section 6.3 addresses the key observations
which were made during the study, as well as an attempt to analyse the
data gathered in the study. The last and final section, section 6.4 ddresses
the question of how one can improve both the design of the study, as well
as the design of the prototype, based on the observations made while the
study was conducted.

6.1 Usability study – Design

The study consists of multiple participant sessions, where the subjects are
asked to perform a set of tasks before answering a questionnaire. Before
a participant session can begin, the subject is given an informed consent
form (sometimes known as an institutional review board (IRB form) which
is to be read and signed, if and only if the subject approves the terms of
the study. The motivation behind an IRB form, is to inform the subjects
of the motivation of the study, what data is being gathered and how this
data is being used. When signing an IRB form, the subject approves of
the conditions described, and acknowledges that he or she are aware of

85

that they are participating in a research study, and consenting to it. The
informed consent form can be seen in full in Appendix C on page 119.

For every participant session, a test environment is prepared. This
environment consist of a desk with a computer display, a computer
keyboard and a computer mouse. In addition, a smart phone preloaded
with the OffPAD application is located to the left of the keyboard. The
computer display is already displaying the user interface for the mockup
e-banking system which has been developed as part of the prototype. The
equipment is configured as previously described in section 5.3 on page 81.
This setup is illustrated in figure 6.1.

Figure 6.1: Participant session setup

If the subject, and only if, signs the informed consent form, the subject
is placed in the test environment. Then the user is given a task list [17,
p. 268-270], which can be seen in full in Appendix D on page 121. This
task list instructs the user to register three different banking transactions,
using the e-banking system provided in the test environment. One of these
transactions is seen in table 6.1.

Amount: 6199,-
From account: 0429.15.87426
To account: 0429.15.87427
KID: 803113912605
Recipient: “John Doe”

Table 6.1: Example of transaction defined in task list

The test environment is configured in a way so that the two first
transactions will be registered without any issues, assuming that the OCR
processing is able to extract the correct text from the image of the computer

86

display acquired by the subject. However, the KID number in the third
transaction will trigger the web application to alter the transaction after it
is displayed in the display for authentication, before it is inserted into the
database. This is much like what would happen in a genuine Man-in-the-
Browser (MitB) attack scenario. The motivation behind this, is to see if the
subject, by following the cues provided in the system, would detect that
something is wrong, and hopefully be able to identify that the transaction
has been altered.

After completing the tasks defined in the task list, a questionnaire
[27, p. 308] is presented to the subject, who is instructed to answer the
defined questions. Questionnaires are a classic research technique from
the domain of quantitative research methods. The use of questionnaires
allows researches to collect data from a large number of participants in a
relatively cost efficient way, and, given that the questions and options are
correctly designed, the data gathered can be quantified and analysed using
statistics. However, in order to produce any statistical valid results using
questionnaires, there is a lower bound for the number of responses (i.e.,
how many subjects answering the questionnaire). According to Nielsen,
the minimum number of participants when using questionnaires in order
to get valid results is 20 [23].

The primary motivation behind the questionnaire, is to investigate
whether the prototype is perceived as user friendly by the subjects. Since
“user friendly” is a somewhat vague term, which often can be subjective
and also relative to other existing, similar products, the questions are
designed to investigate whether the OffPAD approach for authentication
of e-banking transactions is perceived as more user friendly than existing
solutions, such as BankID (please refer to 2.2.8 on page 28), or other
similar technologies the subject may have had experience with. The
questionnaire therefore consists of three main parts. Part one includes
questions regarding what previous experience the subject has in regard of
e-banking. All the questions in part one come with predefined answers,
and the subjects are asked to circle one, or in some cases give multiple
answers. Since we plan to compare the subject’s experience with the
OffPAD approach for authentication of e-banking transactions against the
subject’s experiences with other approaches, the first question is simply
defined as “Do you have any previous experience with e-banking?”. Those of
the subjects who answer “No” to this question are asked to continue to
the questions in part three of the questionnaire. In this part the subjects
are asked to rate agreement to three statements according to a predefined
Likert Scale[27, p. 314]. As an example, question two in part III of the
questionnaire is listed in table 6.2 below.

Since the plan is to compare the subject’s previous e-banking exper-
iences to the experience with the OffPAD approach, only the responses
where the subject has previous e-banking experience are relevant. In fact,
the responses where the subject states not having any previous e-banking
experience will be discarded, and not analysed. If the subjects are informed
that if answering “No” to the question regarding previous e-banking ex-
perience, they are incapable of answering the rest of the questions and can

87

Question Strongly
agree

Agree Neutral Disagree Strongly
Disagree

I found it simple to register
transactions using the e-
banking system evaluated
in the study

Table 6.2: Statement from part III of the questionnaire

stop at the first question, then they might be intrigued to falsely answer
“Yes”. This would introduce errors in the final dataset, which should be
avoided. As a consequence, part III of the questionnaire was created, so
that subjects without previous e-banking experience would have a set of
alternative questions they can answer, although they will not be analysed
or be part of the final results.

Those of the subjects who answer “Yes” in the first question, and
have previous e-banking experience, are asked to continue with the
questions in part I. The rest of the questions seek to identify what kind
of technologies for data authentication they have experience with, such
as BankID. Therefore, the subjects are asked in the questionnaire to rate
agreement with statements such as “Making bank transfers using my banks e-
banking system is simple” and “I would prefer to use the OffPAD approach when
registering bank transfers (transactions) over the the approach currently provided
by my banks e-banking system”. If a user finds a task easy to preform upon
using a given system, one may conclude that the system is user friendly.
If so, comparing the responses to these two statements in specific, could
provide the answer to whether the OffPAD approach is perceived as user
friendly by the subjects or not.

The subjects are asked to answer the questions in the questionnaire as
honestly as possible. The questionnaire in full can be seen in Appendix E
on page 123.

When a satisfactory number of participant sessions has been completed,
the results from the questionnaires can be coded and analysed using a
statistical approach.

6.2 Usability study – Pilot study

For the pilot study methods from both qualitative and quantitative research
methodologies were utilized. From the qualitative domain the method
of observation was used. During observation, users are observed by the
investigator while performing a given task or a set of tasks. Observations
can be used in any stage of product development, but when used early in
the process, it can reveal critical flaws in both the design of the usability
study (e.g., the questions in the questionnaires are too confusing), as well
as in the design of the prototype itself (e.g., the web application contains
a malfunction link) [27, p. 321]. As described in the previous section,
the subjects are placed in the test environment and given a list of tasks
which they are asked to perform. In the pilot study, the subjects were

88

observed while performing the tasks by an experiment observer. For the
pilot study, it was decided to have five subjects. According to Nielsen,
when conducting user experiments five is the ideal number of participants,
from a cost-benefit perspective [24]. Nielsen also recommends to run as
many tests as one can afford, however, I only conducted one.

Since the number of participants in a pilot study is far too low for the
results to be statistically valid, the responses in the questionnaires would
have little value. However, since the motivation for the pilot study was
to identify potential flaws of the design of the study, this also includes
the questionnaires themselves. In consequence, the questionnaires also
have to be part of the pilot study. Any confusing or misleading questions
could introduce bias in the results, so it is crucial that these questions are
identified and corrected before any full scale study can be conducted.

In the pilot study, the subjects were asked to answer the questionnaires
after completing the tasks defined in the task list. After filling out the
questionnaire, they were encouraged to give the experiment observer
feedback on the questions.

When a participant session was concluded, the questionnaire was
collected and each was assigned a unique anonymous identifier, in the
format of P001 . . . P00n before the process of cleaning and coding the data
was started. The motivation behind these unique identifiers was that in
case some typo or mistake was made during the coding of the data, it
would be easy to identify where the mistake was made, and correct it.

The process of cleaning the data involved screening the responses for
potential errors.

Before any statistical analysis could be conducted using the gathered
data, it had to be coded in a way so that it could be interpreted by the
software used for the analysis. In this case, it meant that each answer
(or each combination of answers) had to be assigned a unique numeric
value. In preparation for the coding process, a coding table for the
questionnaire used in the pilot study was developed. The responses from
the questionnaires were later coded according to this coding table, and
plotted into a spreadsheet, as seen in figure 6.2. The coding table can be
seen in Appendix F on page 127.

Figure 6.2: Excerpt of coded data

89

6.3 Pilot study – Results

6.3.1 Pilot study – Observations

All subjects were able to, just by looking at the web UI, figure out how
to register new transactions. However, some of the subjects had some
issues registering some of the transactions in the web UI because it was
unclear how exact they were to copy the transaction details from the
task list. For example, one subject provided the account number without
any periods (i.e., 04291587426 instead of 0429.15.87426). This caused the
web application to reject the transaction registration, since it was unable
to find a matching account. The web application should be able to
handle this scenario, presumably by adding some extended validation and
interpretation of the data provided by the user. Since the number of digits
in account numbers are fixed, the web application could automatically
attempt to add the appropriate periods automatically, or simply ignore all
periods.

Some subjects experienced a similar issue when providing information
in the amount field. Some provided the literal string 200,-, instead of just
the digits 200. This also caused the web application to reject the transaction.
Additional logic should be implemented in the web application to handle
these scenarios.

A bug causing the web application to raise a MySQL error was also
discovered during the first participant sessions. As instructed in the task
list, the subject was to leave the KID field empty when registering the
second transaction. Due to a last minute bug fix concerning another issue,
the web application did not handle an empty KID field. Since this was
indeed a major flaw in the prototype itself, subsequent participants were
informed of the issue.

For some of the subjects, it was not intuitive when the OffPAD Android
application was to be used. This indicates that there should be some
kind of visual cue in the web UI, at least the first time a user attempts to
register a transaction, that the user will have to utilize the OffPad Android
application for authentication.

Also, when acquiring images of the registered transaction displayed
in the browser window, several of the subjects failed multiple times to
get an image of sufficient quality. Some images were taken too far away
from the display, making the text too small for the OCR processing to
succeed. In other cases the picture was taken with either a horizontal or
vertical tilt, which had been shown from our previous OCR experiments
(please refer to section 3.2 on page 42) would affect the performance of
the OCR processing. In some of the cases, the mouse pointer was located
on top of the transaction details at the time when the picture was taken,
which would cause the OCR processing to extract incorrect text from the
image. In this way, it came apparent that the instructions provided to the
user regarding image acquisition are insufficient, and should be improved.
Also, some of the image optimisation features proposed for the OffPAD
Android application (please refer to section 5.2.2 on page 75) could improve

90

this aspect of the prototype a great deal when implemented.
Some of the subjects experienced some instabilities in the OffPAD

Android application itself when attempting to proceed to OCR analysis
after an image had been acquired. The application would in some cases
simply crash, informing the user that “Unfortunately, OffPAD VDA has
stopped”. This indicates that an unhandled expection was raised during
runtime. In Android (or Java programming) for that matter, an exception
is an event which occurs during runtime, which disrupts the normal
execution of a program. Exceptions can occur for several reasons for
example I/O errors, invalid user input or invalid format for some piece
of information being processed by the program itself. In some cases
exceptions are expected, and developers can deal with them by writing
special blocks of code which essentially tells the program how to behave
when an exception is raised. For example, if a program is designed to
read some information from a specified file into memory, but the file does
not exists in the specified location, a FileNotFoundException 1 can be
raised. In this scenario, developers could add a code block instructing the
program to inform the user, and ask him or her to specify a new file path
where the file can be found. Unhandled exceptions are simply exceptions
which occurs, where the program does not have a pre-programmed way
of dealing with the exception. This usually causes the execution to come
to a halt. Unfortunately, the smartphone device itself was not connected
to a computer during the participant sessions, so no debug information
regarding these crashes were gathered. At the time of writing, what caused
these crashes is still unknown.

When a transaction had successfully been authenticated using the
OffPAD Android application, the impression after the observations is
that the visual feedback given within the OffPAD Android application is
sufficient. That being said, the majority of the subjects seemed to expect
that the web UI would automatically update whenever a transaction was
successfully authenticated, which it did not. When the display in the
OffPAD Android application showed the confirmation screen, the subjects
would turn the web UI, for a similar confirmation there. This is something
which should be implemented in the prototype at a later point.

For the transaction where authentication failed, either due to incorrect
OCR extraction that the subjects failed to identity, or due to the planned
in-browser alteration of the transaction details, the visual feedback given
by both the browser and the OffPAD Android application seems to be
insufficient. The subjects understood that something was wrong, but were
unable to interpret the situation correctly using the information provided
by the system. The warning found in the OffPAD application’s display
seem too small, because none of the five subjects read the warning when
a failed authentication attempt occurred. Since the web UI did not update
or provide any additional feedback, the subjects seemed rather confused
whenever a failed authentication attempt occurred. As already stated, the

1FileNotFoundException - http://docs.oracle.com/javase/7/docs/api/java/io/
FileNotFoundException.html

91

http://docs.oracle.com/javase/7/docs/api/java/io/FileNotFoundException.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileNotFoundException.html

web UI should implement additional feedback, which would help in this
scenario as well. However, it is clear that the visual feedback given in the
OffPAD Android application has to be improved as well. One possible
solution is to display the warning in a more distinct way, i.e., using a
separate activity to display the warning.

While answering the questionnaires, the participants had the oppor-
tunity to consult the experiment observer if they found any of the questions
confusing and/or misleading. As a consequence, some flaws with the ques-
tions were identified during the pilot study. Question 1.2 (“What means for
user authentication is available in the e-banking system most frequently used by
yourself (i.e., how do you log in to the e-banking system)”) and 1.3 (“What means
for data authentication is available in the e-banking system most frequently used
by yourself (i.e., how do you authenticate banking transactions)”) led to some
confusion. First and foremost, it did not seem like the subjects were able
to tell the difference between user and data authentication without further
context. This led some of the subjects to circle the incorrect selections. Fur-
ther, some of the subjects were unaware of the correct terminology used for
the different technologies available in their banks, which led to some addi-
tional confusion. In order to minimize the risk for misunderstanding and
misinterpretation regarding these questions, one could perhaps add im-
ages of the different technologies (e.g., OTP generator, mTAN and BankID
on mobile) to the corresponding selections. This could make it easier for
the subject to relate to the different options, and lead to less confusion.

Also, when asked to rate agreement with the sentences in 2.1, such as
“I would consider to use the OffPAD approach when registering bank transfers
(transactions), if available in my bank e-banking system” and “I would prefer
to use the OffPAD approach when registering bank transfers (transactions) over
the approach currently provided by my banks e-banking system”, some critical
feedback was received. The majority of the subjects asked the experiment
observer something along the lines of “When answering this, should I base my
answer on the current state of this prototype – or the general concept? Because I
like the concept.”. This indicates that although the subjects were positive to
the approach to authentication of e-banking transaction showcased in the
prototype, the overall quality of the prototype itself is not satisfactory, and
did not provide a good user experience.

6.3.2 Pilot study – Analysis

As stated numerous times, the number of participants in the pilot study is
too low for any statistically valid results. However, since the pilot study
had already been conducted, I decided to try to analyse at least some of the
gathered data regardless. At least, this would showcase how the responses
would be analysed if a study is to be conducted using a sufficient number
of participants.

In the the questionnaire, all subjects acknowledged previous e-banking
experience (question 1.1). As previously described, the subjects had some
confusion regarding question 1.2 and 1.3, which is assumed to cause
incorrect responses. As a consequence, further analysis of the responses

92

BankID on mobile

20%

BankID (without mobile)

40%

Both (BankID and BankID on mobile)

40%

Figure 6.3: Results from questionnaires - Question 1.4

for these questions are omitted. These questions, as previously described,
should be modified so that they appear more clear for the subjects.

According to the responses for question 1.4, all subjects had previous
experience with Bank ID. The following chart illustrates the distribution in
previous BankID experience among the subjects.

The results from the second part of the questionnaire is seen in figure 6.4
on page 94. The responses have been summarised, before a average
was calculated. As seen in the results, the participants had a high level
of agreement with statements such as “’Making bank transfers using my
banks e-banking system is simple’ (Question 2.1B) and “The approach used to
authenticate banking transfers (transactions) in my banks e-banking system is user
friendly” (Question 2.1C), resulting in a average of respectively 2 (“Agree”)
and 2 (“Agree”). However, when rating agreement with statements such
as “I would consider to use the OffPAD approach when registering bank transfers
(transactions), if available in my bank e-banking system” and “I would prefer to
use the OffPAD approach when registering bank transfers (transactions) over the
approach currently provided by my banks e-banking system”, the result yielded
an average of respectively 3.2 and 3.2. According to the pre-defined Likert
scale, this corresponds to a response between “Neutral” and “Disagree”.
These results support what was observed during the participant sessions
– the subjects do not find the approach provided by the prototype for
authentication of e-banking transactions sufficiently user friendly.

6.4 Usability study – Suggested improvements

Based on the observation made during the pilot study, I suggest the
following improvements to the prototype itself, as well as to the design
of the usability study itself:

• Some bugs in the prototype were found throughout the participant

93

2.1A 2.1B 2.1C 2.1D 2.1E 2.1F 2.1G 2.1H

Agree

Neutral

Disagree

Question

Figure 6.4: Results from questionnaires - Part II

sessions. For some of which, the root cause is identified and should
be fixed. For others, the root cause is still unknown, and should be
further investigated.

• Additional feedback in the web UI. As revealed in the pilot study,
the users expected some sort of visual cues in the web browser
when a transaction is successfully authenticated, or an unsuccessful
authentication attempt has been made.

• Additional instructions regarding how to acquire an image of the
transaction details displayed on the computer display. These
instructions could be found in the web UI, in the OffPAD Android
Client or both.

• The image optimisations features described section 5.2.2 should be
implemented and tested. We assume that these optimisation will
improve the source image data used in the OCR processing, thus
increase the performance and accuracy of the text extraction while
decreasing the number of attempts to acquire a source image of
sufficient quality. It is assumed that this would provide an improved
user experience.

• As previously described, some of the subjects found some of the
questions found in the questionnaire confusing, which could lead to

94

errors in the dataset. These questions should be formulated in a way
so that the risk for confusion and misinterpretation is minimised.

95

96

Part III

Conclusions

97

Chapter 7

Conclusion & future work

7.1 Goal fulfilment

In the first part of this Master’s thesis, a set of research questions was
defined (please refer to section 1.2 on page 7). I have done my best
to answer these research questions by the analysis and investigations
described in the previous chapters. In order to make it more explicit, this
section will summarize the results from this Master’s project, and how they
are related to the previously defined research questions.

• Q1: How can, based on concepts and ideas derived from the OffPAD project,
a solution for data authentication of e-banking transactions be designed?

• A1: Based on high-level concepts and ideas from the OffPAD
project and its members, combined with own ideas developed while
working on this Master’s project, a practical design for a system for
data authentication has been described in in chapter 4 on page 53.

• Q2: Based on this design, how can it practically be implemented in a working
prototype?

• A2: As described in chapter 5 on page 61, a working high-fidelity
prototype has been implemented. This prototype seek to showcase
how the OffPAD approach to data authentication using OCR, rather
than the OffPAD device itself. The prototype consists of a smartphone
application developed for the Android platform and a mock-up e-
banking web application.

• Q3: Which level of user friendliness can be achieved with this solution?

• A3: In order to evaluate the level of user friendliness the solution
provides, a pilot usability test study was conducted. Based on the
results from the pilot study, in its current state, the solution for
data authentication described in this document does not provide a
satisfactory level of user friendliness. The subjects who participated
in the pilot study seem to like the concept itself, but the prototype
developed through this project was not of sufficient professional
quality.

99

7.2 Future Work

As when working on any major project, new ideas and perspectives are
developed throughout the process. Despite the fact that the prototype
which has been developed during this Master’s project at the time of
writing is not of a sufficient professional quality, I feel that the approach
to data authentication for banking transactions in e-banking it provides, is
promising.

In addition to e-banking, I feel that this approach has great potential,
and can be applied to other domains as well. These domains include,
but are not limited to e-voting, e-health and e-government. Since the
approach for data authentication described throughout this document in
theory could work in any use case where visual text is involved, it may be
applicable to more analogue use cases as well.

As previously described, several areas of improvement regarding the
prototype itself have been identified while working on this project. It is
assumed that the pre-OCR image optimisation features proposed for the
OffPAD Android application would improve the user experience for any
users of the this system. Further, a general improvement in the stability
of the OffPAD Android application and more appropriate feedback in the
web UI could make both users and service providers more receptive to the
technology. It would be interesting to see a more thorough usability study
of the prototype when all the described improvements are implemented,
and what the results of such a study would be.

Throughout this thesis, it has been assumed that the OffPAD has
already been initialized by the service provider, and is ready for use when
received by the user. This thesis does not discuss important questions
such as how this initialization should occur, and how keys and biometric
modalities are being handled. My personal opinion is that in order for the
OffPAD to be adopted in a broader sense by both the industry and users,
a common secure model for initialization and key management has to be
developed.

Further, attempts to break the data authentication scheme described
in this text should be conducted. Since security is a continuous process,
rather than a constant state, vulnerabilities in this scheme could exists –
they might not have been identified yet.

100

Appendix A

Deliverable 5.2A

101

OffPAD: Deliverable D5.2.a

– Description and Design of the software modules for the

authentication classes Data-US

UiO OffPAD team

1 Introduction

This deliverable presents a detailed description of the design for the authentication class Data-US and

the interface of the respective software module that implements it. We first recall from the previous

Deliverable 5.1 what the class Data-US is supposed to do, in general terms. We then proceed to describe

the details of this security ceremony. We use in our description the formalism of Actor Network

Procedures, which we studied earlier in this project (see the paper [10]) and has been previously

included as part of the Deliverable 5.1. We also make use of Sequence Diagrams when we make

descriptions more close to the software implementation level. We also present the API that this module

provides or requires from the rest of the OffPAD architecture (i.e., fro the OffPAD hardware device,

software agent App, or platform).

The use of Actor Network Procedures has the benefit of being graphical, besides having a formal

language presentation. Moreover, the graphical notation is close to what security protocols designers

are used with and at the same time close to sequence diagrams, as can be seen further on. The formal

language associated would allow us to do formal analyses of the security ceremony that we define. But

this analysis is not included in this document, and will make the subject of a future deliverable.

We focus here on the ceremony which is described as:

Data-US: Authentication of user data by the service provider, to be based on OCR (Optical

Character Recognition) done on the OffPAD secure hardware.

2 Data Authentication

2.1 Background and motivation

According to the X.800 standard the concept of data origin authentication is ”the corroboration that the

source of data received is as claimed” [4]. This is different from entity authentication because knowing

the identity of a remote entity in a session (entity authentication) is different from knowing whether

the data received through a session with a specific remote entity genuinely originates from that entity.

This difference might sound subtle at first glance but it is in fact fundamental for security, as explained

below.

Malware infection of client platforms opens up for attacks against data authentication that entity

authentication can not prevent. More specifically, entity authentication is insufficient for ensuring

trusted interaction in case the client platform is compromised. A typical example is the situation of

online banking transactions with mutual entity authentication. Even when there is strong 2-factor user

authentication, and we assume that users correctly interpret server certificates for server authentication,

there is the possibility that malware on the client platform can modify data communicated between

client and server platforms, and thereby compromise transactions. Current attacks against online

banking are typically mounted in this way. Such attacks lead to breach of data integrity, but not a

breach of entity authentication.

The preparation for this type of attacks typically includes tricking the user into installing a Trojan,

i.e. a program that really or seemingly does something useful, but that in addition contains hidden

malicious functionality that allows the attacker to take control of the client platform. During an online

banking transaction the attacker uses the Trojan program to change transaction details without the

user’s knowledge. SpyEye, Zeus, IceIX, TDL, Hiloti, Carberp, and many others [3, 8] are concrete

examples of malware that enable such attacks.

The separation between the human/legal entity and the system entity on each side of a client-

server session – as we described earlier in Deliverable 5.1 – makes it necessary to specify which entity

in particular is the assumed origin of data. In case e.g. the human user is assumed to be the origin,

and the client system modifies data input by the user before it is sent to the server system, then this

would be a breach of data origin authentication. However, in case the client system is assumed to be

the origin, the same scenario would not be a breach of data authentication. The general rule is that

the object of entity authentication must also be the origin of data authentication. For typical online

transactions where the human user is directly involved and authenticated, the user must also be seen

as the origin of data for data authentication purposes. Unfortunately current solutions for user data

origin authentication are either non-existent or inadequate because they assume the client system to

be the origin of data [2].

Users rely on visual cues to know whether a browser session is secured with TLS. After verifying

that TLS is enabled, averagely security aware users will comfortably input their banking account and

transaction details into the browser window. However, many users ignore that malware like those

mentioned above has functionality commonly known as a ”web inject” that can change the behaviour

of the browser and modify input and output data arbitrarily.

The fact that entity authentication and data authentication are two separate security functions

implies that it is necessary to have specific security mechanisms to ensure data integrity in online

transactions. The OffPAD enables data origin authentication with high assurance and usability, as

explained below.

2.2 High-level description for Data Authentication Supported by the OffPAD

Users generally rely on what they see on a computer display to read the output of transactions, to

verify that they type correctly, and to ensure that the data being sent through online transactions is

according to their intentions. In general, all this depends on the integrity of the computing platform to

which the VDU (Visual Display Unit) is connected. Assuming that the computing platform is infected

with malware it is a priori impossible to trust what is being displayed to be 100% correct [1, 6, 7, 11,

12].

The prospect that the computer display can lie to us is both frightening and real. This problem

is amplified by the fact that we often read data from platforms that are not under our control, and

that hackers have incentives for trying to manipulate the systems and the way data is displayed. For

example, typical attacks against online banking consist of using a malicious Trojan on a client computer

to send falsified transaction data to the bank server while displaying what the user expects to see.

In order to provide data authentication, some online banks offer SMS authorization of transactions,

which consists of mirroring the received transaction data (destination account and amount to be

transferred) together with an authorization code by SMS to the user. After verifying the correctness

of the transaction data, the user returns the authorization code via the browser to confirm that the

integrity of the transmitted transaction data. In case of an attack, it is assumed that the user will notice

when transaction data have been changed, so the attack can be stopped by canceling the transaction.

This method can in theory provide strong data authentication, but it puts a relatively high cognitive

load on the user for verifying the transaction data. In a study, it has been shown that about 30% of

users fail to notice when transaction data in an SMS message have been changed, which means that

30% of attacks would succeed even in the presence of SMS authorisation [2]. The problem with SMS-

authorisation is poor security usability, which fortunately can be solved with Lucidman as is explained

below.

Fig.1 illustrates a simple ceremony for data origin authentication, i.e. to ensure that what is dis-

played on the VDU corresponds to what is being transmitted to other parties in online transactions.

The method assumes that the user has an OffPAD with integrated camera, OCR (Optical Character

Recognition) and communication functions. The user first captures a screenshot from the VDU with

the OffPAD camera, then uses the OffPAD to recover the displayed data from the image through OCR,

and finally to compute a MAC (Message Authentication Code) which is sent along with the original

transaction data. The MAC enables the recipient server to authenticate the received original data.

Internet

3

5

7

4

Server
Infected

Client

OffPAD

User

5 4

AD

1

2 6

User

8

Fig. 1. Ceremony for data authentication with the OffPAD

The actions/messages of the ceremony are described in Table 1.

Even though it is assumed that the client platform is infected, it is easy to see that attackers will

not be able to falsify the transaction data undetected. Falsified transaction data would produce a MAC

mismatch, which would be discovered by the server in (8).

In order to successfully falsify data, the attacker would have to compromise both the client platform

and the OffPAD simultaneously. Since the OffPAD is offline, it is assumed that the OffPAD will not be

exposed to threats from the Internet. A more detailed threat analysis is provided in the next section.

3 Detailed Description of the Data Authentication Ceremony

We will present first the structure of the ceremony and discuss its components (also relating to the

other documents provided by the partners, when needed). We then continue to describe the secure

Nr. Message / action description
1. User types the transaction data in a browser window on the client com-

puter
2. User activates the OffPAD to take a snapshot of the browser window
3: Snapshot is taken of the text displayed in the browser window on the

VDU
4. The OCR function recovers the transaction data from the snapshot
5. MAC generation with the transaction data and the user-password as

input
6. OffPAD send the MAC to the client computer
7. Client computer sends transaction data together with MAC to server
8. Server verifies that the MAC corresponds to the received transaction

data.

Table 1. Sequence of messages and actions for data authentication ceremony

run that we see of this ceremony. Any other possible runs should be considered insecure. In the end

we discuss the API associated to this ceremony and present some sequence diagrams. These would be

similar, but more concrete, to the description of the secure run.

3.1 Structure of the Security Ceremony for Data Authentication

The structure of the Data ceremony is pictured in Figure 2. It comprises of:

Identities of the actors involved in the ceremony. Here we have two: the User (U) and the Bank

(B). For visual aid, we encircle all the configuration under the control of the same agent.

Configurations which are the various parts involved in the ceremony, be that devices or human

persons. Here we have:

– Five basic configurations, which are depicted as the black circles, and labelled according to

their purpose. From right to left, these are:

SB which represents the Server of the Bank. This is why this configuration is under the control

of the Bank identity (represented as the under-script). In Figure 1 this is represented as

the server box.

Term which represents the Terminal to which the user is supposed to interact in order to

perform the transaction operation. In Figure 1 this is represented as the laptop which may

be infected with malware. But the terminal can be other things as well, e.g., the Internet

Browser that is used to communicate with the bank, or the SmartPhone, or an App on the

SmartPhone.

Note that the Terminal is not under the control of any of the two identities. Therefore it

is left open to potentially become under the control of an Attacker.

At this level of description it is good to leave room for such variations. But at the later

point when we describe the sequence diagram we may become even more concrete.

OAU which represents the OffPAD Software Agent that is supposed to be deployed on the

Terminal (or otherwise) to facilitate the interaction of the Terminal with the OffPAD

Trusted Hardware OHU. The software agent is assumed to be under the control of the

User.

PU which represents the Persona of the user (i.e., the human part of the ceremony). We do

not focus on the concept of Personas here, but consider it as is usually done to represent

U

B
SB

PU

UOAUOH

cyb

cyb

key

vis

Termcmd

U
OffPad

visInk

bio

OSchan

IMG

blue

Fig. 2. ANP structure for the Data authentication ceremony.

the Human User involved in the protocol. For more details about Personas please see our

paper [5] and the references therein.

OHU which represents the OffPAD Trusted Hardware which is assumed to offer the follow-

ing trusted hardware components: computation power, biometric imput in the form of

Fingerprint Reader, visual output in the form of InkDisplay, and NFC communication

capabilities.

– One complex configuration, (depicted as a small black square) which we will call the OffPADU

being formed of putting together the OffPAD Hardware and the OffPAD Agent to share in-

formation between each other. The dashed lines symbolize the complex configuration and how

information can flow from the components to the back square and back. This complex config-

uration is thus under the control of the User. How the sharing of information is done is not so

important as long as it respects the assumption that it is secure, i.e., it cannot be intercepted

by an attacker. For this the TazTag will implement this sharing using NFC communication.

The precise implementation of the sharing of information between the Hardware and the Agent

is important, and will be detailed further.

Channels which represent the various ways of transmitting information or interacting in some sort

between the parts of the ceremony (i.e., between the configurations). The channels are depicted as

grey arrows, pointing in the direction of the flow of informations, and are labelled with the type of

channel. The type of channel encapsulates the security assumptions we have about this interaction

medium, and we will make these precise. We are working on developing a formalism for this, which

can be used in conjunction with the formalism we have presented in [10] for the rest of the AMP

ceremony to achieve formal verification.

The ceremony comprises of the following channels:

– There are two cyber-channels (cyb) between the Server of the Bank and the Terminal. Cyber

channels carry the assumptions that are un-safe, falling under the standard Dolev-Yao model

of attacker which can listen to messages, change messages, and insert new messages.

– There is a visual channel (vis) between the Terminal and the Persona. This can be achieved

through any standard display screen, as that of a laptop or of a SmartPhone. The assumption

is that nothing can change the messages sent on this channel, and thus the Persona receives

whatever is sent by the Terminal. But this does not exclude that an infected Terminal sends

spurious information on this channel.

– There is also a keyboard channel (key) which can be used by the Persona to input information

to the Terminal. Similar assumptions as with the visual channel hold here as well.

Note that in both the above channels we do not consider any other aspects like the drivers

which handle the information processing for these channels on the Terminal side. We consider

these drivers to be part of the Terminal. Therefore, if the Terminal is under the control of the

Attacker these drivers may be as well, and thus handle information in unexpected ways. For

example, we may type one character at the keyboard, but the driver changes it into another;

this may not be observable either because the visual display driver is manipulated as well, or

just because of the situation, like with a password form field where instead of seeing what we

type we just see star symbols.

– There is also a visual InkDisplay channel (visInk) from the OffPAD hardware to the Persona.

Assumptions are made of this channel similar to the other visual channel. The InkDisplay is

though more rudimentary and thus can display more simplistic information, and maybe without

all the visual aids of a fully-fledge visual laptop display. For example colours are not available

here, so any visual aids that are usually used to help users, like color red for danger/unsecure,

or color green for secure. This also may make the communication of the information to the user

more error prone, in the sense that the user may not distinguish well the information displayed.

Such situations can be taken advantage by an Attacker in a Social-engineering attack.

On the other hand, the fact that this channel is between the OffPAD hardware means we can

add more assumptions and say that the drivers that handle the information displayed cannot

be manipulated.

– A biometrics channel (bio) transfers Fingerprint biometrics from the Persona to the OffPAD

hardware.

– We have added also a commands channel (cmd), which communicates very simplistic com-

mand messages, OK, StartTransaction, StartOCR, etc. Such a channel can be devised in any

number of ways, like through buttons, or through a led-blink and finger press protocol. In any

case the simplicity of the messages makes it difficult to attack such a channel. Even more in

our situation where this channel is between the Persona and the OffPAD configuration, which

is assumed to be secure and under the control of the User.

– There are two channels between the Terminal and the OffPAD Agent to handle any kind

of information transfer. From the point of view of the information these channels are like

cyber-channel, being able to transfer any kind of data. But these channels are implemented

with short-range communication technologies like NFC, BlueTooth, or Operating System

communication channels. NFC and BlueTooth would be used when the Agent and Terminal

are part of two different devices (i.e., the Terminal is a Laptop), whereas OS-channel would be

used when the Agent is an App on the SmartPhone. This last situation is what we concentrate

on in our first prototype.

– There is also a IMG channel for transferring an image equivalent of the visual display (or

part of it) of the Terminal to the OffPAD. How this channel is achieved can vary, and we are

still investigating which method is best for our purposes. The assumption is that the image

transferred is identical to the one displayed on the visual display (i.e., send on the visual

channel to the Persona). One example, in the case of Terminal being a Laptop, could be to use

a camera incorporated in the OffPAD hardware (which is trusted) and to take a picture of the

Terminal screen. Another example, in the case the Terminal is a SmartPhone, can be to take

a screen-shot and guarantee that the OS-transmission path for this operation to the OffPAD

Agent is secured. This means that all involved software components from the Operating System

of the SmartPhone (like drivers or screen-capture software) are ensured to not be susceptible

to Attacks which have the power to alter the information. Note that attacks that only have

the power to snoop this channel do not break our security assumption.

3.2 Secure Run of the Ceremony for Data Authentication

After we know the structure of the possible communications between the components of our ceremony

we can detail the secure run that we expect of this security ceremony. Any other runs, if possible,

are considered insecure. We picture this run in Figure 3 with graphical notation introduced in [9] and

which we investigate in [10]. This notation should be familiar from Strand Spaces. But otherwise, the

notation is rather intuitive and also similar to sequence diagrams. Nevertheless, we explain each step of

the run, because for our ceremony there are various assumptions and discussions which do not appear

in the figure.

In a run we draw horizontal arrows when there is communication between the parts of the ceremony.

These parts are the ones defined in the structure Figure 2 and for the run we just display these parts

at the top. One can imagine a vertical line (as in sequence diagrams) to pertain to that specific actor

in the ceremony. We label the horizontal arrows with the channel name on which the communication is

done (shows in the same grey color as the arrow itself). On top of the arrows we display the information

that is being sent, or the action that is being taken or that produces the respective information.

We display internal computations or actions by a vertical arrow and label it with the respective

activity that is being performed (possibly with the outcome of that activity).

Sharing of information inside the complex configuration is represented by the same dotted line. In

our case the sharing between the Software Agent and the Hardware is doe through an NFC channel

We detail more each step in the above run.

– The ceremony starts with the service provider sending a fresh value (i.e., the down-arrow labelled

by nu[x], where x is the value) through the Terminal to the OffPAD configuration which shares it

with its components. This is to be used as unique identifier of this particular Transaction.

– The Persona inputs through the keyboard channel to the Terminal the Transaction information,

which we denote by the general term t. What exact structure this information has is not relevant

here, and can later be defined to be many things, like bank account and amount to be transferred.

– The Terminal displays this information back to the User through the visual display channel. This is

natural because usually the user fills in a form, which is already displayed. But we cannot assume

that the Terminal displays the same information, therefore we denote this by t1.

– We then ask the Persona to verify that the information that she intended (and typed) is the same

as the information that she sees. This part is actually done involuntary (or not done at all by a

careless Persona). But it is good to have this step part of the ceremony, though it does not appear

in the implementation part that we see later.

– Presumably, the Persona then starts the OCR operation by sending such a command to the Off-

PAD.

– In turn, the OffPAD Software Agent is the one asking the Terminal for the image related to the

transaction form.

– The acquiring of the Image is an operation that can be done in various ways, and we let it open

here. But in any case we can assume that the image is being transferred from the Terminal (where

SBPU UOAUOH

Cognitive
analyse
t ?= t 2

3

5

6 7

8

Cognitive
analyse

2t ?= t ?= t1

4

1

Term

nu[x]

OSchan cyb
share

xx
x x

key

vis

AskIMGStartOCR
sharecmd OSchan

share

IMG

s s

2t := OCR(s)

s := Im
gAcquire()

t := SendTransInfo()

1t := ShowTransInfo()

visInk

bio

share
m m m

OSchan cyb
check

1

m + t1

2

f := ok+Finger()

2Show(t)

1

0

m := MAC(t , f,x)

m ?= MAC(t , f,x)

U
OffPad

Fig. 3. ANP run for the Data authentication ceremony.

it was displayed to the User) to the Software Agent. This step 3 needs more careful analyses and

development.

– The image is shared with the Hardware.

– In the OffPAD Hardware is where the OCR operation takes place (in a trusted environment). This

takes as input the acquired image, and outputs some transaction information. For our purposes

we can only denote this t2 differently from before.

– The Transaction information is then Displayed on the InkDisplay to the Persona.

– The Persona can check to see if these transaction information are matching.

– Then the Persona can issues the signing key by providing the Hardware with the Fingerprint. This

key can also just be the OffPAD Hardware key (as TazTag specifies in their deliverables when

discussing signing of documents using OffPAD). The Fingerprint can mean the Authentication of

the User by the OffPAD Hardware (function discussed by TazTag documents). The Fingerprint

can also trigger a command, like “OK, make the MAC and finalize the transaction”.

– Using the key f the OffPAD Hardware produces a MAC (Message Authentication Code) of the

transaction information t2 it extracted from the image; call this m. Note that this could have been

done without interaction with the User, but just immediately after the OCR operation, and by

using the OffPAD key, since the user has already been authenticated previously to the transaction

start. But this is an assumption that we need to be careful about.

– The MAC m is being shared with the Software Agent, which in turn sends it to the Terminal.

In the case of teh SmartPhone scenario, the Agent communicates through the Operating System

message bus. But what exact communication mechanism is abstracted away here, and we only

assume to not be so unsecure as a cyber-channel, but maybe under the Operating System.

– The Terminal sends both this message and the transaction information that it wants (here we

assume it sends the same transaction that it was showing to the User) to the Server of the Bank

through the cyber-channel.

– At the Bank’s Server the MAC is being verified against the transaction information sent by the

Terminal.

3.3 API descriptions

By now we can identify several functionalities that need to be provided by the components of the

ceremony in order to achieve the run that we just described. We describe these here in the form of

API specifications. Later we also describe some sequence diagrams in which these APIs are being used,

together with other APIs taken from the documents already provided by TazTag.

1. DisplayTransInfo() on the OffPAD Hardware component

purpose: to display the Transaction information on the InkDisplay of the OffPAD Hardware.

This provides trusted visual communication with the User.

input: annotated in a specific purpose XML format, which we will call TransXML. The annota-

tions are needed so that we can tell the display how each piece of information to be rendered,

like the Banck account larger, or the sum larger.

output: the Status: success or error (what kind of error: parsing, i.e., wrong input, etc.)

2. OCRTransInfo() on the OffPAD Hardware component

purpose: to extract from an image the information related to a transaction for a specific Service.

The image needs to satisfy some visual queues so to allow the OCR to recognize easier the

relevant information and the respective annotation it should carry.

input: an image (like png, jpeg, etc.) that is provided by the Terminal;

together with a Service Provider ID. We use the ID to tune the extraction process (i.e., apply

different parameters or method) depending on the design imposed by the service provider.

output: text in the TransXML format.

3. MACgen() on the OffPAD Hardware component

purpose: to generate a MAC for a message (for us containing the transaction information) using

the key of the OffPAD hardware which is released by the User through authentication with

biometrics. Uses a hash function like SHA-256.

input: the transaction information and a key.

output: a hash of the message.

4. ShareNFC() on the OffPAD Hardware and on the OffPAD Software Agent

purpose: to allow for transmission of any kind of data between the two OffPAD components, in

both ways.

input: what the NFC standard specifies.

output: same as input.

3.4 A Concrete Application

Let us now consider a concrete implementation of the above ceremony in conjunction with the work

of the other partners. See the sequence diagram of Figure 4.

Consider that the Terminal is a SmartPhone with the Android operating system. For the terminal

we consider the Browser through which the User interacts by filling in the form sent by the Bank for

performing a Transaction.

OffPAD
Hardware

OffPAD Software
(Android service)

Software client
(Browser) UserBank’s Server

m = MACgen(t , f , x)2

Send(m , t)1

A

B
Bt = OCRTransInfo(s, ID)

1m ?= MACgen(t , f , x)

StartTransaction()

ShareNFC(x) t = SendTransInfo()

ShareNFC(s)

2

f = Authenticate()

ShareNFC(m)

OSTransmit(x)

OSTransmit(m)

s = ImgAcquire(t)1

Android SmartPhoneSecure Cover

BSendForm(ID) ; SendNounce(x)

2DisplayTransInfo(t)

Fig. 4. Sequence diagram for the Data authentication ceremony.

Then consider the OffPAD Agent to be an “Android bound Service”, as described by TazTag in

the document about the OffPAD Device Specification. Therefore the Agent runs as an Android app,

maybe with different privileges than normal apps. This needs more discussion because it is important

to understand the security aspects and what kind of resources are available to the Agent, and in what

degree can this access to resources be trusted. For example, can the Agent have access to the camera

of the SmartPhone (Terminal); or can the Agent take a screen-shot?

The OffPAD Hardware is attached to the SmartPhone as a back-cover (explained in the documents

of TazTag). NFC communication is possible between the back-cover and the SmartPhone.

There are two main aspects of this diagram that need more detailing: these are marked with the

red labels A and B. This is where the development mostly takes place.

(A) is where we acquire an image of what the Browser displays to the User, to be be used in the

Trusted environment.

(B) is the OCR technology implementation, also considering various designs as preferred by the Bank

(i.e., is parametrized by the Bank’s identifier).

References

1. Mohammed Alzomai, Bander Alfayyadh, and Audun Jøsang. Display security for online transactions.

In The 5th International Conference for Internet Technology and Secured Transactions (ICITST-2010),

London, November 2010.

2. Mohammed AlZomai, Bander AlFayyadh, Audun Jøsang, and Adrian McCullag. An Experimental Investi-

gation of the Usability of Transaction Authorization in Online Bank Security Systems. In The Proceedings

of the Australasian Informatin Security Conference (AISC2008), Wollongong, Australia, January 2008.

3. Sean Bodmer. SpyEye being kicked to the curb by its customers? Research Note, Damballa Inc.

http://www.damballa.com, 2012.

4. ITU (CCITT). Recommendation X.800, Security Architecture for Open Systems Interconnection for CCITT

Applications. International Telecommunications Union (formerly known as the International Telegraph and

Telephone Consultantive Committee), 1991. (X.800 is a re-edition of IS7498-2).

5. Christian Johansen and Audun Jøsang. Probabilistic Modeling of Humans in Security Ceremonies. In

Alessandro Aldini, Fabio Martinelli, and Neeraj Suri, editors, 3rd International Workshop on Quantitative

Aspects in Security Assurance (QASA14), volume 8872 of Lecture Notes in Computer Science, Wroclow,

Poland, September 2014. Springer.

6. A. Jøsang, D. Povey, and A. Ho. What You See is Not Always What You Sign. In Proceedings of the

Australian UNIX and Open Systems Users Group Conference (AUUG2002), Melbourne, September 2002.

7. K. Kain, S.W. Smith, and R. Asokanm. Digital Signatures and Electronic Documents: A Cautionary Tale.

In Proceedings of IFIP Conference on Communications and Multimedia Security: Advanced Communica-

tions and Multimedia Security., 2002.

8. Harshit Nayyar. Clash of the Titans: ZeuS v SpyEye. SANS Institute InfoSec Reading Room, 2010.

9. Dusko Pavlovic and Catherine Meadows. Actor-network procedures: Modeling multi-factor authentication,

device pairing, social interactions. arXiv.org, 2011.

10. Cristian Prisacariu. Actor Network Procedures as Psi-calculi for Security Ceremonies. In Sjouke Mauw,

Barbara Kordy, and Wolter Pieters, editors, GraMSec 2014 – International Workshop on Graphical Models

for Security, 2014.

11. Adrian Spalka, Armin B. Cremers, and Hanno Langweg. The fairy tale of ‘What You See Is What You

Sign - Trojan Horse Attacks on Software for Digital Signatures. In IFIP Working Conference on Security

and Control of IT in Society-II (SCITS-II), Bratislava, Slovakia, June 2001.

12. Arnd Weber. See What You Sign: Secure Implementations of Digital Signatures. In Proceedings of the

International Conference on Intelligence and Services in Networks (ISN 1998), pages 509–520, 1998.

114

Appendix B

GUI Sketches for the Android
application

Figure B.1: Application UI sketches - Part I

115

Figure B.2: Application UI sketches - Part II

Figure B.3: Application UI sketches - Part III

116

Figure B.4: Application UI sketches - Part IV

117

118

Appendix C

Informed Consent Form

119

Evaluation of e-banking prototype
Informed consent form

Responsible for evaluation:
Marius Portaas Haugen
Department of Informatics
University of Oslo
Telephone: +47 984 47 963
E-mail: mariusp@ifi.uio.no

Motivation
This study seek to evaluate an approach to data authentication in a e-banking use case.

Procedure
If you agree to take part in this study, you will perform a given set of tasks in a test
environment, while being observed by an experiment observer. When the tasks are
performed, you are asked to answers a questionnaire.

Risk and benefits
There are no identified risks related to take part in this study, nor any benefits.

Your answers will be confidential
The data gathered in this study will be anonymised, and kept completely private. If any
analysis of the data is made public, it will not include any data which can identify you.

Participation is voluntary
Taking part in this study is voluntary. You are free to skip any questions, or withdraw
from the study completely at any time.

Please sign below to acknowledge that you have read the information above, and that
you consent to participate in the study.

Your name: ______________________

Signature: ______________________

Location: ______________________ Date: ______________________

Appendix D

Task List

121

 OffPAD HCI-Study
Participant Instructions

Introduction
OffPAD is a trusted device to support the different forms of authentication that are necessary for
trusted interactions (e.g., user authentication, server authentication and data authentication). One of
the features proposed for the OffPAD is data authentication using OCR (Optical Character
Recognition).

The objective for this experiment is to evaluate this approach for data authentication in a e-
banking scenario. As a participant of this experiment, you are first asked to perform a set of tasks
described in the next section. After performing these tasks, you are asked to answer the questions
found in the questionnaire attached to this page.

Tasks
In this experiment you will register three e-banking transactions in a online banking system. In front
of you is a computer display. In this display, a user interface for a e-banking system is displayed.
Next to the keyboard, also located directly in front of you, you find a smart phone providing the
OffPAD software.

Transactions to register:
1. Amount: 6199,-

From account: 0429.15.87426
To account: 0429.15.87427
KID: 803113912605
Recipient: “John Doe”

2. Amount: 499,-
From account: 0429.15.87426
To account: 0429.15.87427
KID: None
Recipient: None

3. Amount: 200,-
From account: 0429.15.87426
To account: 0429.15.87427
KID: 071524939825
Recipient: Sammy Smith

Appendix E

Questionnaire

123

OffPAD HCI-Study
Questionnaire

Please circle the most appropriate selection:

Age: 18-25 26-35 36-45 46-55 56+

Gender: Male Female

1.1
Do you have previous experience with e-banking? Yes No Uncertain

If you responded “No” or “Uncertain” in the previous question, you can skip the questions below,
and proceed straight to the questions in in page three (3.1). If you responded “Yes”, please continue
answer the questions below.

1.2
What means for user authentication is available in the e-banking system most frequently used by
yourself (i.e., how do you log in to the e-banking system)? Circle multiple selections if necessary.

Password OTP (One time password) sent by SMS OTP from code generator

Other Uncertain

1.3
What means for data authentication is available in the e-banking system most frequently used by
yourself (i.e., how do you authenticate banking transactions)? Circle multiple selections if
necessary.

Password OTP (One time password sent by SMS OTP from code generator

Smart phone app Other Uncertain

1.4
BankID is the predominant technology used by Norwegian banks for both user and data
authentication. Do you have any experience with BankID? Circle the most appropriate statements,
multiple statements if necessary.

1. I have experience with BankID on Mobile (BankID på mobil)

2. I have experience with BankID

3. I do not have any experience with BankID

The following questions is to be answered by those who answered “Yes” in question 1.1 (Do you have previous experience with e-banking?)
For those who answered “No” in question 1.1, please proceed to the questions in the next page.

2.1

Rate agreement or disagreement with the statements below (i.e., check the most appropriate box):

Question Strongly Agree Agree Neutral Disagree Strongly Disagree

Making bank transfers using my banks e-banking system is secure

Making bank transfers using my banks e-banking system is simple

The approach used to authenticate banking transfers (transactions) in
my banks e-banking system is user friendly

The OffPAD approach for authentication of banking transfers
(transactions) is user friendly

I would consider to use the OffPAD approach when registering bank
transfers (transactions), if available in my bank e-banking system

I would prefer to use the OffPAD approach when registering bank
transfers (transactions) over the approach currently provided by my
banks e-banking system

I would consider to use the OffPAD approach when registering bank
transfers (transactions) if the OffPAD was implemented as a separate
hardware device

I would consider to use the OffPAD approach when registering bank
transfers (transactions), but only if the OffPAD was implemented as
an application for my smart phone

Thank you very much for participating in the testing of the OffPAD data authentication prototype.

The following questions is to be answered by those who answered “No” or “Uncertain” in question 1.1 (Do you have previous experience with
e-banking?)

3.1

Rate agreement or disagreement with the statements below (i.e., check the most appropriate box):

Question Strongly agree Agree Neutral Disagree Strongly Disagree

Making bank transfers using an e-banking system is secure

I found it simple to register transactions using the e-banking system
evaluated in the study

If I were to start using a e-banking system for registering transfers
(transactions), I would like to use the OffPAD appoarch

Thank you very much for participating in the testing of the OffPAD data authentication prototype.

Appendix F

Coding table for questionnaires

127

OffPAD HCI-Study
Questionnaire – Coding Table

Please circle the most appropriate selection:

Age: 18-25 26-35 36-45 46-55 56+
Code: 1 2 3 4 5
Gender: Male Female
Code: 1 2
1.1
Do you have previous experience with e-banking? Yes No Uncertain
Code: 1 2 3
If you responded “No” or “Uncertain” in the previous question, you can skip the questions below,
and proceed straight to the questions in in page three (3.1). If you responded “Yes”, please continue
answer the questions below.

1.2
What means for user authentication is available in the e-banking system most frequently used by
yourself (i.e., how do you log in to the e-banking system)? Circle multiple selections if necessary.

Password OTP (One time password) sent by SMS OTP from code generator
2 3 5
Other Uncertain
7 11 Unique value=product of every response.

1.3
What means for data authentication is available in the e-banking system most frequently used by
yourself (i.e., how do you authenticate banking transactions)? Circle multiple selections if
necessary.

Password OTP (One time password sent by SMS OTP from code generator
2 3 5
Smart phone app Other Uncertain
7 11 13
Unique value=product of every response
1.4
BankID is the predominant technology used by Norwegian banks for both user and data
authentication. Do you have any experience with BankID? Circle the most appropriate statements,
multiple statements if necessary.

1. I have experience with BankID on Mobile (BankID på mobil) – Code: 1

2. I have experience with BankID – Code: 2

3. I do not have any experience with BankID – Code: 4
Unique value: 1,2,3 or 4

The following questions is to be answered by those who answered “Yes” in question 1.1 (Do you have previous experience with e-banking?)
For those who answered “No” in question 1.1, please proceed to the questions in the next page.

2.1

Rate agreement or disagreement with the statements below (i.e., check the most appropriate box):

Question Strongly Agree Agree Neutral Disagree Strongly Disagree

Making bank transfers using my banks e-banking system is secure

Making bank transfers using my banks e-banking system is simple

The approach used to authenticate banking transfers (transactions) in
my banks e-banking system is user friendly

The OffPAD approach for authentication of banking transfers
(transactions) is user friendly

I would consider to use the OffPAD approach when registering bank
transfers (transactions), if available in my bank e-banking system

I would prefer to use the OffPAD approach when registering bank
transfers (transactions) over the approach currently provided by my
banks e-banking system

I would consider to use the OffPAD approach when registering bank
transfers (transactions) if the OffPAD was implemented as a separate
hardware device

I would consider to use the OffPAD approach when registering bank
transfers (transactions), but only if the OffPAD was implemented as
an application for my smart phone

Code: 1 2 3 4 5

The following questions is to be answered by those who answered “No” or “Uncertain” in question 1.1 (Do you have previous experience with
e-banking?)

3.1

Rate agreement or disagreement with the statements below (i.e., check the most appropriate box):

Question Strongly agree Agree Neutral Disagree Strongly Disagree

Making bank transfers using an e-banking system is secure

I found it simple to register transactions using the e-banking system
evaluated in the study

If I were to start using a e-banking system for registering transfers
(transactions), I would like to use the OffPAD appoarch

Code: 1 2 3 4 5

Appendix G

Coded data from the
questionnaires

Subject
A

ge
G

ender
1.1

1.2
1.3

1.4
2.1A

2.1B
2.1C

2.1D
2.1E

2.1F
2.1G

2.1H
3.1A

3.1B
3.1C

P001
1

2
1

2
3

1
3

1
1

2
3

3
4

2
N

/A
N

/A
N

A
P002

2
1

1
6

6
3

3
2

2
5

4
4

5
2

N
/A

N
/A

N
A

P003
1

1
1

7
455

1
1

1
1

5
5

5
5

2
N

/A
N

/A
N

A
P004

2
1

1
15

35
3

2
4

4
2

2
3

2
4

N
/A

N
/A

N
A

P005
1

2
1

10
10

2
2

2
2

2
2

4
4

2
N

/A
N

/A
N

A

131

132

Bibliography

[1] Commerzbank AG. Safe online banking. [Online; accessed 2-September-
2016]. URL: https://www.commerzbank.de/portal/en/englisch/products-
offers/services/secure-internet-banking/banking.html.

[2] Luis von Ahn, Manuel Blum and John Langford. ‘Telling Humans
and Computers Apart Automatically’. In: Commun. ACM 47.2 (Feb.
2004), pp. 56–60. ISSN: 0001-0782. DOI: 10.1145/966389.966390. URL:
http://doi.acm.org/10.1145/966389.966390.

[3] BankID Norge AS. Oversikt. [Online; accessed 2-September-2016].
URL: https://www.bankid.no/bedrift/.

[4] Ann Kristin Bentzen. Dyrt å beholde konto-nummer, men for dyrt?
[Online; accessed 11-August-2016]. URL: http://www.digi.no/artikler/
dyrt-a-beholde-konto-nummer-men-for-dyrt/198807.

[5] Daniel Chandler and Rod Munday. optical character recognition. URL:
//www.oxfordreference.com/10.1093/acref/9780199568758.001.0001/
acref-9780199568758-e-1931.

[6] D. Cooper et al. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280. http : / /www . rfc -
editor .org/rfc/rfc5280.txt. RFC Editor, 2008. URL: http ://www.rfc -
editor.org/rfc/rfc5280.txt.

[7] David Doermann and Karl Tombre. Handbook of Document Image Pro-
cessing and Recognition. Springer Publishing Company, Incorporated,
2014. ISBN: 0857298585, 9780857298584.

[8] FRAUD THE FACTS 2016 — THE DEFINITIVE OVERVIEW OF
PAYMENT INDUSTRY FRAUD. [Online; accessed 08-September-
2016]. 2016. URL: https : / / fraudfacts16 . financialfraudaction . org . uk /
assets/fraud_the_facts.pdf.

[9] Dieter Gollmann. Computer Security. New York, NY, USA: John Wiley
& Sons, Inc., 1999. ISBN: 0-471-97844-2.

[10] Hideaki Goto and Takuma Hoda. ‘Computers Helping People
with Special Needs: 14th International Conference, ICCHP 2014,
Paris, France, July 9-11, 2014, Proceedings, Part I’. In: ed. by
Klaus Miesenberger et al. Cham: Springer International Publishing,
2014. Chap. Real-Time Text Tracking for Text-to-Speech Translation
Camera for the Blind, pp. 658–661. ISBN: 978-3-319-08596-8. DOI: 10.

133

https://www.commerzbank.de/portal/en/englisch/products-offers/services/secure-internet-banking/banking.html
https://www.commerzbank.de/portal/en/englisch/products-offers/services/secure-internet-banking/banking.html
http://dx.doi.org/10.1145/966389.966390
http://doi.acm.org/10.1145/966389.966390
https://www.bankid.no/bedrift/
http://www.digi.no/artikler/dyrt-a-beholde-konto-nummer-men-for-dyrt/198807
http://www.digi.no/artikler/dyrt-a-beholde-konto-nummer-men-for-dyrt/198807
//www.oxfordreference.com/10.1093/acref/9780199568758.001.0001/acref-9780199568758-e-1931
//www.oxfordreference.com/10.1093/acref/9780199568758.001.0001/acref-9780199568758-e-1931
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://fraudfacts16.financialfraudaction.org.uk/assets/fraud_the_facts.pdf
https://fraudfacts16.financialfraudaction.org.uk/assets/fraud_the_facts.pdf
http://dx.doi.org/10.1007/978-3-319-08596-8_101
http://dx.doi.org/10.1007/978-3-319-08596-8_101
http://dx.doi.org/10.1007/978-3-319-08596-8_101

1007/978-3-319-08596-8_101. URL: http://dx.doi.org/10.1007/978-3-
319-08596-8_101.

[11] Andy Greenberg. Hackers Remotely Kill a Jeep on the Highway—With
Me in It. [Online; accessed 22-October-2016]. 2015. URL: https://www.
wired.com/2015/07/hackers-remotely-kill-jeep-highway/.

[12] Chris Hoffman. Glossy vs. Matte LCDs: Which Should You Choose When
Buying a Display? [Online; accessed 31-Oktober-2016]. 2014. URL:
http : //www.howtogeek . com/181727/glossy - vs. - matte - lcds - which -
should-you-choose-when-buying-a-display/.

[13] Google Inc. Google 2-Step Verification - Features. [Online; accessed 12-
March-2016]. URL: https://www.google.com/landing/2step/features.
html.

[14] E. Kalige and D. Burkey. A Case Study of Eurograbber: How 36 Million
Euros was Stolen via Malware. [Online; accessed 1-September-2016].
2012. URL: https://tweakimg.net/files/upload/Eurograbber_White_
Paper_281112%20(2).pdf.

[15] Thorsten Kleinjung et al. Factorization of a 768-bit RSA modulus.
Cryptology ePrint Archive, Report 2010/006. http://eprint.iacr.org/.
2010.

[16] Kaspersky Labs. Security Bulletin 2014. [Online; accessed 29-
November-2015]. 2014. URL: https ://securelist . com/files/2014/12/
Kaspersky-Security-Bulletin-2014-EN.pdf.

[17] Jonathan Lazar, Jinjuan Heidi Feng and Harry Hochheiser. Research
Methods in Human-Computer Interaction. Wiley Publishing, 2010. ISBN:
0470723378, 9780470723371.

[18] Shujun Li et al. ‘Breaking e-Banking CAPTCHAs’. In: Proceedings of
the 26th Annual Computer Security Applications Conference. ACSAC ’10.
Austin, Texas, USA: ACM, 2010, pp. 171–180. ISBN: 978-1-4503-0133-
6. DOI: 10.1145/1920261.1920288. URL: http://doi.acm.org/10.1145/
1920261.1920288.

[19] Adrian McCullagh and William Caelli. ‘Non-repudiation in the
digital environment’. In: First Monday 5.8 (2000). ISSN: 13960466. URL:
http://firstmonday.org/ojs/index.php/fm/article/view/778.

[20] Alfred J. Menezes, Scott A. Vanstone and Paul C. Van Oorschot.
Handbook of Applied Cryptography. 1st. Boca Raton, FL, USA: CRC
Press, Inc., 1996. ISBN: 0849385237.

[21] Microsoft. How to recognize phishing email messages, links, or phone calls.
[Online; accessed 6-March-2016]. URL: https://www.microsoft.com/en-
us/security/online-privacy/phishing-symptoms.aspx.

[22] European Union Agency for Network and Information Security.
Press Release. [Online; accessed 29-November-2015]. 2012. URL: https:
//www.enisa.europa.eu/media/press-releases/eu-cyber-security-agency-
enisa-201chigh-roller201d-online-bank-robberies-reveal-security-gaps.

134

http://dx.doi.org/10.1007/978-3-319-08596-8_101
http://dx.doi.org/10.1007/978-3-319-08596-8_101
http://dx.doi.org/10.1007/978-3-319-08596-8_101
http://dx.doi.org/10.1007/978-3-319-08596-8_101
http://dx.doi.org/10.1007/978-3-319-08596-8_101
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.howtogeek.com/181727/glossy-vs.-matte-lcds-which-should-you-choose-when-buying-a-display/
http://www.howtogeek.com/181727/glossy-vs.-matte-lcds-which-should-you-choose-when-buying-a-display/
https://www.google.com/landing/2step/features.html
https://www.google.com/landing/2step/features.html
https://tweakimg.net/files/upload/Eurograbber_White_Paper_281112%20(2).pdf
https://tweakimg.net/files/upload/Eurograbber_White_Paper_281112%20(2).pdf
http://eprint.iacr.org/
https://securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-EN.pdf
https://securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-EN.pdf
http://dx.doi.org/10.1145/1920261.1920288
http://doi.acm.org/10.1145/1920261.1920288
http://doi.acm.org/10.1145/1920261.1920288
http://firstmonday.org/ojs/index.php/fm/article/view/778
https://www.microsoft.com/en-us/security/online-privacy/phishing-symptoms.aspx
https://www.microsoft.com/en-us/security/online-privacy/phishing-symptoms.aspx
https://www.enisa.europa.eu/media/press-releases/eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberies-reveal-security-gaps
https://www.enisa.europa.eu/media/press-releases/eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberies-reveal-security-gaps
https://www.enisa.europa.eu/media/press-releases/eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberies-reveal-security-gaps

[23] Jakob Nielsen. Quantitative Studies: How Many Users to Test? [Online;
accessed 1-Oktober-2016]. 2006. URL: https : / / www . nngroup . com /
articles/quantitative-studies-how-many-users/.

[24] Jakob Nielsen. Why You Only Need to Test with 5 Users. [Online;
accessed 5-Oktober-2016]. 2000. URL: https : / / www . nngroup . com /
articles/why-you-only-need-to-test-with-5-users/.

[25] Agency for Public Management and eGovernment. Online public
services. [Online; accessed 11-August-2016]. URL: http : / / www .
idporten.no/en/online-public-services.

[26] Reiner SCT. Demo chipTAN comfort Reiner SCT. [Online; accessed 2-
September-2016]. URL: http : / / downloads . reiner - sct . de / flashdemo/
tanJack_optic/1024/tanJack_optic.html.

[27] Helen Sharp, Yvonne Rogers and Jenny Preece. Interaction Design:
Beyond Human Computer Interaction. John Wiley & Sons, 2007. ISBN:
0470018666.

[28] R. Smith. ‘An Overview of the Tesseract OCR Engine’. In: Proceedings
of the Ninth International Conference on Document Analysis and Recogni-
tion - Volume 02. ICDAR ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 629–633. ISBN: 0-7695-2822-8. URL: http://dl.acm.
org/citation.cfm?id=1304596.1304846.

[29] Ian Sommerville. Software Engineering. 9th. USA: Addison-Wesley
Publishing Company, 2010. ISBN: 0137035152, 9780137035151.

[30] SSB. Bruk av IKT i husholdningene, 2015, 2. kvartal. [Online; accessed
18-November-2015]. 2015. URL: http : / /www . ssb . no / teknologi - og -
innovasjon/statistikker/ikthus.

[31] USPS. Postal Mechanization and Early Automation. [Online; accessed
31-March-2016]. 2012. URL: https : / / about . usps . com / publications /
pub100/pub100_042.htm.

[32] Shen-Zheng Wang and Hsi-Jian Lee. ‘Detection and recognition of
license plate characters with different appearances’. In: Intelligent
Transportation Systems, 2003. Proceedings. 2003 IEEE. Vol. 2. 2003, 979–
984 vol.2. DOI: 10.1109/ITSC.2003.1252632.

[33] Lawrence C. Washington and Wade Trappe. Introduction to Crypto-
graphy: With Coding Theory. 1st. Upper Saddle River, NJ, USA: Pren-
tice Hall PTR, 2002. ISBN: 0130618144.

[34] Eric W Weisstein. Fundamental Theorem of Arithmetic. [Online; ac-
cessed 1-Oktober-2016]. URL: http : / / mathworld . wolfram . com /
FundamentalTheoremofArithmetic.html.

[35] Wikipedia. Authentication — Wikipedia, The Free Encyclopedia. [Online;
accessed 11-November-2015]. 2015. URL: https : //en .wikipedia . org/
wiki/Authentication.

135

https://www.nngroup.com/articles/quantitative-studies-how-many-users/
https://www.nngroup.com/articles/quantitative-studies-how-many-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.idporten.no/en/online-public-services
http://www.idporten.no/en/online-public-services
http://downloads.reiner-sct.de/flashdemo/tanJack_optic/1024/tanJack_optic.html
http://downloads.reiner-sct.de/flashdemo/tanJack_optic/1024/tanJack_optic.html
http://dl.acm.org/citation.cfm?id=1304596.1304846
http://dl.acm.org/citation.cfm?id=1304596.1304846
http://www.ssb.no/teknologi-og-innovasjon/statistikker/ikthus
http://www.ssb.no/teknologi-og-innovasjon/statistikker/ikthus
https://about.usps.com/publications/pub100/pub100_042.htm
https://about.usps.com/publications/pub100/pub100_042.htm
http://dx.doi.org/10.1109/ITSC.2003.1252632
http://mathworld.wolfram.com/FundamentalTheoremofArithmetic.html
http://mathworld.wolfram.com/FundamentalTheoremofArithmetic.html
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Authentication

	I Introduction
	Introduction
	Motivation and background
	Research questions
	Scope and limitations
	Research methods
	Contributions and results
	Structure

	Background
	Authentication
	User Authentication
	System authentication
	Data authentication

	Online banking and data authentication
	Transaction Authentication Number
	Indexed Transaction Authentication Codes
	Indexed TAN with CAPTCHA
	Mobile TAN
	TAN Generators
	photoTAN
	chipTan
	BankID

	Technical background
	Cryptography
	Hash functions
	Symmetric cryptography
	Asymmetric cryptography
	The RSA algorithm

	Optical Character Recognition

	II OCR Based Data Authentication
	Design
	Client side
	Server side

	Implementation
	Web application
	Database design
	Back-end & Front-end

	Android client
	Main Activity - MainActivity.java
	OCR Activity - OCRActivity.java
	Authenticate Activity - AuthenticateActivity.java

	Communication between webserver and smartphone

	Testing
	Usability study – Design
	Usability study – Pilot study
	Pilot study – Results
	Pilot study – Observations
	Pilot study – Analysis

	Usability study – Suggested improvements

	III Conclusions
	Conclusion & future work
	Goal fulfilment
	Future Work

	Deliverable 5.2A
	GUI Sketches for the Android application
	Informed Consent Form
	Task List
	Questionnaire
	Coding table for questionnaires
	Coded data from the questionnaires

