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Context: Runtime verification



System
“Buffers should never overflow”

“Every request gets an answer”

Desired properties

“Variables should never enter
 an inconsistent state”
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‘‘Runtime verification is the discipline of computer science
that deals with the study, development and application of
those verification techniques that allow checking whether a
run of a system under scrutiny […] satisfies or violates a
given correctness property.’’ [6, p. 36, emphasis mine]
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How to do runtime verification

1. Rigorously specify a correctness property (typically using formal
logic).

2. Collect runtime data from the system.
3. Find a way to automatically check if the collected data indicates

that the correctness property is violated or satisfied.
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Key idea: Exploit formal connections between
logic and automata theory
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How to do runtime verification

1. There are ways of deriving automata from logical expressions
that accept or reject their input based on whether the input
satisfies or falsifies a logical formula.

2. This can be used to create monitors.
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Monitors

A monitor is a program that consumes data from the system under
scrutiny, interprets this data as a run of a system and reports
whether the specified property is

• satisfied by the data,
• falsified by the data or
• that the data is insufficient to derive a verdict [7, p. 294–295].
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Specification formalism: LTL3



LTL3 is a three-valued variety of Linear
Temporal Logic (LTL): Same syntax, different

semantics.
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LTL: Linear Temporal Logic

• In the context of formal methods, Temporal Logic is used to
reason about the evolution of some system over time.

• LTL is based on the notion of time as an infinite sequence of
time slices: Time is linear.

• The idea of using Linear Temporal Logic for program verification
originated with Pnueli [8].
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Linear time

p,q r,s p,s …
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LTL Syntax

Syntactically, LTL extends the familiar Propositional Logic with
temporal operators. The temporal operators are:

• 2 (always),
• 3 (eventually),
• # (next),
• U (until),
• R (release),
• W (weak until/waiting for).
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LTL Semantics

• LTL formulas are interpreted on sequences of states, where each
state contains a set of atomic propositions that are true in that
state.

• In the standard view, these sequences of states are considered
infinite, and we call such sequences of states traces.
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LTL Semantics

p,q r,s p,s …

Some observations:

• σ |= p U s,
• σ |= #s,
• σ |= 3r,
• σ ̸|= 2p and
• σ |= p W s.
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Key idea of LTL3: A reasonable way of dealing
with finite traces.
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LTL3 Semantics

• LTL3 is defined for finite traces, which makes it suitable for
runtime verification: We can only observere finite runs.
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Key idea of LTL3: Identify good and bad
prefixes [5].
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Good prefix

• A trace fragment u is a good prefix with respect to some
property ϕ if ϕ holds in all possible futures following u.
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Bad prefix

• A trace fragment u is a bad prefix with respect to some property
ϕ if ϕ holds in no possible futures following u.
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LTL3 Semantics summarized

We can thus state the truth-value of an LTL3 formula ϕ with respect
to a finite trace u as follows:

u|=3ϕ =


⊤ if u is a good prefix wrt. ϕ
⊥ if u is a bad prefix wrt. ϕ
? otherwise.
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Foundational idea: For an LTL formula ϕ, a
corresponding Büchi automaton [2] can be

derived.
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• Büchi Automata are defined on infinite traces and accept a trace
if and only if the automaton visits some accepting state
infinitely often.
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• Bauer et al. give an algorithm for creating LTL3-monitors [1,
14:10-14:13]

• This algorithm is implemented in LamaConv [9], which we make
use of in the thesis.
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DTrace



• DTrace is an operating system technology for monitoring
running software systems.

• Originally written by Bryan Cantrill, Adam Leventhal and Mike
Shapiro for the Sun Solaris 10 operating system, DTrace is now
available for Mac OS X, FreeBSD and other systems [4]

• If a running system has DTrace installed, an administrative user
can log into the system, write a DTrace script and get insights
about the system without having to reboot, stop or alter the
system in any way.
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DTrace’s two most compelling features

1. DTrace gives a unified view of the whole system: Events within
the kernel and in userland processes can be analyzed
simultaneously.

2. DTrace provides facilities for dynamic tracing: Instrumentation
which does not rely on static artifacts in the source code.
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Using DTrace: The D scripting language

• Users interact with the DTrace framework via a domain-specific
AWK-like scripting language called D.

• D is an event-driven programming langauge, where users specify
actions that DTrace should take when an event of interest
occurs.
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Using DTrace: The D scripting language

#!/usr/sbin/dtrace -qs
syscall::read:entry
/execname != "dtrace" /
{

printf("%s\n", execname);
}
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Main components of D

• Probes (4-tuples)
• Action blocks
• Predicates
• Probe clauses
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DTrace Probes

• DTrace provides the user with an enormous list of possible
instrumentation points representing events of interest. These
instrumentation points are called probes.

• The available probes reflect aspects of the system that can be
monitored at the current point in time.

• Probes are identified by a four-tuple
<provider:module:function:name>.

• When the event a probe represents occurs, one says that the
probe ‘‘fires’’).
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Design and Implementation of
graphviz2dtrace



Basic idea: Associate atomic propositions in
LTL specifications with DTrace probe

specifications (with optional predicates).
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push → pid$target::push:entry
pop → pid$target::pop:return

empty → pid$target::empty:return/arg1 == 1/
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graphviz2dtrace

• In essence, graphviz2dtrace is a source-to-source compiler
which takes LTL3-based automata and creates corresponding D
scripts.

• The resulting scripts have the automaton’s transition function
encoded in an array, and the automaton state stored in a
variable.

• When an event occurs, the state of the automaton is updated
according to the transition function.
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Anticipation

• graphviz2dtrace creates monitors that terminate
immediately upon finding a good or bad prefix: They are
anticipatory.

• The scripts achieve this by understanding which state it is about
to enter.
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Anticipation

pid$target::empty:return
/ (arg1 == 1) && (state == 1)/
{

trace("REJECTED");
HAS_VERDICT = 1;
exit(0);

}
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Implementation

• The essential implemenation concern is creating three types of
probe clauses: rejecting, accepting and neutral clauses.

• Rejecting clauses are clauses dealing with situations where bad
prefixes are found.

• Accepting clauses are clauses dealing with situations where
good prefixes are found.

• Neutral clauses simply update the state of the automaton.
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Implementation

• Since all clauses use predicates to reason about the automaton
states, and since probes are processed top to bottom, neutral
clauses must be placed last in the script.
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Key limitation: Race conditions occur if two
neutral probe clauses fire simultaneously.
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Case study 1: The stack



Demo time!
https://vimeo.com/169470067 (03:00)
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Gregg’s dictum

Brendan Gregg [10]

• ‘‘Don’t worry too much about pid provider probe cost at < 1000
events/sec.’’

• ‘‘At > 10,000 events/sec, pid provider probe cost will be
noticeable.’’

• ‘‘At > 100,000 events/sec, pid provider probe cost may be
painful.’’ [3]
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Case study 2: Node.js and
PostgreSQL



Demo time!
https://vimeo.com/169585739 (02:55)
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Conclusion and Evaluation



Questions?
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