
Leveraging DTrace for runtime verification

Carl Martin Rosenberg
June 7th, 2016

Department of Informatics, University of Oslo

Context: Runtime verification

System
“Buffers should never overflow”

“Every request gets an answer”

Desired properties

“Variables should never enter
 an inconsistent state”

1

‘‘Runtime verification is the discipline of computer science
that deals with the study, development and application of
those verification techniques that allow checking whether a
run of a system under scrutiny […] satisfies or violates a
given correctness property.’’ [6, p. 36, emphasis mine]

2

… … … … … … …

3

… … … … … … …

4

How to do runtime verification

1. Rigorously specify a correctness property (typically using formal
logic).

2. Collect runtime data from the system.
3. Find a way to automatically check if the collected data indicates

that the correctness property is violated or satisfied.

5

Key idea: Exploit formal connections between
logic and automata theory

5

How to do runtime verification

1. There are ways of deriving automata from logical expressions
that accept or reject their input based on whether the input
satisfies or falsifies a logical formula.

2. This can be used to create monitors.

6

Monitors

A monitor is a program that consumes data from the system under
scrutiny, interprets this data as a run of a system and reports
whether the specified property is

• satisfied by the data,
• falsified by the data or
• that the data is insufficient to derive a verdict [7, p. 294–295].

7

Monitor

Trace extractor

System
being

analyzed

Monitor
generator

Specification
formula

ACCEPT REJECT INCONCLUSIVE

Trace

8

ACCEPT REJECT INCONCLUSIVE

Specification formula in LTL3

graphviz2dtrace

Mapping

D script

Dtrace

System being analyzed

9

Specification formalism: LTL3

LTL3 is a three-valued variety of Linear
Temporal Logic (LTL): Same syntax, different

semantics.

9

LTL: Linear Temporal Logic

• In the context of formal methods, Temporal Logic is used to
reason about the evolution of some system over time.

• LTL is based on the notion of time as an infinite sequence of
time slices: Time is linear.

• The idea of using Linear Temporal Logic for program verification
originated with Pnueli [8].

10

Linear time

p,q r,s p,s …

11

LTL Syntax

Syntactically, LTL extends the familiar Propositional Logic with
temporal operators. The temporal operators are:

• 2 (always),
• 3 (eventually),
• # (next),
• U (until),
• R (release),
• W (weak until/waiting for).

12

LTL Semantics

• LTL formulas are interpreted on sequences of states, where each
state contains a set of atomic propositions that are true in that
state.

• In the standard view, these sequences of states are considered
infinite, and we call such sequences of states traces.

13

LTL Semantics

p,q r,s p,s …

Some observations:

• σ |= p U s,
• σ |= #s,
• σ |= 3r,
• σ ̸|= 2p and
• σ |= p W s.

14

Key idea of LTL3: A reasonable way of dealing
with finite traces.

14

LTL3 Semantics

• LTL3 is defined for finite traces, which makes it suitable for
runtime verification: We can only observere finite runs.

15

Key idea of LTL3: Identify good and bad
prefixes [5].

15

Good prefix

• A trace fragment u is a good prefix with respect to some
property ϕ if ϕ holds in all possible futures following u.

16

Bad prefix

• A trace fragment u is a bad prefix with respect to some property
ϕ if ϕ holds in no possible futures following u.

17

LTL3 Semantics summarized

We can thus state the truth-value of an LTL3 formula ϕ with respect
to a finite trace u as follows:

u|=3ϕ =


⊤ if u is a good prefix wrt. ϕ
⊥ if u is a bad prefix wrt. ϕ
? otherwise.

18

Foundational idea: For an LTL formula ϕ, a
corresponding Büchi automaton [2] can be

derived.

18

• Büchi Automata are defined on infinite traces and accept a trace
if and only if the automaton visits some accepting state
infinitely often.

19

• Bauer et al. give an algorithm for creating LTL3-monitors [1,
14:10-14:13]

• This algorithm is implemented in LamaConv [9], which we make
use of in the thesis.

20

21

Monitor

Trace extractor

System
being

analyzed

Monitor
generator

Specification
formula

ACCEPT REJECT INCONCLUSIVE

Trace

22

Monitor

Trace extractor

System
being

analyzed

ACCEPT REJECT INCONCLUSIVE

Trace

Specification formula in LTL3

Monitor
generator

23

DTrace

• DTrace is an operating system technology for monitoring
running software systems.

• Originally written by Bryan Cantrill, Adam Leventhal and Mike
Shapiro for the Sun Solaris 10 operating system, DTrace is now
available for Mac OS X, FreeBSD and other systems [4]

• If a running system has DTrace installed, an administrative user
can log into the system, write a DTrace script and get insights
about the system without having to reboot, stop or alter the
system in any way.

24

DTrace’s two most compelling features

1. DTrace gives a unified view of the whole system: Events within
the kernel and in userland processes can be analyzed
simultaneously.

2. DTrace provides facilities for dynamic tracing: Instrumentation
which does not rely on static artifacts in the source code.

25

Using DTrace: The D scripting language

• Users interact with the DTrace framework via a domain-specific
AWK-like scripting language called D.

• D is an event-driven programming langauge, where users specify
actions that DTrace should take when an event of interest
occurs.

26

Using DTrace: The D scripting language

#!/usr/sbin/dtrace -qs
syscall::read:entry
/execname != "dtrace" /
{

printf("%s\n", execname);
}

27

Main components of D

• Probes (4-tuples)
• Action blocks
• Predicates
• Probe clauses

28

DTrace Probes

• DTrace provides the user with an enormous list of possible
instrumentation points representing events of interest. These
instrumentation points are called probes.

• The available probes reflect aspects of the system that can be
monitored at the current point in time.

• Probes are identified by a four-tuple
<provider:module:function:name>.

• When the event a probe represents occurs, one says that the
probe ‘‘fires’’).

29

Design and Implementation of
graphviz2dtrace

Basic idea: Associate atomic propositions in
LTL specifications with DTrace probe

specifications (with optional predicates).

29

push → pid$target::push:entry
pop → pid$target::pop:return

empty → pid$target::empty:return/arg1 == 1/

30

graphviz2dtrace

Mapping

D script

31

graphviz2dtrace

• In essence, graphviz2dtrace is a source-to-source compiler
which takes LTL3-based automata and creates corresponding D
scripts.

• The resulting scripts have the automaton’s transition function
encoded in an array, and the automaton state stored in a
variable.

• When an event occurs, the state of the automaton is updated
according to the transition function.

32

Anticipation

• graphviz2dtrace creates monitors that terminate
immediately upon finding a good or bad prefix: They are
anticipatory.

• The scripts achieve this by understanding which state it is about
to enter.

33

Anticipation

pid$target::empty:return
/ (arg1 == 1) && (state == 1)/
{

trace("REJECTED");
HAS_VERDICT = 1;
exit(0);

}

34

Implementation

• The essential implemenation concern is creating three types of
probe clauses: rejecting, accepting and neutral clauses.

• Rejecting clauses are clauses dealing with situations where bad
prefixes are found.

• Accepting clauses are clauses dealing with situations where
good prefixes are found.

• Neutral clauses simply update the state of the automaton.

35

36

Implementation

• Since all clauses use predicates to reason about the automaton
states, and since probes are processed top to bottom, neutral
clauses must be placed last in the script.

37

Key limitation: Race conditions occur if two
neutral probe clauses fire simultaneously.

37

Monitor

Trace extractor

System
being

analyzed

ACCEPT REJECT INCONCLUSIVE

Trace

Specification formula in LTL3

Monitor
generator

38

ACCEPT REJECT INCONCLUSIVE

Specification formula in LTL3

graphviz2dtrace

Mapping

D script

Dtrace

System being analyzed

39

Case study 1: The stack

Demo time!
https://vimeo.com/169470067 (03:00)

39

https://vimeo.com/169470067

Gregg’s dictum

Brendan Gregg [10]

• ‘‘Don’t worry too much about pid provider probe cost at < 1000
events/sec.’’

• ‘‘At > 10,000 events/sec, pid provider probe cost will be
noticeable.’’

• ‘‘At > 100,000 events/sec, pid provider probe cost may be
painful.’’ [3]

40

104 105 106 107 108

10−2

10−1

100

101

102

0.003

0.067

0.602
0.353 0.414

1.096

8.011

72.363

0.003

0.057

0.398

3.176

30.718

Iterations

Ru
nn

in
g
tim

e
in

se
co

nd
s

Monitor overhead1

Uninstrumented
with pid

with printf

1Averaged, measured with time, largest of real or user+sys

41

Case study 2: Node.js and
PostgreSQL

Demo time!
https://vimeo.com/169585739 (02:55)

41

https://vimeo.com/169585739

0 20 40 60 80 100
1,200

1,400

1,600

1,800

2,000

N concurrent connections

M
ea

n
pr
oc

es
se

d
re
qu

es
ts

Mean processed requests per second at various concurrency levels2

Monitored
Unmonitored

2Averaged, measured with ab

42

Conclusion and Evaluation

Questions?

42

References I

A. Bauer, M. Leucker, and C. Schallhart.
Runtime verification for ltl and tltl.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, Sept. 2011.

J. R. Büchi.
On a decision method in restricted second order arithmetic.
In Proc. Internat. Congr. Logic, Method. and Philos. Sci, pages
1–12, 1960.
B. Gregg.
DTrace pid Provider Overhead.
http://dtrace.org/blogs/brendan/2011/02/18/
dtrace-pid-provider-overhead/, 2011.

http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/
http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/

References II

B. Gregg and J. Mauro.
DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD.
Prentice Hall Professional, 2011.
O. Kupferman and M. Y. Vardi.
Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

M. Leucker.
Teaching runtime verification.
In S. Khurshid and K. Sen, editors, Runtime Verification, volume
7186 of Lecture Notes in Computer Science, pages 34–48.
Springer Berlin Heidelberg, 2012.

References III

M. Leucker and C. Schallhart.
A brief account of runtime verification.
The Journal of Logic and Algebraic Programming, 78(5):293 – 303,
2009.
The 1st Workshop on Formal Languages and Analysis of
Contract-Oriented Software (FLACOS’07).

A. Pnueli.
The temporal logic of programs.
In Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 46–57. IEEE, 1977.

T. Scheffel and M. S. et al.
Lamaconv—logics and automata converter library.
http://www.isp.uni-luebeck.de/lamaconv.

http://www.isp.uni-luebeck.de/lamaconv

References IV

D. Straughan.
Brendan Gregg speaking at ZFS Day, Oct 2, 2012, San Francisco.,
2012.
(Own work) [CC BY-SA 3.0], via Wikimedia Commons.

	Context: Runtime verification
	Specification formalism: LTL3
	DTrace
	Design and Implementation of graphviz2dtrace
	Case study 1: The stack
	Performance Evaluation

	Case study 2: Node.js and PostgreSQL
	Conclusion and Evaluation
	Appendix

