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Abstract

Control systems that are used in areas such as nuclear reactors, chemical
plants, railway signaling, and aircraft are safety-critical systems. Failure
on these systems can cause injuries, death, or damage to the environment
and property. These systems must use control systems that have gone
through an extensive and thorough verification process. Programmable
logic controllers (PLCs) are digital control systems that are widely used in
safety-critical systems. These control systems must often be verified with
respect to a specification. There are several ways of doing that and formal
verification techniques is one of them.

The PLC programming standard, IEC 61131-3, is widely accepted in
the industry. PLC programmers who develop control systems for safety-
critical systems often need to verify the logic of the PLCs by using formal
methods such as model checking. Translating from a PLC programming
language to the input language of a model checker takes times and is error-
prone. It also needs to be done frequently if the PLC is often modified.

In this Master’s Thesis we develop and evaluate a compiler that can
automatically translate PLC programs in function block diagram (FBD),
one of five industry standard PLC programming languages, to the input
language of the model checker NuSMV. We will compile a PLC program
from a case study suggested by the company DNV GL. The case study will
used as a validation of the compiler. The efficiency and performance of the
PLC-NuSMV compiler will also be evaluated.
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Chapter 1

Introduction

1.1 Motivation

Engineers that develop safety-critical control systems must verify that their
software is correct and will not fail. Safety-critical systems are systems that
must work at all times and if they do fail, can cause injuries, death, damage
to equipment and property, or damage to the environment. In most cases
it is not possible to verify if a program is completely bug-free, you have to
test if the software satisfies some specific properties. As we will see later,
there are several ways of verifying a program for correctness. A common
way is to use formal methods.

Programmable logic controllers (PLCs), which are industrial computer
control systems, are used in many safety-critical control systems. Engineers
that develop PLC programs and who need to verify their software using
formal methods must first translate PLC programs to a formal description
of the behavior of the program. Done by hand, this process takes effort
and can be time consuming, not to mention, it is error-prone. A program
that does this translation automatically will be a major help for PLC
programmers that do this kind of work.

This project is done in collaboration with the international certification
society called DNV GL (Det Norske Veritas, Germanischer Lloyd). Part
of the work that is done at DNV GL is developing safety-critical control
systems with PLCs. The PLC programs are verified by a formal method
called model checking.

1.2 Goals and contributions

The main contribution and focus of this Master’s Thesis is to design
and implement a compiler that translates PLC source code to the input
language of the model checker called NuSMV. Four main goals for this
project have been defined, and for each goal we list our contributions for
achieving the goal
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Achieving automation

The main goal of this Master’s Thesis and the PLC-NuSMV compiler, is to
achieve automation in translation of PLC code to the input language of a
model checker. The PLC programmers that need to verify PLC programs
will save time and effort by having a tool that does this automatically.

Robustness

PLCs are used for many safety-critical functions, e.g., nuclear reactor
control systems, fire alarms, railway signaling and engine control systems.
PLC programs that deal with these kind of systems must go through a
careful and thorough verification process to ensure that it will never fail.
The compiler that has been developed in this project will be verified by
compiling the PLC code in a case study which we will discuss in the next
chapter. Some self-made examples of PLC programs will be created and
verified for cases and situations the case study does not cover.

The PLC-NuSMV compiler must be able to cope with erroneous input
and errors during execution. The compiler should be able to detect invalid
PLC programs or any other input files and abort the compilation process.
The same is true for the inability to save the target code to a file. The user
of the compiler should receive an intuitive and clear error message when
these situations occur. If one of the input files contain unexpected values or
properties but the compilation process can continue without problems, the
program should output a warning message so that the input files can be
corrected. The program should detect invalid arguments and give the user
an error message and possibly usage information for those arguments.

Efficiency

By creating a fast and an efficient compiler, the PLC programmers who
want to verify a PLC program in NuSMV, can get a quick response from
the compiler and begin the model checking process as soon as possible. To
make it easier to achieve this goal, the PLC-NuSMV compiler must be able
to generate NuSMV test cases with a an adjustable amount of variables. It
will make it possible to test the performance and scalability of the compiler,
and hence allow for detection of bottlenecks which can be fixed.

Portability and extensibility

The PLC-NuSMV compiler must be platform-independent. One should be
able to compile the program source code at least on Linux and Windows.
The cross-platform application framework Qt is needed to compile on all
platforms.

The compiler should be easily extendable. There are five different
languages in the PLC industry standard and the PLC-NuSMV compiler
supports only one of them, but it should be possible to extend the
program to support more PLC languages. The same is also true for the
output language of the compiler, adding support for more model checking
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languages should not be a problem. This is achieved by making the
architecture of the software modular. Design pattern like the visitor pattern
should be used when necessary to separate the data structure and the
algorithm that uses the data structure. These topics will be discussed in
Chapter 3.

1.3 Thesis overview

Chapter 2 is an introduction to the subjects of PLCs and model checking. It
will focus on the parts relevant to this Master’s Thesis.

In Chapter 3 we will discuss the design and implementation details of
the PLC-NuSMV compiler. The architecture of the software, the individual
software components, and the data structures the software components
work with will also be discussed.

In Chapter 4 we evaluate the correctness, the robustness and perfor-
mance of the PLC-NuSMV compiler. We will discuss the testing methods
used during the implementation of the software and present performance
results. The chapter also contains suggestions to possible performance im-
provements.

Chapter 5 contains the discussion of the results and concludes with a
summary of the main contributions of this Master’s Thesis. This chapter
also contains suggestions for further work and possible improvements to
the PLC-NuSMV compiler.

The appendices include information about how to access the source
code of the program and some NuSMV models the compiler has generated
and that are referred to in the rest of the thesis. Examples of XML
documents that follow the PLCopen XML schema and the subset of the
NuSMV grammar that the compiler supports is also included in the the
appendices.
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Chapter 2

Background

This chapter gives a brief overview of the concepts and terms that are
relevant to this Master’s Thesis. It is meant to give a basic understanding
on the subjects of PLCs and model checking so that the reader can better
understand the problem of this thesis and the design and implementation
details of the software that has been developed. The case study, which has
been mentioned earlier, will also be discussed.

The PLC industry standard is vast and only a small subset of it is
relevant to this Master’s Thesis. For example, only one PLC language is
supported. All the PLC programming functionalities that have been used
in the case study will be covered and a few more. NuSMV is the only
supported model checker. We will go through the syntax and structure of
the input language of NuSMV.

2.1 Programmable Logic Controllers

A programmable logic controller (PLC) is a specialized digital industrial
computer control system for operating equipment such as machinery,
processes in factories, telephone switches, and several other types of
control systems.

PLCs were originally developed in the late 60’s to replace electrome-
chanical relay-based machine control systems [6]. The old and complicated
machine control systems were inflexible and they often had to be rewired or
completely replaced every time the production requirements changed and
changes had to be done to the system. Unlike these systems, PLCs could
be programmed easily with a dedicated programming language. This was
a big motivation to replace the old machines with microprocessor based
programmable logic controllers.

PLCs consists usually of a single microprocessor (CPU), memory and
electrical input/output-ports [4]. These ports are connected to sensors
and actuators. Input come from sensors that can measure light, pressure,
electric current, temperature etc., and translate them to digital data [10].
Actuators allows a PLC to cause something to happen. Examples of
actuators are valves, electric motors and relays.
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PLC programs are kept in the non-volatile memory of the pro-
grammable controller. Non-volatile means that the contents of the memory
are kept when the power is lost. PLC programs consist of series of instruc-
tions which are executed sequentially on each CPU. If the PLC has multiple
CPUs, several programs can run at the same time on each of the CPUs.

2.1.1 PLC scan cycle

PLC programs are usually executed cyclically where in each cycle, also
called a scan cycle, three steps happen [10]. In the first step, the processor
in the PLC reads all inputs from the sensors and stores them on a specific
area of memory reserved for inputs.

In the second step of the PLC scan cycle, the processor executes a
program and computes a new internal state and output values [9]. The
output values are saved on a specific area of memory just like the input
data from sensors.

In the third and last step, the output values, which were calculated in
the second step, are passed to the actuators. The time required to complete
an entire cycle is known as the scan time. The scan time usually lasts a few
milliseconds. After the output values are passed to the actuators the PLC
then starts over again with a new cycle.

2.1.2 PLC program structure

A PLC program consists of encapsulated blocks of code called POUs
(program organization units) which have been defined by the IEC 61131-3
standard. A POU can be compiled independently and can be linked
together with other POUs to form a complete program. This independence
of POUs makes it possible to reuse them in different PLC programs and
projects.

There are three types of POUs: functions, function blocks, and programs.
All three types consist of a declaration part where the input and local
variables are declared and a code or instruction part where we find
the program instructions. They are similar to subroutines in general
purpose high-level programming languages in that they can be called with
arguments.

Functions are the simplest type of POUs. They take input parameters
and return an output value. Functions can not retain their data, that is,
the values declared in this POU are lost when the function has finished
executing its code. Functions can not access external/global variables, that
is, variables declared outside its POU. This means, that functions invoked
with the same input parameters yield the same output value.

Function blocks can be thought of as both a function and as an object
when comparing them to object-oriented general purpose programming
languages. They can have static variables which will not lose their value
when the function blocks have finished executing. Function blocks can
access external/global variables.
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Programs represent the main POUs in PLC programs. They are very
similar to function blocks. The only difference between function blocks and
programs is that in programs global and external variables can be declared
and variables declared in programs can be assigned to physical addresses
like memory addresses for PLC inputs and outputs.

2.1.3 IEC 61131-3

In the early days of PLCs, PLC programmers had the problem that they had
to program for vendor-specific PLCs. There was no common language and
programming environment for PLCs across vendors. PLC programmers
wanted a manufacturer-independent programming language and devel-
opment tools, similar to those that had already existed for general purpose
computers [9].

The International Electrotechnical Commission (IEC), an international
standards organization for all fields of electrotechnology, published the
common standard IEC 61131-3 for PLC languages [9]. The standard
serves as a guideline for PLC programming but PLC manufacturers are
not expected to implement the entire standard. There can still be some
differences between programming systems but projects should easily be
ported from a programming system to another [9]. The IEC 61131-3
standard states that functions and functions blocks have to be hardware-
independent as far as possible to achieve reusability across PLC projects
and vendors.

2.1.4 PLC languages

The IEC 61131-3 standard provides five different programming languages
and PLC manufacturers should conform to at least one of them. These lan-
guages are instruction list (IL), structured text (ST), ladder diagram (LD), func-
tion block diagram (FBD) and sequential function chart (SFC) [9]. IL and ST are
textual programming languages and the rest are graphical programming
languages. Graphical languages are represented by diagrams where you
can see how POUs are connected with other POUs or external variables.
Textual languages are like common programming languages where decla-
rations and instructions are typed in textual form. Some of these languages
are more suited for specific kind of control tasks and application areas.

Even though the PLC-NuSMV compiler only supports PLC code in
FBD language, we will also look at an example in IL to compare these two
languages. It might also be viable in the future to extend the program to
also accept IL as an input language.

Instruction list (IL) is a low-level machine-oriented language similar
to assembly languages where usually one instruction is written per line.
Figure 2.1 on the next page shows an example of a function written in
IL. The instructions between VAR_INPUT and END_VAR is the declaration
part and the rest is the code/instruction part. The function in the example
calculates the Boolean expression a ∨ (b ∧ c) by first loading variable a
in a register (the compiler or PLC code editor that generates the PLC
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FUNCTION FuncTest: BOOL
VAR_INPUT
a: BOOL
b: BOOL
c: BOOL

END_VAR
LD a
OR( b
AND c

)
ST FuncTest

END_FUNCTION

Figure 2.1: The Boolean expression a ∨ (b ∧ c) represented in IL

Figure 2.2: The Boolean expression x = a ∨ (b ∧ c) represented in FBD

code should take care of the details) and then it calls the predefined
standard functions of IEC 61131-3, OR and AND, which calculates the
logical disjunction and conjunction respectively. The function then returns
the result of the whole expression. IEC 61131-3 defines many standard
functions (e.g., SQRT, LOG, ADD and COS) and a few standard function
blocks (e.g., counters and timers).

A Function block diagram (FBD) is a type of graph where the nodes
are the variables, functions or function blocks and the edges represent
the connections between the variables in the graph and the input/output
variables in POUs. FBDs are sometimes divided into several networks
which makes it easier to structure the control flow of POUs [9]. Like, IL,
an PLC programs in FBD contains a declaration part and a code part. The
declaration part is usually written in textual form and the code part is the
actual graph.

Figure 2.2 shows an example of PLC program in the function block
diagram language. The PLC program represents the same Boolean
expression as in the IL example. The two big boxes represent functions.
They show which parameters functions take. They also show the output
variable. The lines from the variables (a, b, c and x) to the functions shows
which variable is assigned to which parameter variables in the functions.
In the example, the variable x is assigned the output value of the function
OR. The OR and AND functions each take two parameters, IN1 and IN2.
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2.2 Model checking

To check if a system/program is “correct” we must check if it behaves as
it is supposed to. In most cases it is impossible to verify that a program is
completely free of bugs. The best thing we can do is to check if the program
possesses certain properties. Such properties can for example be that the
system never deadlocks (i.e., two or more actions are waiting for the other
to finish but they never do) or that the system never reaches a certain state
(i.e., a system should never have a certain combination of variable values
at the same time). These properties can be obtained from the program’s
specification which is a detailed description of how the program should
behave or what it should not do. If a program satisfies all the specified
properties, then we can say that the program is correct.

There are several ways of verifying a system is correct with respect to
its specification. One way is to test the actual system against human or
computer generated test cases. It is also possible to create a simulation of
the behavior of the system which can be given different inputs. A third
approach is by verifying that the system satisfies a property or conforms
to the program specification by using formal techniques [7]. Formal means
here using mathematical theories such as logic, automata, etc.

There are several formal verification techniques, model checking is the
one used in this project. Model checking is widely used in verifying the
correctness of hardware circuits. The type of PLC programs that the PLC-
NuSMV compiler support are similar to digital circuits in that only Boolean
values and logic gates are allowed. This similarity is a good reason to use
model checking.

Model checking is a way to exhaustively and automatically check
if a model of a system satisfies a given specification. A model of a
system describes the system behavior in a mathematically precise and
unambiguous manner [2]. Model checking is done by systematically
checking all reachable states of the model. Reachable states are all the states
that are possible to reach from a given initial state. The most important
advantage of model checking over other verification techniques is that it
is fully automatic and that it offers a counterexample if the model fails to
satisfy a given property [2, 7]. A counterexample is an execution path from
an initial state to the state that violates one of the specification properties.
Counterexamples can help the programmer locate the error which makes it
easier to refine the model, design or even the specification.

2.2.1 NuSMV

The state space, the set of all states, grows exponentially as the size of the
description of the model grows. This is called the state explosion problem.
Sometimes the number of states in a model is too large for a computer to
handle, i.e., the memory it takes to store all the states exceeds the amount
of available memory. There are several techniques used by many model
checking tools to combat this problem. One of these techniques is the so-
called partial order reduction. Another is by using a symbolic representation
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of the state spaces such as binary decision diagrams [2, 7]. Much larger
systems can be verified in this manner. Alternatively, one can abstract the
system model so that fewer states are checked by the model checker.

One model checking system based on symbolic representation is SMV
(Symbolic Model Viewer) which originally was developed by Kenneth
McMillan [7]. It is an efficient CTL (Computation tree logic) model checker
that represents the state space on a so-called symbolic OBDD (ordered
binary decision diagram). Specifications in SMV are expressed in temporal
logic. Temporal logic is a logic that includes rules and symbols for
reasoning about time.

The PLC-NuSMV compiler currently supports only the open source
model checker NuSMV [12], a variant of SMV. The PLC-NuSMV’s job is
therefore to translate PLC code to a description of a NuSMV model which
the NuSMV model checker can later read and verify.

2.2.2 The NuSMV input language

As was done in the section about PLC languages (Section 2.1.4), we will
only cover the NuSMV input language components that are relevant to
this thesis and which the PLC-NuSMV compiler supports. For a much
more detailed explanation of NuSMV and the syntax of the input language,
refer to the NuSMV User Manual [5]. The project uses NuSMV version
2.5. The syntax has changed since the 1.0 version but it shouldn’t be a
problem modifying the PLC-NuSMV compiler to support older or even
newer versions of NuSMV.

NuSMV programs/models consist of one or more components called
modules. Modules work similarly to classes in object-oriented program-
ming languages. Each module can define input variables or parameters
like one can do in a constructor for a class. Modules also define new vari-
ables type and can be initialized in other modules.

There must be exactly one module called main in all NuSMV models.
The model checker starts by evaluating this module first. Its job is therefore
to instantiate other modules and variable that are going to be used as
parameters in the module instances. The NuSMV program shown in
Figure 2.2.2 on page 12 consists of three modules, where one of them is
the main module.

The structure of a NuSMV module

Modules can declare variables that can be accessed in other parts of the
module or outside the module. These variables, also called state variables,
go into the VAR section of a module. The data type of the variables must
be specified. They can be of any built-in NuSMV data type or an instance
of a module that has been declared in the same program. The NuSMV
program example in Figure 2.2.2 on page 12 shows that both modules,
FBD_Program and TruthTable, has declared the Boolean state variable
x. In the module main we can see that three Boolean state variables have
been declared. The variables fbd and truth_table are instances of
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the modules FBD_Program and TruthTable, respectively. Both of these
modules have been declared in the same program, and they both take three
parameters. Notice that the state variables don’t get assigned any actual
values, this happens later.

In the DEFINE section of the module, temporary/internal variables are
declared. These variables are assigned an expression instead of a literal
value. The variables inherits the data type of the expression. Expressions
can be parameter variables, complex expressions where various operators
are applied on one or more variables, or simply NuSMV function calls.
NuSMV function calls are not supported by the PLC-NuSMV compiler.

In the ASSIGN state variables are assigned values. NuSMV has three
types of assignments. The standard assignment is like assignments in
other languages, where on the left-hand side of the assignment operator
(here: :=) is the name of a variable (declared in the same module or a state
variable in a module instance) and on the right-hand side is a simple value
or an expression that generates a value. This type of assignment is not
used in this project. The second type of assignment is the init (initialization)
assignment where you assign an initial value to a state variable. In this type
of assignment a literal value or an expression (that generates a value) is
assigned to a state variable. It can be one specific value (e.g., FALSE) or a set
of values (e.g., {FALSE, TRUE}), both types of initialization assignments
can bee seen in the NuSMV example in Figure 2.2.2 on the next page. The
last type of assignment is the next assignment. In a next assignment you
specify what value a variable will have in the next state (time step). The
next expression refers to values of variables in the next state. E.g., next(a)
refers to the value of the variable a in the next state.

When NuSMV sees a set of literal values in an init assignment, it will
randomly pick one of the values as the initial value for the variable. This
means a NuSMV model can have several initialization states. You can also
assign a set of literal values in a next assignment. NuSMV will also in this
case randomly pick one of the values in the set to assign to the variable.
This means that it is not possible to know exactly which value NuSMV will
pick in the next time step. But this is irrelevant because NuSMV will pick
the values randomly in such a way that all combinations of values on all
state variables in the program will be seen in the course of the execution,
provided the specification properties of the NuSMV program are valid in
all states. No state will be evaluated twice.

NuSMV Specifications

A module can have specifications which NuSMV will evaluate to either
true or false. Specifications are expressed in temporal logic. The
specification language used in the compiler is linear temporal logic (LTL).
LTL in NuSMV is extended with past operators [5] but these operators are
not relevant to the PLC-NuSMV compiler. The specification is a Boolean
condition which must be evaluated to true in all states of the model.
As mentioned earlier, a counterexample is shown to the user if NuSMV
encounters a state where the specification is not true.
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The main module usually contains the specification of the model. The
example in Figure 2.2.2 shows that the main module contains one LTL
specification. This specification says that state variable x in the module
instance fbd and the state variable with the same name in the module
instance truth_table should always be equal.

MODULE FBD_Program(a, b, c)
VAR

x : boolean;
DEFINE

and_gate0 := b & c;
or_gate0 := a | and_gate0;

ASSIGN
init(x) := FALSE;
next(x) := or_gate0;

---------------------------------------
MODULE TruthTable(a, b, c)
VAR

x : boolean;
ASSIGN

init(x) := FALSE;

next(x) :=
case

!a & !b & !c : FALSE;
!a & !b & c : FALSE;
!a & b & !c : FALSE;
TRUE : TRUE;

esac;
---------------------------------------
MODULE main
VAR

a : boolean;
b : boolean;
c : boolean;

fbd : FBD_Program(a, b, c);
truth_table : TruthTable(a, b, c);

ASSIGN
init(a) := {FALSE, TRUE};
init(b) := {FALSE, TRUE};
init(c) := {FALSE, TRUE};

next(a) := {FALSE, TRUE};
next(b) := {FALSE, TRUE};
next(c) := {FALSE, TRUE};

-- Specification --
LTLSPEC G (fbd.x <-> truth_table.x)

Figure 2.3: An example of a NuSMV program
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Figure 2.4: The PLC logic of the master unit of the Falcon system [10]

2.3 The case study

In the introductory chapter, it was mentioned that a case study will be
used to verify that the compiler is correct. The case study is from a
technical report by Matti Koskimies [10]. The case study in this report is
an example of translating PLC code to the input language of NuSMV. The
PLC program is very similar to the type of PLC programs that the PLC-
NuSMV compiler expects. The PLC programs are simple in that they can
only contain Boolean variables, Boolean function calls (which are basically
logic gates, e.g., and, or and xor), connections between the logic gates and
input/output variables. It is also the case that the methods used in this case
study to translate PLC programs to NuSMV models is very similar to the
one used by DNV GL.

Because of the above-mentioned reasons, the case study will be used as
a specification for the PLC-NuSMV compiler. The compiler should be able
to read a PLC program in the FBD language that is equivalent to the one in
the case study. It then should compile it to the same NuSMV code as the
one in the same case study.

Figure 2.4 shows the PLC logic of the case study. The figure is
taken from the technical report [10]. It is the control logic of one of
the components in the Falcon protection system which is used to protect
electrical instrumentation and switchgear from electric arcs. We can see in
this figure several input ports (CH1–CH4 and F8.01–F8.16), output ports
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(Triac 1–4 and Relay 1–6) and the logic gates AND (&) and OR (≥ 1). The
logic AND and OR gates that are connected to the above mentioned input
ports are connected only to some of the TRIAC ports and only one Relay
output. Therefore, the model checking verification of the system in the case
study only takes into account the output values of these ports and the logic
gates connected to them.
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Chapter 3

Design and implementation of
the compiler

In this chapter we will discuss the design and implementation details of the
PLC-NuSMV compiler. We will first give an overview of the architecture of
the program and talk about the design choices for the architecture. We will
then move on to a detailed discussion about the most important software
components in the architecture. Some of these components build and work
with some specific data structures which makes it easier to maintain and
modify the program. We will give a detailed description of these data
structures.

3.1 Modular architecture

As mentioned in the introductory chapter, one of the goals of this master
thesis project is to make the PLC-NuSMV compiler as portable and
extendable as possible. To contribute to the extensibility part of the goal,
the architecture of the program has been divided into several components
that deal with separate phases in the compilation process.

To make an efficient compiler that is easy to develop and maintain, you
usually separate the software components into two groups that work with
the two main phases of the compilation process. These are the front end
or the analysis phase, the part that deals with the parsing and analysis of
the source code, and the back end or the synthesis phase, the part that deals
with the target code generation [1]. A typical compiler compiles from a
high-level programming language to a low-level language, like machine
code. It usually consists of several components, both in the front end and
in the back end. The first component in the front end, the scanner, reads
the source code and generates tokens which the parser then reads to create
a representation of the structure of the program. From then on, various
analysis and optimization phases are done before the code generator can
print the target code.

The compiler that has been developed in this Master’s Thesis project
is not a typical compiler in that it doesn’t compile from a high-level
programming language to a low-level language like assembly language.
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Figure 3.1: An overview of the architecture and compilation phases of the
compiler

PLC programs that the compiler is expected to compile, deals with
hardware components, logic gates and connection between the gates.
It is also the case that NuSMV works with high-level programming
language constructs like modules, instances of modules, variables etc.
The NuSMV input language is not used as a programming languages
to create programs, but it is a description of a model that describes a
program’s behavior in a mathematical unambiguous manner. The NuSMV
model checker has several ways of optimizing models such that they can
be verified much quicker. It uses a symbolic representation of the state
spaces, particularly binary decision diagrams (BDDs) which have several
algorithms that can be used to reduce the size of BDDs. A separate software
component that optimizes the target code in the PLC-NuSMV compiler is
therefore not really necessary.

Removing the components and compilation steps of a typical compiler
we don’t need leaves us with a compiler that has an architecture as in
Figure 3.1. In this figure, we see that the PLC code created by the PLC
code editor is read by the first component in the compiler, the XML
parser. It reads the PLC code from an XML file, parses it and creates
a representation of the PLC program in a specific data structure which
the next component in the compilation process can understand. This
component creates another data representation of the program which is
then used by the last component to generate NuSMV code. We will talk
about the architecture and the compilation process in much more detail
later in this chapter.
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3.1.1 Intermediate representation

In order for one of the component in the compiler to be able to transfer
data to another component, the data structure must be something that
both components can read and work with. A compiler typically parses the
source code for a programming language and then creates a data structure
which represents the program. It is called an intermediate representation (IR)
[1]. The data structure can contain enough information such that retrieving
the exact source program from the IR is possible but it is unnecessary
in most cases. In the PLC-NuSMV compiler there are two intermediate
representations that are created during the compilation process. These
are the POU data structure and the NuSMV abstract syntax tree. Figure 3.1
on the preceding page represents the IRs as circles between two software
components, which are represented as rectangles. We will discuss these
two IRs in greater detail in this chapter.

3.2 Parsing PLC program code

The XML parser is the first component in the compilation process of the
PLC-NuSMV compiler. It gets an XML file as input and its job is to parse
the file and extract all the relevant information about the PLC program the
XML file represents. The XML parser builds a hierarchical data structure
called the POU data structure while it parses the XML file. This data
structure represents the PLC program. The reason for creating such a data
structure is to make it much easier to extend the software in the future by
adding support for more PLC languages. Only a new XML parser is needed
to be able to parse XML files for other PLC languages, This data structure
is also easy to maintain and work with. After the parsing of the XML file is
complete, the POU object that represents the entire PLC program is read by
the next component in the compilation process, the NuSMV AST builder.

We will now walk through all the main steps in the parsing of PLC code.
We will start by talking about the PLC program editor that was used in this
project and then discuss the parsing of the XML files that this editor creates.
Finally, we will discuss the details of the POU data structure.

3.2.1 The PLC code editor

The PLC program/code editor which was used in this project, is an open
source software called Beremiz [3]. This program can be used to create PLC
programs in all five industry standard PLC programming languages. One
of the reasons for using this tool is that it easy to use and it saves the PLC
programs in an XML file in a specific XML schema supported by many PLC
manufacturers. See the next section for more information about this XML
schema.

Figure 3.2 on the following page shows an example of a PLC program
created in Beremiz. It is made in the FBD PLC language and it represents
the PLC program from the case study (Figure 2.4 on page 13).
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Figure 3.2: The FBD of the logic of the master unit of the Falcon system

3.2.2 PLCopen XML

The PLC code editor mentioned in the previous section saves PLC
programs in an XML document that follows the specification of the XML
schema PLCopen XML. The XML schema was published by PLCopen [13].
PLCopen is is an independent organization with many PLC manufacturers
as members. The organization creates specifications and implementations
related to PLC programming. This XML standard defines an open interface
between different kind of software tools that makes it possible without a
lot of effort to transfer a PLC project from one development environment
to another. The XML schema file is easy to parse and extract relevant
information from.

The XML parser starts first by validating the XML document against
the PLCopen XML schema. If it is a valid PLCopen XML file, the parsing of
the file begins. The actual reading and extraction of information and values
from tags and attributes in XML files is done by a class in the Qt application
framework called QXmlStreamReader. The XML parser’s job is by using
the methods from the Qt class to traverse the XML documents, read the
necessary values, and skip irrelevant XML elements.

There are two groups of PLC programming languages, the textual
and graphical programming languages. The XML files for these groups
are different from each other. They contain different XML elements and
attributes. Even within the same group there are some differences. The
only same thing for all languages is the declaration part which is saved in
the same format for all PLC languages. The list of names of the input and
output variables are extracted from here. For the PLC programs in the FBD
language, this information is actually not necessary as you will see in the
next section and is only used for validation. It makes it possible to check
if a variable that is used in the body (instruction part) of the PLC program
actually is declared in the declaration part.

In textual programming languages the body of a PLC program (the
instruction part) is saved in just one XML element. The actual parsing
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of XML files for these languages is quite simple, but it requires another
step in the compilation process, a component that analyzes the character
stream from the PLC program and creates token streams which a parser
then analyzes. To extend the PLC-NuSMV compiler to support textual
languages requires to implement these components. Appendix B on
page 45 is an XML document for a PLC program that calculates the
value of the Boolean expression a ∨ (b ∧ c). Note that the PLC program
example contains only one POU of type program. The body of the PLC
program is located in a CDATA section of the element <xhtml:p>. Note
also that the declaration part is separated from the body. It is in the
<interface> element of the same POU. Only these two elements (and
their sub-elements) are relevant.

For graphical programming languages, the XML files are much more
complicated but there is no need for a module that analyzes and parses
character streams from an XML element. The body (the instruction part)
of PLC programs in graphical languages can be seen as a graph where the
nodes are either variables or POU instances. Just like in a typical graph,
there are also edges that connect the nodes together. The edges in FBD
graphs have a direction. XML documents for the PLC language FBD and
other graphical languages, include information about each variable and
POU instance and the graphical position of the nodes in a two-dimensional
plane. It also contains information on how all the lines and anchor points in
all the edges are positioned in the graph. Information about the graphical
position of the nodes and edges are not relevant for the PLC-NuSMV
compiler and therefore ignored. All nodes in the graph are XML elements.
The XML elements that represents the variables and POUs used in the
body of the PLC program contain information such as the unique ID of
the element, the name of input/output variables in a POU, and the ID of
the element that the variable is connected to through an edge.

Appendix C on page 47 is the XML document that represents the PLC
program from Figure 2.2 on page 8. The XML element body that represents
the body of the PLC program contains all the relevant information that
the PLC-NuSMV compiler needs. The nodes in the FBD graph are placed
under the element FBD. Just like in in the variable declaration, input and
output variables are differentiated. Note that the localId attribute is the
unique ID of a node in the graph. If there is an incoming edge to a node,
the node element in the XML file will have a child element representing the
edge. connectionPoinIn is an XML element that contains information
about the edge that is connected to an input variable of a POU instance.
Only the reflLocalId of the connection element is the only relevant
information about edges. It is the ID of the node that the edge is connected
to on the other side. If the referenced node is a POU instance, the edge
element will also include the name of the output variable of this POU
instance.
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3.2.3 The POU data structure

The first step in the compilation process is the parsing of PLC code in an
XML file. It is done by the the XML parser. While the XML file is being
parsed, the compiler builds an intermediate representation called the POU
data structure. Various sanity checks are done at the same time as the XML
document is parsed. For example, the XML parser checks if output and
input variables are placed in the FBD graph, it checks if output variables
and POU instances have any edges connected to it. If there are any invalid
PLC programs, the compiler will output an error message to the standard
error and if it is a critical error, abort the compilation process.

The POU data structure is made to resemble the structure of PLC
programs in XML documents that follow the PLCopen XML schema. It
makes it easier to maintain and work with. In Section 2.1.2, it was
mentioned that for PLC programs in the PLC language FBD, the variable
declaration part is separated from the instruction part. Conveniently,
XML documents that follows the PLCopen XML schema separates these
two parts for all PLC languages. The POU data structure also has this
separation. For PLC programs in graphical PLC language like FBD, the
similarity with PLCopen XML files is also in that the POU data structure
represents the program in a graph.

For a clearer conceptual understanding of the concrete data structure of
POUs, we will in the next section formally define the POU data structure.
All the components of the POU data structure are defined in detail. The
actual implementation of the POU data structure does not contain all the
information that are described in the definitions. The main reason for this
is because the information is not really needed to represent a complete PLC
program of the type the PLC-NuSMV compiler expects. One of the goals of
the Master’s Thesis is to make a robust and efficient program, and a POU
data structure that contains too much information doesn’t scale well with
very big instance of PLC programs. The implementation details of the data
structure is discussed after the formalization section.

Formalization of the POU data structure

It was mentioned in Section 2.1.2 that PLC programs consist of POUs
which can be compiled independently and linked together to form a
complete program. You can think of POUs like classes in object-oriented
programming languages. Just like classes, POUs needs to be declared
before they can be instantiated. Currently, the PLC-NuSMV compiler only
accepts PLC programs created in the PLC language FBD.

The compiler only accepts PLC programs with only one instance of a
POU type called program. This POU instance is referred from her on out as
the main POU. The main POU can contain POU instances of type function.
As for the PLC-NuSMV compiler is concerned, the difference between
a program and a function is that only one instance of a program can be
declared and it represents the PLC program itself. The formal description
of POUs in this section describes POU declarations of both programs and
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functions. POUs of type function blocks are not supported by the compiler.
A POU consists of a type, a set of variables Var, and a graph G. The

type of the POU is basically just a name, like a class name in most object-
oriented programming languages. A variable set consists of all variables
which are declared in this POU and that can be accessed externally by other
POUs, more on this later. The graph consists of nodes and edges. Nodes
are either instances of POUs or variables of built-in data types like Boolean.
The edges are the connections between the nodes.

Definition 3.1 (POU). A POU is a triple of the following form:

POU = (Type, Var, G).

The variable set Var consists of all input variables VarI, output variables
VarO, and input-output variables, VarIO in a POU. The PLC-NuSMV
compiler only accepts Boolean variables and it is therefore not necessary
to specify it. Each variable v that are elements of Var must have a unique
name.

Definition 3.2 (Variable set). A variable set is a triple of the following form:

Var = (VarI, VarO, VarIO).

VarI is the set set of all input variables in the POU. These are variables
that are declared textually and are not shown in a FBD. The variables are
assigned outside the POU in question. They are read-only values in the
POU they are declared in and they could either be global variables that
are assigned to a specific physical memory address where the values could
for example come from sensors, or it could be variables that are declared
and assigned in the POU that has instantiated the POU which the FBD in
question represents.

VarO is the set of output variables. Output variables are declared in the
same POU and are accessible in POUs that instantiates the POU in question.

VarIO is the set of input-output variables. These are variables that are
readable and writable internally and externally These kind of variables are
not used in the case study but have been included in the description of
POUs because they are part of the IEC 61131-3 standard.

Definition 3.3 (Graph). A graph consists of a set of nodes and a set of edges:

G = (N, E).

A node can be either an instance of a POU of type function or a
simple Boolean variable. All variables that exist in the set of nodes N
must also exist in the variable set Var. The POUs can be either functions
that have been declared in the same PLC program or standard POU
functions, Standard POU functions are standard function and function
blocks that are defined by the IEC 61131-3 standard and provided by the
PLC programming environment. e.g., and, or, and xor.

A node must have a unique identifier so that in the same graph, one can
distinguish between instances of POUs of the same type and node instances
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of variables with the same name. We will call this identifier the local ID of
the node. Each node also contains a type which tells you if the node is
either an instance of a POU or a variable.

Definition 3.4 (Node). A node is defined by the following tuple:

n = (Type, IDlocal).

The nodes are connected to other nodes with directed edges. Directed
means here that a Boolean value from a node can only be transferred to
another in one direction. The edge can go from an output variable of a
POU instance to an input variable of another POU instance or to a node
that is an output variable. A directed edge can also go from a node that is
an input variable to an input variable of a POU instance or to a node that is
an output variable. A POU can have many input and output variables and
two or more variables can be connected to the same POU instance.

Each edge e ∈ E, consists of the local IDs of the nodes that the edge
is connected to and the names of the input and/or output variables in the
POU instances it is connected to. There is a connection, or an edge, between
two POU instances if the edge is connected to the input variable of one of
the POU instances, and to an output variable of the other POU instance.

Definition 3.5 (Edge). An edge consists of the local ids of the connected nodes
and the variable names of the nodes:

e = (IDin, IDout, namein, nameout).

The PLC-NuSMV compiler only allows acyclic graphs, it does not allow
graphs with feedback loops. Feedback loops occur when there exists a path
from an output variable in a POU instance to an input variable of the same
POU instance.

Implementation of the POU data structure

It was mentioned in the formalization of the POU data structure that the
POU type function blocks are not supported by the PLC-NuSMV compiler.
In Chapter 2 we mentioned that function blocks can have internal variables
that do not lose their values between calls to the same function block.
Function blocks have memory. The compiler supports only PLC programs
whose output variables are functions of only the present input. The
Boolean functions don’t have memory. In the PLC programs the the
compiler supports, each scan cycle, the PLC gets new input values and
calculates the values for the output variables. This is also why the PLC
programs can’t have feedback loops in the graph, they would allow values
to be retained in multiple PLC scan cycles.

From each output variable in the POU graph we can go in the opposite
direction of the edges and follow a path that leads us to at least one input
variable. In the FBD example in Figure 2.2 on page 8 there is one output
variable x. It gets its value from the output value of the OR gate and this
gate gets the input value from the the variable a and the output value of the
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Figure 3.3: The FBD from Figure 2.2.2 on page 12 with directed edges and
local IDs of the nodes

AND gate and so on. Each output variable in a graph can be seen as the root
node of a tree structure or as a Boolean expression. In the same example,
the output variable x represents the Boolean expression x = a ∨ (b ∧ c).

Definition 3.3 states that a graph consists of a set of nodes and a set
of edges. The nodes can either be POU instances or variables that have
been declared in the declaration part. The nodes and edges are not really
implemented as two separate sets. An edge is attached to a node if there
is an incoming value to the node. According to Definition 3.5, an edge
should have the ID of the node it is connected to at the tail end of the edge
and the node it is pointing to. Since it is already attached to the node it is
pointing to, only the ID of the node of the other end of the edge is necessary.
This implementation avoids duplicates and allows us to traverse the graph
without looking in several places for the required information to move to
the next node in the graph. Figure 3.3 shows the same FBD as the one in
Figure 2.2, but it shows the local IDs of all the nodes, the directed edges,
and the ID of the nodes the edges are connected to at the tail end.

The traversal of the graph happens from each output variable and it
continues until the input variables in all branch are reached. It allows us to
determine where exactly a values comes from and which logical functions
were used to calculate the value. We can extract in this way the Boolean
formulas of the PLC program. The traversal of the graph also allows us
to calculate the final value of the function given specific values of input
variables. This will be important when we generate the NuSMV code as
we shall see later.

Custom functions

The definitions of the POU data structure allows for functions to be used as
POU instances themselves, just like the standard POU functions, AND and
OR. These functions must be declared in the same PLC program. Figure 3.4
on the next page shows a PLC program where the PLC program from 3.3
is made as a PLC function called func, and used as a POU instance. The
function func contains the same name for the input and output variables
as in the other figure. The PLC program represents the Boolean expression
x = func(k, l, m) ∧ n or in the expanded form: x = (k ∨ (l ∧m)) ∧ n.

Custom functions are not implemented in the PLC-NuSMV compiler.
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Figure 3.4: An FBD that contains the POU from Figure 3.3

It was not used in the case study and there were no access to real-world
examples of PLC programs in the PLC open XML format that include
declarations of the POU type function. It was not clear on how the structure
of the PLC code in the XML file would look like.

3.3 Building the syntax tree

When the XML parser has finished parsing the XML file and created the
object instance of the POU data structure explained above, the NuSMV AST
builder parses this object and makes it possible for the last component in the
compilation process to generate NuSMV code. The NuSMV AST builder
also gets a truth table file as an input. The POU data structure together
with the truth table is used to create a data structure called an abstract syntax
tree. This data structure is easy to maintain and work with. It’s also makes
it possible to easily extend it in the future. The POU data structure builds
a data structure that represents the source program, but the abstract syntax
tree represents the target program. It resembles the structure of the input
language of NuSMV.

We will in the Section 3.3.2 see which NuSMV language constructs are
supported by the PLC-NuSMV compiler and talk about the NuSMV syntax.
We will after that explain in more detail how the AST is built and used by
the various software components in the program.

3.3.1 The NuSMV grammar

The NuSMV manual [5] and the NuSMV website [12] contain detailed
explanations of the syntax and semantics of the input language of NuSMV.
Only a small subset of the input language of NuSMV is relevant to the PLC-
NuSMV compiler. The compiler supports only Boolean variables and will
therefore only support operators that work with the Boolean variables and
expressions. The NuSMV program in Appendix E on page 55 includes most
of the elements of the NuSMV language that the PLC-NuSMV compiler
supports.

Appendix D specifies the subset of the NuSMV grammar that is
supported by the compiler. The grammar shown in the appendix is similar
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to the grammar in the NuSMV manual, but has been adapted to the PLC-
NuSMV compiler by removing unsupported NuSMV language features.
This grammar was defined before starting on the programming of the AST
classes. It was a major help in understanding the NuSMV syntax and in
building the NuSMV code generator.

3.3.2 NuSMV abstract syntax tree

An abstract syntax tree (AST) or simply syntax tree, is a tree representation
of the syntactic structure of a source program [1]. It is usually the parser
that creates the AST. In the case of the PLC-NuSMV compiler, the POU
data structure takes the place of the AST. The source code parser (the XML
parser) creates the the POU data structure. The NuSMV AST builder builds
an AST that represents the target program. A syntax tree resembles the
syntactic structure of the language of the target program. This is done
intentionally to simplify the last phase in the compilation process, the code
generation part. The specific AST that the PLC-NuSMV compiler generates
resembles the syntactic structure of the input language of NuSMV.

Figure 3.5 on the next page shows a portion of the abstract syntax tree
for the NuSMV program example in Figure 2.2.2 on page 12. Only the
elements in the module FBD_Program has been included in the figure. We
will now just briefly go through some of the nodes to give an idea of how
the AST is built and what kind of information an AST node can contain.

The root of the abstract syntax tree is a Program node. This node
represents the whole NuSMV program and only contains a set of Module
nodes. Each Module node has a name field, to represent the name of the
NuSMV module, and the list of parameters. The node also contains a list of
variable declarations, define declarations, and assign declarations, which
are respectively the statements in the VAR, DEFINE and ASSIGN sections of
a NuSMV module (Section 2.2.2 has a detailed explanation of the structure
of the NuSMV input language). The first Define node from the left has the
identifier and_gate0. This means that the name of the variable on the left-
hand side of the assignment operator in a NuSMV model description (:=) is
and_gate0. This variable is assigned the value of the Boolean expression
b∧ c which is represented by the the node LogOpExpr. This node contains
the symbol & (logical and) and two child nodes which represents the two
operands in the Boolean expression. In this example, both of the operand
nodes are variables. We will not go through the rest of AST nodes in the
figure.

The abstract syntax tree is implemented as a large node class hierarchy.
Some of the type of nodes can been seen in Figure 3.5, but there are many
more node types that have been implemented. All the nodes in the NuSMV
AST contain enough information for the compiler to generate a complete
NuSMV program. We will take a closer look at the NuSMV code generation
in Section 3.4.
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Figure 3.5: A part of the AST for the NuSMV program in Figure 2.2.2

3.3.3 Truth table

In the given case study, a truth table was used as the specification of
the PLC program and was also modeled in NuSMV as a module. The
truth table contains all combinations of input variables and the expected
values of the output variables. The truth table module and the module that
represents the PLC program are instantiated in the main module. The LTL
specification of the main module gives the model checker instructions to
compare in each state the output value of the PLC program module and the
expected value for the same variable in the truth table module. If a specific
combination of Boolean values for the input variables generate a value on
an output variable that does not match the same output variable in the
truth table, NuSMV stops the validation and reports that the specification
is not true in that state.

The PLC-NuSMV compiler also works the same way. It takes a truth
table file as input and the NuSMV AST builder parses the truth table file
and generates the NuSMV AST node representing the truth table module.
It also creates the necessary specification in the main module. The truth
table file can be a comma-separated file, but the compiler also allows the
values and variable names to be separated by spaces, semi-colons and any
other non-alphanumeric characters. Table 3.1 on the next page is the truth
table used to verify the PLC program example in Figure 2.2 on page 8. The
variables a, b, and c are the input variables and x the output variable.

26



Table 3.1: The truth table used as a specification for the PLC program in
Figure 2.2

a b c x
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

3.4 NuSMV code generation

After the NuSMV AST builder creates the abstract syntax tree, the last
component in the PLC-NuSMV compiler, the NuSMV code generator, can
finally generate the NuSMV code. Because the structure of the NuSMV
AST is similar to the syntax structure of the input language of NuSMV, the
implementation of the code generation is fairly straightforward.

To make the compiler more extendable, the visitor design pattern was
used in the code generation part. The design pattern is used to separate
the data structure from the algorithm that traverses the data structure
[8]. The algorithm in this case, is the code generation. The visitor class
that implements the code generation of NuSMV contains code generation
methods for each type of AST nodes. The method to print the NuSMV for
the Program node gets called first and from that method the print method
for each module node gets called and so on, until we have traversed the
entire syntax tree. The code generation methods print the NuSMV code to
a file or the standard output, depending on how the compiler program was
invoked.

3.5 Further implementation details

The PLC-NuSMV compiler is implemented in the programming language
C++. The IDE Qt creator was used. The Qt application framework is
needed to compile the program because a few Qt classes were used by PLC-
NuSMV. One of the Qt classes is used to validate XML files against an XML
schema, another is used to parse the actual XML file. The Qt component
that makes in a portable manner, easier to extract information about the
currently running process.

A great care has been taken to make the program as extendable and
portable as possible. The different phases in the compilation process are
executed by separate software components. They are either implemented
as classes or a few tightly coupled classes. The POU data structure consists
of separate classes for the individual elements. For example, the POU,
Node, and Edge elements are implemented as individual classes. The
NuSMV AST is implemented as a hierarchy of Node classes. The group
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of AST classes are completely independent from the rest of the program
source code, in that they don’t know about the classes outside this group.
This makes it possible to use the AST classes in other projects. It was
mentioned in Section 3.4 that the the visitor design pattern was used to
traverse the AST and print the NuSMV code. This separation of code and
data structure makes the source code more reusable and extendable.

Most of the header files and in a few class definition files, contain
comment documentation. They contain a detailed description of the
methods or classes and information about the parameters and return
objects. The trivial and self explaining methods are not documented.

We will in the next chapter evaluate the the compiler and our
contributions to achieve the goals set for this Master’s Thesis. We will talk
about the given case study and the limitations of the specification methods
used in the case study and the compiler. We will discuss performance
results and suggest possible performance improvements.
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Chapter 4

Evaluation

In this chapter, we will discuss the testing methodology, verification of the
correctness of the compiler, evaluate the performance of the PLC-NuSMV
compiler and talk about potential performance optimizations. We will also
discuss some of the limitations of the compiler. There are some scalability
issues with the design of the NuSMV models in the given case study and
the PLC-NuSMV compiler is affected by these design choices. A specific
class made for testing the performance and how the compiler scales with
the size of PLC programs has been implemented and we will discuss it and
the results we get from running the tests.

4.1 Verification of the compiler

It was decided early on that the case study from the technical report
by Matti Koskimies [10] should be used as a benchmark to test the the
practicality and usability of the compiler. It was used also to validate that
the compiler produces the correct NuSMV code. In the case study the PLC
program in Figure 2.4 on page 13 has been translated to a NuSMV model
and then verified by the NuSMV tool. The PLC-NuSMV compiler should
translate from a PLC program in the FBD language that is equivalent to the
PLC logic of the case study, to a NuSMV model that is the same as the one
in the same case study.

Before being able to verify the compiler with the PLC program from the
case study, the PLC program was first translated to the FBD language by
hand. The PLC program in Figure 3.2 on page 18 is the program that was
created and used as input to the the PLC-NuSMV compiler. The truth table
used in the same case study was also translated by hand to a text file so that
the compiler could read it.

The case study was not the only PLC program example that was created
to verify the correctness of the compiler. The PLC program in Figure 2.2
on page 8 was also tested as input to the PLC-NuSMV compiler during
implementation. The NuSMV model (Figure 2.2.2 on page 12) was created
by hand to later verify that the compiler produced the expected NuSMV
model. Several other more complex PLC programs were also created. The
PLC-NuSMV compiler supports the logic gates xor and not, which are not
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used in the case study. Several PLC programs containing these gates were
created to verify that they were correctly implemented. After each major
modification of the PLC-NuSMV compiler, many of these PLC programs,
including the case study example were translated by the compiler and the
models verified by NuSMV.

4.1.1 Results

All the PLC programs created by hand were translated by the PLC-
NuSMV compiler to the expected NuSMV models. Every NuSMV model
description produced by the compiler was carefully and thoroughly
reviewed before the final verification with the NuSMV model checker.
NuSMV confirmed that the LTL specification in all the NuSMV models
were true in all states.

The testing of the case study and all other PLC program examples
confirmed that the compiler can correctly translate PLC programs in the
FBD language to the input language of NuSMV. This of course, provided
that the PLC programs only contains the supported PLC functionalities that
has been mentioned in this thesis.

4.2 Robustness

The ability for a program to cope with errors and erroneous input is critical
for a robust program. The PLC-NuSMV should display intuitive and clear
error and warning messages so that the user knows where the problem is
and can then correct it.

A class was implemented to simplify error messaging in the program.
It is used mainly for displaying error and warning messages to the user
of the program. This centralization of logging and message displaying
makes it easier to extend the software. For example, if the program is
integrated with a PLC code editor, the error message can be sent to the
editor which can then show them. For an overview of possible extensions
and improvements to the compiler, see Section 5.2.

4.2.1 Command-line option validation

The compiler validates the arguments to the command-line options it
receives on start-up and if it detects invalid input, gives the user an error
message. It will also suggest to the user to use the --help command-
line option. This option contains usage information about all the possible
command-line options for the PLC-NuSMV compiler. Both the PLC
program and the truth table files must be given as arguments to the
program. The program informs the user about that if they are missing.

4.2.2 Detection of errors during execution

The PLC-NuSMV compiler validates all the files given as input to the
program. It tries first to read the file that contains the PLC program and the
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truth table file. If they are not readable, the compilation process will abort
and an appropriate error message will be displayed. The XML file is then
validated against the PLCopen XML schema. The XML schema file should
be included with the compiler. If the XML file is valid, the truth table
file is then validated. The compilation process aborts if any of these files
are not valid. During the parsing of the XML file, the program can detect
logical errors, e.g., the PLC program does not contain output variables or
it does not contain one program element. It’s not possible to proceed the
compilation process for most of theses cases, so the compiler displays an
error message and aborts.

The compiler ignores some non-critical errors, e.g., the input variables
of a POU function is not connected to anything or an output variable is not
connected to a POU function block or an input variable. In these cases, the
program simply just gives a warning message to the user.

Most of the possible errors should be detected during the parsing of the
input files, but there are some cases where this doesn’t happen before the
actual translation of PLC code to NuSMV starts. Most of them are related to
cases where the truth table does not correlate with the PLC program. Before
the NuSMV code generations starts, all errors related to the PLC program
and the truth table has been found. Only the inability to write the NuSMV
code to a file can cause the program to abort now.

There are some errors the user may not be able to do anything
about without changing the source code. For example, a PLC program
might contain function blocks or unsupported Boolean functions. Custom
Boolean functions are not supported either. An appropriate error message
is displayed for some of these situations. It is the maintainer of the source
code to extend the software to support these functionalities. We will
suggest possible extensions to the PLC-NuSMV compiler in Chapter 5.

4.3 Performance evaluation

One of the goals of this Master’s Thesis is to develop a fast and efficient
compiler. To achieve this, the performance of the compiler needs to be
tested and analyzed thoroughly, and if it’s possible, optimize the code
so that the PLC-NuSMV compiler uses less resources and ultimately runs
faster.

The Valgrind Function Profiler, or callgrind, which is included in the Qt
Creator, was used to get a detailed statistics over the number of instructions
executed on each function and how many times each function where called.
This tool made it much easier to find the bottlenecks in the program which
then made it possible to optimize the code.

4.3.1 Test bed

The computer that has been used to test the compiler has an Intel Core i5-
3570 3.4 GHz processor and 8 GB of RAM. All the tests were done in Linux,
Debian 8 to be precise.
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The timing of all test runs were done with the command-line tool time.
The real time, the actual amount of time a process takes to finish. is the
value used in the results in this chapter.

4.3.2 Test case generator

The PLC program from the case study and the PLC programs created
by hand were not particularly big or complex. There were no access to
other close to real-life examples of PLC programs to test the PLC-NuSMV
compiler with. It was possible to create some very complex PLC programs
in a PLC code editor, but for each PLC program, a truth table had to be
created. The size of the truth table for a PLC program increases with the
number of input and output variables. For example a PLC program with
10 input variables and 8 output variables has a truth table that has 512
rows and 18 columns. Sure, it is possible to automatically generate all the
combination of values for the input variables, but figuring out the expected
output values takes a lot of time and it is very easy to make errors.

Because creating truth tables by hand for large PLC programs is not
feasible, and in order to obtain large PLC program test cases, the compiler
was extended with the ability to generate PLC programs and truth tables.
The truth tables are generated by analyzing and traversing the POU
data structure as has been explained in the implementation details of
the POU data structure in Section 3.2.3. The verification of the NuSMV
model generated will only prove that the compiler actually translates PLC
programs to NuSMV correctly and not that the PLC program is correct with
respect to a specification. However, since we needed a way to evaluate
the efficiency of the compiler, the PLC-NuSMV compiler needed to be
extended with the ability to generate PLC program test cases where the
complexity can be changed based on some parameters.

The test case generator allows us to see how the program scales as we
keep increasing the complexity of the PLC program. This functionality
also made it much easier to find bottlenecks in the program by using
the function profiler mentioned earlier. As you change the parameters to
increase the complexity of the PLC programs the test case generator creates,
you get a clearer picture of where in the code the computer spends most of
the processing time in.

The PLC program test cases are generated using an algorithm that
takes the number of input and output variables as parameters. The PLC
program that is generated will have the given amount of variables. The
higher the number, the more complex a PLC program is. The test case
generator starts by generating an instance of the POU data structure where
first, the variables are placed in the graph. The POU instances of the and
gates and or gates are then placed interchangeably in the graph. The edges
are then placed to connect all the nodes in the graph together. The trick
with the algorithm was to find a way to place the nodes and the edges in
a meaningful way. All the output variables have to be connected indirectly
to at least two of the input variables via the logic gates and each of the them
has to connect to different logic gates. This makes all the output variables
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represent different Boolean functions. It doesn’t matter if the produced
PLC programs doesn’t logically make a lot of sense, as long as they are
valid and can increase the complexity of the program if the number of
variables are increased. The test case generator has some limitations to
the variable parameters. The number of input variables can’t be less than
3 and the number of output variables must be lower than the amount of
input variables.

4.3.3 Results end evaluation

All the PLC programs that have been created by hand, including the PLC
program from the case study, are compiled very quickly. It takes about
100 milliseconds for the PLC-NuSMV compiler to read the case study PLC
program example, translate it to NuSMV models and finally write the
NuSMV code to a file.

When running the compiler with the test case generator option. The
processing time naturally increases as the number of input and output
variables are increased. The time it takes for the compiler to finish seems to
approximately double each time the input variable is increased by one. The
compilation time grows exponentially with the number of input variables.
It is also true for the amount of memory that the compiler process takes
up. Most of the processing time (about 87% for 17 input variables and 1
output variables) seem to be the part of the program where the truth table
is created by traversing the graph of the POU data structure.

The exponential increase in time and memory consumption is not
surprising. As we increase the number of input variables the size of the
truth table that has to be generated also increases. Increasing the input
variable by one doubles the amount of rows in the truth table and so the
processing time and memory consumption also approximately doubles for
the function that creates the truth table. The computer that is been used for
the tests runs out of memory for PLC programs with more than 26 input
variables and 1 output variable. About 67 million rows are in a truth table
with 26 input variables.

The time to generate the NuSMV model seem to also increase expo-
nentially. About 10% of the total processing time is related to writing the
NuSMV code. The reason for this is because each of the switch-case ex-
pressions in the truth table module of the NuSMV model contains part of
the truth table. In Appendix E on page 55 we see the NuSMV model that
has been generated from the PLC program of the case study. Notice in the
module TruthTable that for each output variable there is a switch-case ex-
pression. The switch-case expression for an output variable represents the
truth table for that variable. If you look closely, only the rows in the truth
table that yields either the Boolean value false or the Boolean value true is
represented in the case expressions. In the case study example the truth
table for all output variables yields more rows that are true and that is why
only the rows that yields false for the output variable are used in the case
expression. This is a small performance optimization. In the worst-case
scenario, half of the truth table is in the case expressions, but must cases
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the size is between 25-50% of the entire truth table. There are also a few
other optimizations related to the generation of the truth table.

4.3.4 The problem with the truth table approach

The exponential increase in compilation time and memory usage is not the
worst problem with the truth table approach of verifying PLC programs.
As was mentioned earlier, the description of the NuSMV model increases
exponentially as the number of input variables increases. The very big
size of the NuSMV model descriptions makes the NuSMV model checker
struggle with very large PLC programs. It can’t handle more than 17 input
variables and 1 output variable.

The truth table approach is not the way to go about verifying large
and complex PLC programs. There must be a much better way of writing
specifications for the programs. We will discuss in the next section about
potential ways of improving the efficiency of the compiler and reducing
the size of the description of NuSMV models so that the NuSMV model
checker can handle much larger PLC programs.

4.3.5 Possible performance improvements

Instead of creating a truth table to use as a specification for a PLC
program, we can use Boolean formulas/functions. The compiler has been
implemented with the ability of skipping the creation of the NuSMV truth
table module and instead use Boolean formulas to create the specifications
to verify PLC programs. The option -o (--optimize) makes the compiler do
exactly this.

As expected, the memory consumption and the execution time of the
PLC-NuSMV compiler now increases linearly as we increase the number
of input variables. The compiler and the NuSMV model checker has only
been tested with up to 10 thousand input variables. It takes about 1 minute
to compile a PLC program with that amount of input variables. Appendix F
on page 59 shows the description of the NuSMV model for the case study
example when the compiler is invoked with the optimization command-
line option. Notice how there is no module for the truth table and that the
NuSMV file is much much smaller. The main module now contains the
Boolean formulas/functions which will be used to verify the module that
represents the PLC program (the Falcon module in the example).

The time and memory consumption for verifying such NuSMV models
with the NuSMV model checker also doesn’t increase like it did with the
truth table approach of verification. The chart in Figure 4.1 on the next page
shows the real time it took NuSMV to verify various PLC programs that
have been generated with the optimization option. 20 tests were done and
in each new test, the input variable was increased by 200. Not many tests
were done, but it looks like the verification time is increased linearly as the
number of input variables increases. It increases faster than the compilation
time of the PLC-NuSMV compiler, however.
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Figure 4.1: NuSMV verification times for NuSMV programs translated
from an optimized compiler

This modification to the compiler is only to show that using the truth
table approach fails after a certain level of complexity of PLC programs.
To verify very large real-life PLC program examples, the compiler can be
extended with the ability to takes Boolean formulas as input. Another way
is to analyze the truth table and generate Boolean functions from that. A
Karnaugh map can be used to do this, but for very large input variables
algorithms like the Quine–McCluskey algorithm must be used to extract
the simplest Boolean formulas from the truth table [11, 14]. Using these
algorithms is very computationally expensive, but can be worth it since
the NuSMV model will be very small and easy for the NuSMV to verify.
However, expecting the PLC programmer to create these big truth tables is
unrealistic. The usage of Boolean formula as specification is the the correct
way to go and should be the number one priority for further development
of the compiler.
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Chapter 5

Conclusion and future work

In this chapter, we discuss the results and conclude with a summary of the
main contributions of this Master’s Thesis. We also give an overview of
some of suggestions for further work and possible improvements to the
PLC-NuSMV compiler.

5.1 Conclusion

The main goal of this Master’s Thesis was too achieve automation in
translating PLC program code to the input language of a model checker.
A program that does exactly this has been developed.

The PLC-NuSMV compiler correctly translates the PLC program in the
case study suggested by DNV GL. The compiler also has been thoroughly
tested with other self-made PLC programs to make sure it also can handle
situations and cases that the case study does not cover. Great care has been
taken in the development and testing of the compiler so that the correct
description of NuSMV models are translated from PLC programs. Only
PLC programs in the language FBD and which only contain supported PLC
functionalities can be compiled by the PLC-NuSMV compiler.

The compiler catches unexpected input and handles errors correctly
during execution. It aborts the compilations process if it detects invalid
input or it can’t write to a file. It notifies the user of the compiler with
intuitive and clear error messages. If the compiler detects a non-fatal error,
then a warning is displayed without the compilation process aborting,
giving the user of the program the opportunity to correct the mistake in
the future.

For PLC programs that are similarly sized to the one in the case study, or
slightly bigger, the PLC-NuSMV compiler finishes the compilation process
very quickly. The size of PLC programs is limited by the choice of
expressing the specification of PLC program. If the PLC-NuSMV compiler
is expected to work with much bigger PLC programs, it must be modified
to handle Boolean functions.

PLC-NuSMV is platform-independent and is compilable on both Linux
and Windows. The open-source application framework Qt is needed to
compile the program since there are a few modules from the Qt framework
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that are used by the compiler. However, since Qt is cross-platform, the
portability is still preserved.

The modularity in the architecture of the PLC-NuSMV compiler allows
for an easy way of adding support for other PLC languages and model
checkers.

5.2 Future work

In this section, we will give an overview of potential modifications and
improvements to the PLC-NuSMV compiler. The compiler is implemented
in such a way that allows one to extend the program without major
modification to existing code.

5.2.1 Further optimizations

We saw in Section 4.3 on page 31 that the the truth table approach of
verifying PLC programs prevents us from verifying very large and complex
PLC programs. The main reason for this, is because the size of the
description of the NuSMV model grows exponentially with the increase
of the number of input variables. Most of the time spent by the compiler
is on dealing with the truth table. The time it takes for the the NuSMV to
verify the NuSMV model also increases when the model grows.

Instead of using a truth table as a specification for a PLC program,
Boolean functions/formulas can be used. The description of the NuSMV
model doesn’t grow exponentially as in the case of the truth table method.
The use of Boolean formulas instead of truth tables will drastically reduce
the compilation time and the verification time with NuSMV. It also allows
much bigger PLC programs to be compiled. One way of inputting the
Boolean formulas is to type them in a file that can given as an argument
to a command-line option in the program, just like it is now with truth
table files.

PLC programs that are developed at DNV GL and probably many other
organizations only use truth tables as specifications. If only truth tables can
be used for some reason, even for very large and complex programs, then
it is still possible to optimize the compiler. Instead of letting the user of the
PLC-NuSMV compiler try to create the Boolean formulas that represents
the truth table, the compiler can take the truth table file as input, analyze it,
and then automatically find the simplest Boolean function possible for that
truth table. This can be done by the representing the truth tables as BDDs
or by using the algorithms mentioned in the previous chapter.

There might be possible to find other ways to improve the performance
of the compiler, but most of these modifications only need to be done in
one place, in the component that creates the NuSMV syntax tree.

5.2.2 Integration with an editor

The PLC-NuSMV compiler can be integrated into a PLC code editor or
any other PLC project managing software. For example, it can be made
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to a plugin or extension to the editor. The user of the editor can with a
click on a button automatically verify a PLC program, provided the truth
table file has been given as input. The PLC-NuSMV extension would then
handle two tasks, the translation of PLC code to the input language of
NuSMV and running the NuSMV model checker on the translated NuSMV
model description. This would greatly improve the workflow for PLC
programmers.

5.2.3 Custom functions

The compiler does not support declarations and use of custom functions
in the same program. Currently it only supports PLC programs with
exactly one program POU. It would make the compiler more user friendly to
add support for custom functions that lets PLC programmers divide their
programs into several manageable pieces instead of having one giant PLC
program in one POU.

5.2.4 Support for more PLC languages

The architecture of the PLC-NuSMV compiler is modular and the compo-
nent that deals with parsing the PLC code is separate from the rest of the
program. This allows one to easily extend the program by adding addi-
tional PLC code parsers. The compiler can be extended to support the other
industry standard PLC programming languages.

5.2.5 Support for other model checkers

Just like the case with PLC languages, it is also possible to easily extend
the compiler to support input languages for other model checkers. This,
however, might take more effort than creating another PLC code parser.
That is because there are several software components in the PLC-NuSMV
compiler that work with the target language. This can be seen in Figure 3.1
on page 16. To add support for a new model checker, a new component
that builds an abstract syntax tree for the new target language, and a new
code generator has to be implemented.
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Appendix A

Source code

The source code of the PLC-NuSMV compiler developed as a part of
this Master’s Thesis can be accessed at https://bitbucket.org/altqer/plc_to_
nusmv. As of writing this, the repository is public. It will remain public
until at least the final examination time is over. If you can’t access the
source code, the repository is most likely set to private, contact the author
at altin89@gmail.com to get access. You need a Bitbucket account or a Google
account to access a private repository.
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Appendix B

An XML document for a PLC
program example in IL

<?xml version=’1.0’ encoding=’utf-8’?>
<project xmlns:ns1="http://www.plcopen.org/xml/tc6.xsd"

xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.plcopen.org/xml/tc6_0201">

<fileHeader companyName="Unknown" productName="Unnamed"
productVersion="1" creationDateTime="2016-05-17T10:56:40"/>

<contentHeader name="Unnamed"
modificationDateTime="2016-05-17T11:00:05">

<coordinateInfo>
<fbd>

<scaling x="0" y="0"/>
</fbd>
<ld>
<scaling x="0" y="0"/>

</ld>
<sfc>
<scaling x="0" y="0"/>

</sfc>
</coordinateInfo>

</contentHeader>
<types>
<dataTypes/>
<pous>

<pou name="IL_Program" pouType="program">
<interface>
<inputVars>
<variable name="a">
<type>
<BOOL/>

</type>
</variable>
<variable name="b">
<type>
<BOOL/>

</type>
</variable>
<variable name="c">
<type>
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<BOOL/>
</type>

</variable>
</inputVars>

</interface>
<body>
<IL>
<xhtml:p><![CDATA[

LD a
OR(b
AND c

)
ST IL_Program
]]></xhtml:p>

</IL>
</body>

</pou>
</pous>

</types>
<instances>
<configurations>
<configuration name="config">
<resource name="resource1"/>

</configuration>
</configurations>

</instances>
</project>
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Appendix C

An XML document for a PLC
program example in FBD

<?xml version=’1.0’ encoding=’utf-8’?>
<project xmlns:ns1="http://www.plcopen.org/xml/tc6_0201"

xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.plcopen.org/xml/tc6_0201">

<fileHeader companyName="Unknown" productName="Unnamed"
productVersion="1" creationDateTime="2015-09-22T09:19:59"/>

<contentHeader name="Unnamed"
modificationDateTime="2016-01-06T13:24:44">

<coordinateInfo>
<fbd>

<scaling x="0" y="0"/>
</fbd>
<ld>
<scaling x="0" y="0"/>

</ld>
<sfc>
<scaling x="0" y="0"/>

</sfc>
</coordinateInfo>

</contentHeader>
<types>
<dataTypes/>
<pous>

<pou name="FBD_Program02" pouType="program">
<interface>
<inputVars>
<variable name="a">
<type>
<BOOL/>

</type>
</variable>
<variable name="b">
<type>
<BOOL/>

</type>
</variable>
<variable name="c">
<type>
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<BOOL/>
</type>

</variable>
</inputVars>
<outputVars>
<variable name="x">
<type>
<BOOL/>

</type>
</variable>

</outputVars>
</interface>
<body>
<FBD>
<inVariable localId="1" executionOrderId="0"

height="25" width="17" negated="false">
<position x="335" y="118"/>
<connectionPointOut>
<relPosition x="17" y="12"/>

</connectionPointOut>
<expression>a</expression>

</inVariable>
<inVariable localId="2" executionOrderId="0"

height="25" width="17" negated="false">
<position x="336" y="158"/>
<connectionPointOut>
<relPosition x="17" y="12"/>

</connectionPointOut>
<expression>b</expression>

</inVariable>
<inVariable localId="3" executionOrderId="0"

height="25" width="17" negated="false">
<position x="336" y="193"/>
<connectionPointOut>
<relPosition x="17" y="12"/>

</connectionPointOut>
<expression>c</expression>

</inVariable>
<block localId="4" typeName="AND" executionOrderId="0"

height="60" width="62">
<position x="397" y="155"/>
<inputVariables>
<variable formalParameter="IN1">
<connectionPointIn>
<relPosition x="0" y="30"/>
<connection refLocalId="2">
<position x="397" y="185"/>
<position x="375" y="185"/>
<position x="375" y="170"/>
<position x="353" y="170"/>

</connection>
</connectionPointIn>

</variable>
<variable formalParameter="IN2">
<connectionPointIn>
<relPosition x="0" y="50"/>
<connection refLocalId="3">
<position x="397" y="205"/>
<position x="353" y="205"/>
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</connection>
</connectionPointIn>

</variable>
</inputVariables>
<inOutVariables/>
<outputVariables>
<variable formalParameter="OUT">
<connectionPointOut>
<relPosition x="62" y="30"/>

</connectionPointOut>
</variable>

</outputVariables>
</block>
<block localId="5" typeName="OR" executionOrderId="0"

height="60" width="62">
<position x="509" y="100"/>
<inputVariables>
<variable formalParameter="IN1">
<connectionPointIn>
<relPosition x="0" y="30"/>
<connection refLocalId="1">
<position x="509" y="130"/>
<position x="352" y="130"/>

</connection>
</connectionPointIn>

</variable>
<variable formalParameter="IN2">
<connectionPointIn>
<relPosition x="0" y="50"/>
<connection refLocalId="4" formalParameter="OUT">
<position x="509" y="150"/>
<position x="487" y="150"/>
<position x="487" y="185"/>
<position x="459" y="185"/>

</connection>
</connectionPointIn>

</variable>
</inputVariables>
<inOutVariables/>
<outputVariables>
<variable formalParameter="OUT">
<connectionPointOut>
<relPosition x="62" y="30"/>

</connectionPointOut>
</variable>

</outputVariables>
</block>
<outVariable localId="6" executionOrderId="0"

height="25" width="18" negated="false">
<position x="612" y="173"/>
<connectionPointIn>
<relPosition x="0" y="12"/>
<connection refLocalId="5" formalParameter="OUT">
<position x="612" y="185"/>
<position x="593" y="185"/>
<position x="593" y="130"/>
<position x="571" y="130"/>

</connection>
</connectionPointIn>
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<expression>x</expression>
</outVariable>

</FBD>
</body>

</pou>
</pous>

</types>
<instances>
<configurations>
<configuration name="config">
<resource name="resource1"/>

</configuration>
</configurations>

</instances>
</project>
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Appendix D

The supported NuSMV
grammar

program :: module_list

module_list :: module | module_list module

module :: "MODULE" identifier [( module_parameters )] module_body

module_parameters :: identifier | module_parameters, identifier

module_body :: module_element | module_body module_element

module_element :: var_declaration
| define_declaration
| assign_constraint
| ltl_specification

ltl_specification :: "LTLSPEC" ltl_expr [;]
"LTLSPEC" "NAME" name := ltl_expr [;]

ltl_expr :: simple_expr -- a simple boolean expression
| ( ltl_expr )
| ! ltl_expr
| ltl_expr & ltl_expr
| ltl_expr | ltl_expr
| ltl_expr xor ltl_expr
| ltl_expr xnor ltl_expr
| ltl_expr -> ltl_expr
| ltl_expr <-> ltl_expr
| "X" ltl_expr
| "G" ltl_expr
| F ltl_expr
| ltl_expr u ltl_expr
| ltl_expr V ltl_expr

identifier :: identifier_first_character
| identifier identifier_consecutive_character

identifier_first_character :: regex[A-Za-z_]

identifier_consecutive_character :: identifier_first_character
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| identifier_first_character
| digit
| $ | # | -

digit :: [0-9]

constant :: boolean_constant

boolean_constant :: "FALSE" | "TRUE"

basic_expr :: constant -- a constant
| variable_identifier -- a variable identifier
| define_identifier -- a define identifier
| ( basic_expr )
| ! basic_expr -- logical or bitwise NOT
| basic_expr & basic_expr -- logical or bitwise AND
| basic_expr | basic_expr -- logical or bitwise OR
| basic_expr xor basic_expr -- logical or bitwise exclusive OR
| basic_expr xnor basic_expr -- logical or bitwise NOT exclusive OR
| basic_expr -> basic_expr -- logical or bitwise implication
| basic_expr <-> basic_expr -- logical or bitwise equivalence
| basic_expr = basic_expr -- equality
| basic_expr != basic_expr -- inequality
| { set_body_expr } -- set expression
| case_expr -- case expression
| basic_next_expr -- next expression

basic_expr_list :: basic_expr
| basic_expr_list , basic_expr

define_identifier :: complex_identifier

variable_identifier :: complex_identifier

case_expr :: "case" case_body "esac"

case_body :: basic_expr : basic_expr ;
| case_body basic_expr : basic_expr ;

basic_next_expr :: "next" ( basic_expr )

simple_expr :: basic_expr

next_expr :: basic_expr

type_specifier :: simple_type_specifier
| module_type_specifier

simple_type_specifier :: "boolean"

module_type_specifier :: identifier [ ( [ parameter_list ] ) ]

parameter_list :: next_expr
| parameter_list , next_expr

var_declaration :: "VAR" var_list

var_list :: identifier : type_specifier ;
| var_list identifier : type_specifier ;
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define_declaration :: "DEFINE" define_body

define_body :: identifier := simple_expr ;
| define_body identifier := simple_expr ;

constants_declaration :: CONSTANTS constants_body ;

constants_body :: identifier
| constants_body , identifier

init_constraint :: "INIT" simple_expr [;]

assign_constraint :: "ASSIGN" assign_list

assign_list :: assign ;
| assign_list assign ;

assign :: complex_identifier := simple_expr
| init( complex_identifier) := simple_expr
| next( comples_identifier) := next_expr

complex_identifier :: identifier
| complex_identifier . identifier

set_body_expr :: basic_expr
| set_body_expr , basic_expr
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Appendix E

The description of the NuSMV
model of the case study
example

MODULE Falcon(ch1, ch2, ch3, ch4, lights)
VAR

triac1 : boolean;
triac2 : boolean;
triac3 : boolean;
relay6 : boolean;

DEFINE
or_gate0 := ch1 | ch3;
and_gate0 := or_gate0 & ch2;
and_gate1 := or_gate0 & ch4;
and_gate2 := or_gate0 & lights;
or_gate1 := and_gate1 | and_gate2;
or_gate2 := and_gate0 | and_gate1 | and_gate2;
or_gate3 := and_gate0 | and_gate1;
or_gate4 := and_gate0 | and_gate1 | and_gate2;

ASSIGN
init(triac1) := FALSE;
init(triac2) := FALSE;
init(triac3) := FALSE;
init(relay6) := FALSE;
next(triac1) := or_gate2;
next(triac2) := or_gate1;
next(triac3) := or_gate3;
next(relay6) := or_gate4;

--------------------------------------------------------------
MODULE TruthTable(ch1, ch2, ch3, ch4, lights)
VAR

triac1 : boolean;
triac2 : boolean;
triac3 : boolean;
relay6 : boolean;

ASSIGN
init(triac1) := FALSE;
init(triac2) := FALSE;
init(triac3) := FALSE;
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init(relay6) := FALSE;
next(triac1) :=

case
!ch1 & !ch2 & !ch3 & !ch4 & !lights : FALSE;
!ch1 & !ch2 & !ch3 & !ch4 & lights : FALSE;
!ch1 & !ch2 & !ch3 & ch4 & !lights : FALSE;
!ch1 & !ch2 & !ch3 & ch4 & lights : FALSE;
!ch1 & !ch2 & ch3 & !ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & !ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & !ch4 & lights : FALSE;
!ch1 & ch2 & !ch3 & ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & ch4 & lights : FALSE;
ch1 & !ch2 & !ch3 & !ch4 & !lights : FALSE;
ch1 & !ch2 & ch3 & !ch4 & !lights : FALSE;
TRUE : TRUE;

esac;
next(triac2) :=

case
!ch1 & !ch2 & !ch3 & !ch4 & !lights : FALSE;
!ch1 & !ch2 & !ch3 & !ch4 & lights : FALSE;
!ch1 & !ch2 & !ch3 & ch4 & !lights : FALSE;
!ch1 & !ch2 & !ch3 & ch4 & lights : FALSE;
!ch1 & !ch2 & ch3 & !ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & !ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & !ch4 & lights : FALSE;
!ch1 & ch2 & !ch3 & ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & ch4 & lights : FALSE;
!ch1 & ch2 & ch3 & !ch4 & !lights : FALSE;
ch1 & !ch2 & !ch3 & !ch4 & !lights : FALSE;
ch1 & !ch2 & ch3 & !ch4 & !lights : FALSE;
ch1 & ch2 & !ch3 & !ch4 & !lights : FALSE;
ch1 & ch2 & ch3 & !ch4 & !lights : FALSE;
TRUE : TRUE;

esac;
next(triac3) :=

case
!ch1 & !ch2 & !ch3 & !ch4 & !lights : FALSE;
!ch1 & !ch2 & !ch3 & !ch4 & lights : FALSE;
!ch1 & !ch2 & !ch3 & ch4 & !lights : FALSE;
!ch1 & !ch2 & !ch3 & ch4 & lights : FALSE;
!ch1 & !ch2 & ch3 & !ch4 & !lights : FALSE;
!ch1 & !ch2 & ch3 & !ch4 & lights : FALSE;
!ch1 & ch2 & !ch3 & !ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & !ch4 & lights : FALSE;
!ch1 & ch2 & !ch3 & ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & ch4 & lights : FALSE;
ch1 & !ch2 & !ch3 & !ch4 & !lights : FALSE;
ch1 & !ch2 & !ch3 & !ch4 & lights : FALSE;
ch1 & !ch2 & ch3 & !ch4 & !lights : FALSE;
ch1 & !ch2 & ch3 & !ch4 & lights : FALSE;
TRUE : TRUE;

esac;
next(relay6) :=

case
!ch1 & !ch2 & !ch3 & !ch4 & !lights : FALSE;
!ch1 & !ch2 & !ch3 & !ch4 & lights : FALSE;
!ch1 & !ch2 & !ch3 & ch4 & !lights : FALSE;
!ch1 & !ch2 & !ch3 & ch4 & lights : FALSE;
!ch1 & !ch2 & ch3 & !ch4 & !lights : FALSE;
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!ch1 & ch2 & !ch3 & !ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & !ch4 & lights : FALSE;
!ch1 & ch2 & !ch3 & ch4 & !lights : FALSE;
!ch1 & ch2 & !ch3 & ch4 & lights : FALSE;
ch1 & !ch2 & !ch3 & !ch4 & !lights : FALSE;
ch1 & !ch2 & ch3 & !ch4 & !lights : FALSE;
TRUE : TRUE;

esac;

--------------------------------------------------------------
MODULE main
VAR

ch1 : boolean;
ch2 : boolean;
ch3 : boolean;
ch4 : boolean;
lights : boolean;
falcon : Falcon(ch1, ch2, ch3, ch4, lights);
truth_table : TruthTable(ch1, ch2, ch3, ch4, lights);

ASSIGN
init(ch1) := {FALSE, TRUE};
init(ch2) := {FALSE, TRUE};
init(ch3) := {FALSE, TRUE};
init(ch4) := {FALSE, TRUE};
init(lights) := {FALSE, TRUE};
next(ch1) := {FALSE, TRUE};
next(ch2) := {FALSE, TRUE};
next(ch3) := {FALSE, TRUE};
next(ch4) := {FALSE, TRUE};
next(lights) := {FALSE, TRUE};

LTLSPEC G ((falcon.triac1 <-> truth_table.triac1) &
(falcon.triac2 <-> truth_table.triac2) &
(falcon.triac3 <-> truth_table.triac3) &
(falcon.relay6 <-> truth_table.relay6))
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Appendix F

Improved NuSMV model
description of the case study
example

MODULE Falcon(ch1, ch2, ch3, ch4, lights)
VAR

triac1 : boolean;
triac2 : boolean;
triac3 : boolean;
relay6 : boolean;

DEFINE
or_gate0 := ch1 | ch3;
and_gate0 := or_gate0 & ch2;
and_gate1 := or_gate0 & ch4;
and_gate2 := or_gate0 & lights;
or_gate1 := and_gate1 | and_gate2;
or_gate2 := and_gate0 | and_gate1 | and_gate2;
or_gate3 := and_gate0 | and_gate1;
or_gate4 := and_gate0 | and_gate1 | and_gate2;

ASSIGN
triac1 := or_gate2;
triac2 := or_gate1;
triac3 := or_gate3;
relay6 := or_gate4;

--------------------------------------------------------------
MODULE main
VAR

ch1 : boolean;
ch2 : boolean;
ch3 : boolean;
ch4 : boolean;
lights : boolean;
falcon : Falcon(ch1, ch2, ch3, ch4, lights);

DEFINE
triac1_exp := ((ch1 | ch3) & ch2) | ((ch1 | ch3) & ch4)

| ((ch1 | ch3) & lights);
triac2_exp := ((ch1 | ch3) & ch4)

| ((ch1 | ch3) & lights);
triac3_exp := ((ch1 | ch3) & ch2) | ((ch1 | ch3) & ch4);
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relay6_exp := ((ch1 | ch3) & ch2) | ((ch1 | ch3) & ch4)
| ((ch1 | ch3) & lights);

ASSIGN
init(ch1) := {FALSE, TRUE};
init(ch2) := {FALSE, TRUE};
init(ch3) := {FALSE, TRUE};
init(ch4) := {FALSE, TRUE};
init(lights) := {FALSE, TRUE};
next(ch1) := {FALSE, TRUE};
next(ch2) := {FALSE, TRUE};
next(ch3) := {FALSE, TRUE};
next(ch4) := {FALSE, TRUE};
next(lights) := {FALSE, TRUE};

LTLSPEC G (
(falcon.triac1 <-> triac1_exp) &
(falcon.triac2 <-> triac2_exp) &
(falcon.triac3 <-> triac3_exp) &
(falcon.relay6 <-> relay6_exp))
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