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Abstract

In recent years, it has come to attention that governments have been
doing mass surveillance of personal communications without the consent
of the citizens. As a consequence of these revelations, developers have
begun releasing new protocols for end-to-end encrypted conversations
and then commonly used chat applications have been updated with
implementations of these protocols. New applications have also been
developed to support these types of protocols with security in mind from
the beginning. These usually contain existing and audited algorithms to
ensure the encryption between participants is up to its standards.

This thesis investigates protocols for end-to-end encrypted instant
messaging, focusing on the existing implementations of one of the recent
and popular such protocols, called Signal. The first protocol studied is
the Off-the-Record (OTR) protocol, since it was the first such protocol
introduced ten years ago, and which most recent protocols are based on, or
take inspiration from. Then a large part of the thesis carefully goes through
the inner workings of the Signal protocol, which itself is based on OTR.

The documentations of three secure messaging protocols is studied to
find what types of security and privacy properties they provide. The study
of the protocol properties is also based on recent academic articles. The
conclusions are summarized and explained with the purpose to be used in
the rest of the thesis.

A second major part of the document is devoted to analyzing the
most used secure messaging applications. A series of experiments is then
conducted on these implementations to find out which types of security
and usability properties each application provides. Six applications are
tested. A major concern is about what kind of information the application
gives to the users when cryptographic keys change during conversations,
as well as how users can verify the identities of each other.

The results of the experiment show that the apps have variations of
usability and security properties regarding the user’s account. The apps
give different amounts of information to the user about potential security
attacks. While some gave enough for the user to know when cryptographic
keys change, others do not provide any information.

The thesis also gives proposals for improving each application wrt.
security, privacy, and usability. Hopefully, the users find the information
in this research useful in choosing a particular application, and positively,
encourages other researchers to look more carefully into usability and
security challenges of secure messaging applications.
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Chapter 1

Introduction

In recent years, the trend to use mobile applications for communication
has grown and become the standard method of communicating. New
messaging applications started to emerge and try to replace traditional
SMS, but building them with security and privacy in mind was not
important for the developers. The popular messaging tools used in recent
years do not support end-to-end encryption, only standard client to server
encryption, which gives the service providers access to more private
information than necessary.

When Edward Snowden published the secret papers about NSA, people
finally understood that mass surveillance was an issue, and secure mobile
messengers became more critical and popular. Instant Messaging clients
who did not provide asynchronous communication became a problem
because of the rise of smartphones and applications that were not always
online. Secure messaging protocols such as Off-the-Record did not support
asynchronous messaging, which gave other researchers and developers the
motivation to develop new protocols for asynchronous communication in
mind. After the Snowden revelations, new secure messaging applications
started to emerge such as the Signal application with their protocol, Signal.
After a while, the new protocol became quite popular among developers
and researchers because of their secure messaging capabilities, and then it
started to get implemented in other applications that only supported client-
to-server encryption.

End-users have started to use secure mobile messaging applications,
but it has become crucial to give the users a good user experience with
easy to understand usability properties. While the user experience is
essential for applications to have, which attracts new users to them, the
usability aspects have been the vital part of the applications, which might
have overshadowed the security aspects. If the developers do not take
the security seriously, the end-users are the ones at risk because the
conversations may get attacked by adversaries or impersonators could get
access to the conversations.

New secure mobile applications are easy to use by end-users, where
they only need a phone number to create an account, while the applications
generate and exchange the cryptographic keys in the background, without
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the user having to do any interaction. The users would never know
about the different cryptographic keys in use, and this is useful for the
layman because they get seamlessly end-to-end encryption without having
to understand the background on how the keys work.

1.1 Background and Motivation

Throughout the last couple of years, the need for secure messaging
protocols has become apparent. People are more prone to understand the
security implications that mass surveillance is not something which should
be taken lightly. Edward Snowden has sparked a debate throughout the
world that our individual privacy is not private anymore because of the
mass surveillance multiple countries have been doing for decades1.

No need to look further than the first quarter of 2017, when WikiLeaks2

leaked documents from the U.S. Central Intelligence Agency (CIA). The
leak, codenamed ”Vault 7” by WikiLeaks is the largest ever publication of
confidential documents on the agency [15]. The documents that leaked has
information on how to get access to mobile phones or personal computers,
without the users knowledge, and how the CIA did their fair share of mass
surveillance.

There was a rise in startups that offered encryption and user privacy op-
tions after the Snowden scandal. Multiple companies started implementing
secure messaging protocols and applications to counter the mass surveil-
lance and offer an end-to-end encrypted messaging system which does not
leak any information about the user’s message content. There was a need
for these types of applications and protocols, but the problem with new and
bleeding-edge applications is the adoption of it. After a while, companies
such as Google, Facebook, and Open Whisper Systems united to imple-
ment protocols into already wide adopted applications such as WhatsApp,
which has over one billion monthly active users [49].

There are a lot of new secure messaging applications in 2017 that
offer end-to-end encrypted message conversations over mobile phones and
computers, but they often sacrifice usability aspects for security, which
normally is a good thing, but it should be possible to have the best of both
worlds. Applications should give the users enough information for them
to know when or if a conversation is not secure anymore and the options
to secure it once again.

Another point to be made is to show how the secure messaging
protocols have evolved since the last time researchers went through the
protocols which implement end-to-end message encryption. Unger et al
[53] did a thorough analysis of the various secure protocols two years ago,
but since then the protocols have evolved and implemented new security
properties, and new protocols have surfaced.

1https://en.wikipedia.org/wiki/List_of_government_mass_surveillance_

projects
2https://wikileaks.org/
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1.2 Problem Statement

The area of end-to-end encryption in secure messaging protocols and im-
plementations has become rather broad recently with various existing pro-
tocols. It is difficult for a user to find digestible and easy to understand in-
formation sources, and even less when it comes to comparative integrated
studies. Therefore, a first research question is:

• Provide a detailed, yet comprehensible and comparative study of rel-
evant approaches to end-to-end encrypted messaging technologies?

This study should include both old protocols, but more importantly the
new ones which are also implemented in existing applications.

A comprehensive analysis of the security and privacy properties
provided by secure messaging protocols is not easy and there are very
few such studies (which we build upon). End-to-end encrypted messaging
should be both usable for the user to adopt them, but also have usually
very strong property requirements. These two, usability and security, are
usually conflicting, and a good balance is difficult to find. This leads us to
the second research question:

• What are the security and privacy properties provided by current
end-to-end messaging protocols and applications, and to what extent
these achieve these properties?

The Signal application (and protocol) is one of the most used end-to-end
messaging technology currently available for smart phones and desktop
PCs. This is why maybe focusing the above evaluations on Signal would
already be useful. Moreover, the Signal protocol is employing state of the
art technology in encryption and key establishment.

• What are the security mechanisms behind the Signal protocol?

1.3 Scope and Limitations

All the tests done with the mobile applications are limited to only the
usability aspect of the application. The tests do not look at how the
application is implemented from the bottom up, or at the source code. The
test only checks what the user is shown during the test scenarios from the
registration phase, key changes within a conversation and the usability of
the verification process of users.

The use-case tests are performed the same on each of the different
applications and are done by myself and not a group of participants in
a case study because of limitations of finding enough participants. The
test phones used were Android phones with the original operating system
installed, and are not rooted to get access to information a normal user
would not have the opportunity to get.

3



1.4 Research Methodology

In 2002 Crnkovic [14] studied The Scientific Method in Computer Science
and identified three different scientific methods that could be applied to
Computer Science research papers:

• Theoretical Method: This method adheres to the traditions of logic
and mathematics. It follows the very classical methodology of
building theories as logical systems with stringent definitions of
objects and operations for deriving or proving theorems [14]. In
computer science, for example, this can be adopted when working on
the design and algorithms analysis to find new solutions or solutions
to performance issues.

• Experimental Method: This method is used when doing experiments
to extract results from real-world implementations, such as to
test theories or do explorations to obtain new knowledge [20].
Experimental approaches are also useful in methods which take
the human factor into consideration when gaining results from the
experiments.

• Simulation Method: This method is about investigations beyond
current experimental capabilities, such as study phenomena that
cannot be replicated in laboratories [14].

In this thesis, the experimental method is the chosen method for this
research, where experiments are conducted on real-world implementations
of secure messaging application. The discussion of the different security
properties is done in Chapter 2, to gain enough knowledge about security
properties and then go into detail about the requirements for the Signal
protocol in Chapter 3. Chapter 5 is about the design of our testing
methodology and experiment, and step by step on what each of the
application do for each test scenario that is laid out. The evaluation of the
experiment is done in chapter 6 and 7, where the result of each experiment
is analyzed and then discussed different properties the applications achieve
and what should be done to obtain the missing properties.

1.5 Related Work

There has not been much research done on the usability and security
area for secure messaging applications. In the last couple of years, it has
become more and more important for researchers to look at the usability
and not purely on the technical issues surrounding secure messengers.
The first research paper that looked at the usability issues for end-to-end
encrypted messengers is the paper by Schroder et al. [51] where they did
a comprehensive user study on the usability of Signal’s security features
and came with recommendations on how to fix the issues it had with users
failing to detect and deter man-in-the- middle attacks. This thesis does not
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use participants, but it does look at the same types of potential attack spots
as Schroder et al., but with additional applications.

Unger et al. [53] did a more comprehensive work on secure messaging
by looking at the security properties around trust establishment, conversa-
tion security, and transport privacy. Their survey shows that protocols that
specialize in encryption do not manage to provide every important security
and privacy property. In this thesis, the properties are based on the same
properties that Unger et al. goes through, but only on the conversation
security for three specific end-to-end encrypted messaging protocols.

1.6 Main Contribution

In section 1.1 about Background and Motivation two main motivations
of writing this thesis was given. One is to update the overview on
conversation security from Unger et al. [53] and to look at how secure
messaging protocols have evolved since the release of that research paper.
The other was to look at how secure messaging applications implement
security and usability properties and to see if the applications have
managed to keep the best of both worlds.

• The first research question is answered throughout Chapter 2 and
3 where we give users a thorough explanation of how the Off-the-
Record and the Signal Protocol work.

• The thesis has compiled an overview of security and privacy
properties for some secure messaging protocols such as OTR, Signal,
and Matrix. The information is presented in a digestible way, such
that future researchers can get a basic information source of the
different protocols on how they work and why they provide some
of the properties.

• Secure messaging applications have been tested in various test
scenarios to see how they handle changes to cryptographic keys
and how participants verify each other. Recommendations for
improvement of the applications has also been given in the end.

1.7 Outline

The rest of the thesis is organized as follows:
Chapter 2 details the technical background of the thesis. There will be

information about basic security principles and concepts and an overview
of Off-the-Record Protocol.

Chapter 3 explains how the Signal Protocol is made up of, by both a
Double Ratchet algorithm and a 3-Diffie-Hellman Key Agreement Protocol.

Chapter 4 present a systematization of knowledge about three secure
end-to-end encrypted messaging protocols, with a discussion of the
information retrieved in the end. The second research question is answered.
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Chapter 5 presents the research about six mobile phone applications
which support a few of the protocols shown in chapter 4, and some others
which are not open source applications.

Chapter 6 presents the results from each test scenario of the various test
cases conducted from the research in chapter 5.

Chapter 7 presents the discussion of the results presented in the
previous chapter. The third research question is answered.

Finally, Chapter 8 presents the conclusions that can be drawn from the
different results in the earlier chapters. In the end it will give a summary
of this thesis and list our thoughts for future work.

The research questions described earlier are answered by the following
chapters. Question 1 is answered through the study in Chapter 2 and 4;
Question 2 is answered through the study in Chapter 4 and 5; whereas
Chapter 6 and 7 present the results from the tests that were done and the
proposed recommendations; Question 3 is answered mainly through the
study in Chapter 3, but also all other chapters detail other tangent aspects
of Signal.

1.8 Summary

This chapter first gave a brief introduction to this master thesis, discussing
the recent years of mass surveillance by the governments and what has
been the consequences of this in the area of secure messaging.

Following this was a section regarding the background and motivation
of the thesis. The section explains more about the surveillance by our
government, and the revelations of both Edward Snowden scandals and
the recent leaks by Wikileaks about Vault 7.

WThe problem statement of the thesis was given, explaining that
this thesis could act as a compendium, by providing an overview of all
information about different secure messaging protocols, and at the same
time as an information source to see how the different applications handle
changes of cryptographic keys and other usability aspects.

The scope and limitation explained that the applications are not tested
on how they are implemented from the bottom up, only on the usability
properties they provide, and that the tests are performed only by me and
not by a group of participants.

The next chapter goes into the technical background of this these, ex-
plaining the different security principles and the Off-the-Record Protocol.
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Chapter 2

Technical Background

2.1 Encryption

Encryption can be intuitively understood as a method for converting
plain text (or other form of information) into encrypted text that is difficult
(impossible) to understand by anyone except authorized parties (i.e.,
parties holding a decryption key). The most important application of
encryption is to protect the information stored on computers or transmitted
on the Internet. Encrypted messages do not prevent interception, but it
does deny the content that is inside the encrypted message, such that the
interceptor has no way of knowing what the decrypted message contains.
The only way an interceptor (which we usually call an eavesdropper) can
read the encrypted message is by having the key to decrypt the message, if
not the eavesdropper would see only useless (unintelligible) gibberish.

Figure 2.1: Unencrypted messages between Alice and Bob [19]

This thesis is about end-to-end encryption of messages between Alice
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and Bob, but to fully understand how this can and cannot protect them, it
is important to explain how an unencrypted message system works.

Alice and Bob want to discuss between each other and do not care what
type of messaging application they use or if it is secure. Messages passed
between Alice and Bob without encryption, move from their devices to
their local network and then across some amount of internet devices
until it reaches the received local network and then to the appropriate
device. Since they send unencrypted messages, eavesdroppers can read
the message at any point of the transit [19].

The next step from unencrypted messages is to encrypt them from Alice
to the server, decrypt them there, and then encrypt from the server to Bob.
This communication encryption is Transport Layer Security (TLS)[12] since
it is designed to secure communications between a client and server.

Messages sent to the server are decrypted by the server, which means
that it can openly read, store or edit the message before encrypting them
again and sending it to the other end. The problem with this is the
possibility of the server being attacked by an adversary, even though the
clients trust the server to handle the packages. At the same time, the servers
may be contacted by law enforcement to give them the information sent
by clients to the server, and there is nothing the clients can do if the law
enforcement has legal jurisdiction [19].

Figure 2.2: TLS Encryption between Alice and Bob [19]

The last change to the encryption is the end-to-end encryption imple-
mentation. If implemented, then the endpoints on each of the client’s ap-
plications do the encryption while the servers only transmit the messages
without knowing the content. Figure 2.3 shows how the end-to-end en-
cryption works by encrypting Alice’s and Bob’s application endpoints and
then sending it through the servers, where neither, the attackers between
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client and server, nor the server can get access to the messages.

Figure 2.3: End-to-End encryption between Alice and Bob [19]

2.2 Security Principles, Usability and Adoption

This sections talks about the different security principles that a secure mes-
saging system should have for it to be called secure. These have a funda-
mental part throughout the thesis on how to compare the specifications of
different protocols that advertise secure messaging applications. There will
be talk about the most important principles such as authentication or for-
ward secrecy, but also smaller ones that are equally important to have for
secure messaging such as out-of-order resilient and asynchronicity. Group
chats are important for the end-user, this means that the different proto-
cols should also have additional features to support this which is discussed
more at the end of this section.. The security and privacy features that are
explained and based on, if nothing else is specified, are from the research
paper by Nik Unger et al [53].

2.2.1 Authentication

Authentication is about identifying individuals within a conversation, to
confirm that the person is who they say they are. If one user sends
a message to another user, and the message is modified en route to
the receiver, then the receiver is assured of detecting the modification.
Message authentication is also called data-origin authentication. Message
authentication protects the integrity of a message, to ensure that each
message which is received is in the same condition that it was sent out,
with no modification done to the message [6].
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Message authentication codes (MAC)1 provides assurance about the
source and integrity of a message. A message authentication code is
computed by using the message and a shared secret between two parties.
Which means that to authenticate a message, the receiver has to share
the secret key used to compute the message authentication code with the
sender [25]. An adversary cannot validate the message because only the
sender and receiver have the shared secret, and if the adversary changes
the message, then the computed MAC key changes as well.

2.2.2 Perfect Forward Secrecy

The idea of forward secrecy is that when a long-term key is compromised,
sessions keys that were previously established using that long-term key
should not be compromised. Typical example of protocols which provide
forward secrecy is key agreement protocols where the long-term key is only
used to authenticate the exchange. Key transport protocols in which the
long-term key is used to encrypt the session key cannot provide forward
secrecy [9].

Definition 2.1. A key establishment protocol provides forward secrecy if
compromise of the long-term keys of a set of principals does not comprom-
ise the session keys established in previous protocol runs involving those
principals.

Figure 2.4: Forward Secrecy

2.2.3 Future Secrecy

Backward secrecy or Future secrecy, as it has been coined by the Open
Whisper Systems [34], is when a protocol can guarantee that compromise
on long-term keys does not allow subsequent ciphertexts to be decrypted
by passive adversaries [53]. A protocol does also support future secrecy
when it can provide the ”self-healing” aspect of the Diffie-Hellman ratchet,
which will be described in section 2.4, because if any ephemeral key is
compromised or found to be weak at any time, the ratchet will heal itself
and compute new ephemeral keys for the rest of the messages sent during
the conversation [34].

1https://en.wikipedia.org/wiki/Message_authentication_code
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Figure 2.5: Backward Secrecy

2.2.4 Deniability

Deniability is a property common to new secure messaging protocols,
where it is not possible for others to confirm that the data was sent by one
particular person. If Bob receives a message from Alice, he can be sure it
was Alice that sent it, but cannot prove to anyone else that it was Alice who
wrote it. Secure messaging protocols which offer deniability can assure the
user that anyone can forge messages after a conversation to make them look
like they came from them, but if it is during a conversation, the participants
are assured that the words they see are authentic and are not modified by
anyone else other than themselves [22].

2.2.5 Synchronicity

There are two types of communication, synchronous and asynchronous,
and a chat protocol can be one of those two. Synchronous protocols have a
requirement that all participants must be online for them to receive or send
messages. If a chat protocol is asynchronous, it means that the participants
do not need to be online to receive messages, such as SMS text messaging
or emails, since there is a third party in play to save the information until
the recipient gets online again.

When it comes to today’s chat protocols, it is advised against using a
synchronous protocol. The reason is that there are social and technical
constraints, such as device battery, limited reception or other social
happenings which mean people will have problems always being online
to receive messages. That is why the majority of Instant Messaging (IM)
solutions provide asynchronous environment by having a third party
server which stores the messages until the other participant gets online
to receive it. The new secure messaging protocols should by design
be asynchronous platform for communication for it to become popular
amongst the end-users.

2.2.6 Confidentiality

Confidentiality ensures that the necessary level of secrecy is enforced at
each junction of data processing and prevents unauthorized disclosure [26].
This is usually achieved by encrypting the data from the sender to the
receiver, and only those with the correct decryption key can read what
the encrypted data contains. In cryptographic protocols confidentiality is
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essential to ensure that keys and other data are available only as intended
[9].

Attackers have the opportunity to ruin confidentiality mechanism
by stealing password files, breaking encryption schemes, or by social
engineering. Users, on the other hand, can intentionally or accidentally
disclose sensitive information by not encrypting it before sending it to
another person, or by falling prey to a social engineering attack [26].

Confidentiality can be provided by encrypting data as it is stored and
transmitted, enforcing strict access control and data classification, and by
training personnel on the proper data protection procedures [26].

2.2.7 Integrity

Integrity is having the assurance that anyone throughout the transmission
does not modify the messages and its content. Any honest party
should not under any circumstances accept a message that is modified.
Hardware, software, and communication mechanisms must work in
concert to maintain and process data correctly and to move data to
intended destinations without unexpected alteration. The systems and
network should be protected from outside interference and contamination
[26].

Environments that enforce and provide this attribute of security ensure
that attackers, or mistakes by users, do not compromise the integrity
of systems or data [26]. This can be achieved through the use of
hash functions2 in combination with encryption, or by use of a message
authentication code (MAC) to create a separate check field. Data integrity
is a form of integrity that is essential for most cryptographic protocols to
protect elements such as identity field or nonces[9].

2.2.8 Other Security Properties

These security properties are smaller and more concise than the other
properties, but are still as important to implement into the end-to-end
secure messaging protocols.

• Participant Consistency: At any point when a message is accepted
by an honest party, all honest parties are guaranteed to have the same
view of the participant list.

• Destination Validation: When a message is accepted by an honest
party, they can verify that they were included in the set of intended
recipients for the message.

• Anonymity Preserving: Any anonymity features provided by the
underlying transport privacy architecture are not undermined (e.g.,
if the transport privacy system provides anonymity, the conversation
security level does not deanonymize users by linking key identifies).

2https://en.wikipedia.org/wiki/Hash_function
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• Speaker Consistency: All participants agree on the sequence of
messages sent by each participant. A protocol might perform
consistency checks on blocks of messages during the protocol, or after
every message is sent.

• Causality Preserving: Implementations can avoid displaying a
message before messages that causally precede it.

• Global Transcript: All participants see all messages in the same
order. When this security feature is assured, then it implies both
speaker consistency and causality preserving are assured.

• Deniability can be divided into three different parts:

– Message Unlinkability: If a judge is convinced that a parti-
cipant authored one message in the conversation, it does not
provide evidence that they authored other messages.

– Message Repudiation: Given a conversation transcript and all
cryptographic keys, there is no evidence that a given message
was authored by any particular user. We assume the accuser
has access to the session keys,but not the participants long-term
secret keys.

– Participation Repudiation: Given a conversation transcript and
all cryptographic key material for all but one accused (honest)
participant, there is no evidence that the honest participant was
in a conversation with any of the other participants.

2.2.9 Group Chat

In recent years it has become easier to have a group conversation among
friends and colleagues with the use of Facebook Messenger3, Slack4 or
other popular messaging applications out there5. The problem with these
messaging applications is that they are not end-to-end encrypted, but,
i.e., Open Whisper Systems have worked hard to make this easier for
everyone by introducing fast and reliable end-to-end encrypted group
chats. Therefore, it is important that the new protocols and applications
have additional security properties and features to support end-to-end
encryption.

• Computational Equality: Do the participants share an equal compu-
tational load when talking to each other.

• Trust Equality: There is not a single participant who has more trust
or responsibility, within the group, than any other.

• Subgroup messaging: Participants can send messages to only a
subgroup of others without generating a new conversation.

3https://www.messenger.com
4https://slack.com
5https://www.engadget.com/2016/09/30/12-most-used-messaging-apps/
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• Contractible membership: The group do not need to restart the
security protocol when a member leaves the conversation.

• Expandable membership: There is no need to restart the security
protocol when adding a new member after the group has been
generated.

It is important for the protocol to have the ability of changing
cryptographic keys when a new user joins the secure group conversation,
since then the new users to not have the ability to decrypt previously sent
messages. New cryptographic keys should also be exchanged when a user
leaves the conversation. The changing of keys is not that big of a problem,
it is simply restarting the protocol, but this is often computationally
expensive. Protocols which offer contractible and expandable membership
achieve these features without restarting the protocol.

2.2.10 Usability and Adoption

Other usability aspects should be taken into account when looking at usab-
ility and adoption, but these are discussed in Chapter 5, where different UX
decisions the developers have done are taken into consideration. This sec-
tion is about other usability factors, such as resilience, multi-device support
and if the protocol needs additional services.

• Out-of-order resilience: If a message is delayed in transit, but
eventually arrives, its contents are accessible upon arrival.

• Dropped Message Resilient: Messages can be decrypted without
receipt of all previous messages. This is desirable for asynchronous
and unreliable network services.

• Asynchronous: Messages can be sent securely to devices which are
not connected to the Internet at the time of sending.

• Multi-Device Support: A user can connect to the conversation from
multiple devices at the same time, and have the same view of the
conversation as the others.

• No Additional Service: The protocol does not require any infrastruc-
ture other than the protocol participants. Specifically, the protocol
must not require additional servers for relaying messages or storing
any kind of key material.

2.3 Basic Concepts

2.3.1 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange (DHKE), proposed by Whitfield Diffie and
Martin Hellman in 1976 [13], was the first asymmetric scheme published in
the open literature. It provides a practical solution to the key distribution
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problem, i.e., it enables two parties to derive a common secret key by
communication over an insecure channel [45]. The elegant and simple
construction has been the basis for a vast range of protocols [9], such as
Secure Shell (SSH)6, Transport Layer Security (TLS)7, and Internet Protocol
Security (IPSec)8. This section will have a simple explanation of Diffie-
Hellman and a common vulnerability.

Diffie-Hellman consist of two protocols, one that is used to set-up the
public parameters that Alice and Bob are going to use, and the primary
protocol which performs the key exchange. The set-up protocol consist of
the following steps [45]:

Figure 2.6: Diffie-Hellman Set-up [45]

Those two values that are devised from the set-up protocol are called
domain parameters. If Alice and Bob both know the public parameters p
and alpha, they can generate a shared secret key k with the following key-
exchange protocol.

Figure 2.7: Diffie-Hellman Key Exchange [45]

On the other hand, the basic Diffie-Hellman Key protocol does not
offer any authentication of the messages sent. The problem with no
authentication is that anyone can exploit it by a man-in-the-middle attack.
An attacker can insert itself between Alice and Bob’s communication
channel, and impersonate both Alice and Bob to the other party. When this
happens, Alice will think she is doing a DHKE with Bob, and Bob thinks he

6https://en.wikipedia.org/wiki/Secure_Shell
7https://en.wikipedia.org/wiki/Transport_Layer_Security
8https://en.wikipedia.org/wiki/IPsec
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is doing a DHKE with Alice. After the DHKE is done, they will get a shared
secret with the attacker instead of each other. The figure below shows how
the attacker C can attack the DHKE between A and B:

Attack on basic Diffie-Hellman

A C B
rA ∈R Zq

tA = grA tA rC ∈R Zq

tC = grC tC rB ∈R Zq

tC ZAC = trC
A

tB tB = grB

ZAB = trA
C ZCB = trC

B ZAB = trB
C

Figure 2.8: Attack on basic Diffie-Hellman Key-Exchange [9]

2.3.2 Key Derivation Function

Key Derivation Function(KDF) is part of Key Establishment, which deals
with establishing a shared secret between two or more parties. Key
Establishment can be divided into two different methods, key transport
and key agreement methods [45]. This section will only be about the key
agreement method since the Signal Protocol uses it as part of its algorithm.

In most security systems it is desirable to use cryptographic keys which
are only valid for a limited time. These keys are usually called session keys or
ephemeral keys. The reason for limiting the period in which a cryptographic
key is used is because it has an advantage, such as it does less damage if the
key is exposed [45]. Another reason is that an attacker has less ciphertext
to work with under each generated key.

It is important to update the key frequently, such that attackers can’t
decipher the ciphertext. This can be done by using an already established
shared secret key to derive fresh session keys, by using a key derivation
function. It works by using a non-secret parameter r to process together
with the join secret kAB between two users, Alice and Bob.
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Figure 2.9: Principle of key derivation [45]

The key derivation function has a characteristic that it should be a one-
way function. When the function has a one-way property, it will prevent
an attacker from deducing kAB should any of the session keys become
compromised, which would allow the attacker to compute all future keys
[45].

2.4 Off-the-Record Protocol

Before discussing the Off-The-Record protocol (OTR), is is important to
understand how the general usage of Off-The-Record works. Take a
scenario where Alice and Bob are alone in a room. Nobody can hear what
they are saying to each other unless someone records them. No one knows
what they talk about, unless Alice and Bob tell them, and no one can prove
that what they said is true, not even themselves. This type of scenario and
conversations are called “Off-The- Record.” The good thing about an Off-
the-Record conversation (in reality) is the legal support behind it since it
is illegal to record conversations without participants knowing. It also
applies to conversations over the phone, since by law, it is illegal to tap
phone lines. There was nothing for communications over the web that
could work until cypherpunks9 released a new Off-the-Record protocol.

There are a couple of things such protocols need for it to work as an
Off-the- Record protocol. Perfect forward secrecy is one of them, and
repudiation is the second since without those there would be no possibility
to deny what the participant has said in a past conversation. The OTR
protocol addresses these issues.

Off-the-Record was designed to provide features for an underlying
instant messaging protocol [23]. Instant messaging are a series of messages

9https://otr.cypherpunks.ca/
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exchanged between two parties but could not exactly alternate, which is
that a party could send multiple messages before he or she receives a reply.

OTR was developed in such a way that it uses the instant messaging
protocol as a transport layer, this means that each binary message of
the OTR protocol is converted to characters which the instant messaging
protocol can transport over the web. The receiver then takes that message
and converts it back to the original format. Each OTR message is marked
with a unique tag so that it is easy to recognize which version of the OTR
the sender uses.

The next steps go through the different steps that Off-the-Record
protocol does and how they work. It first starts with the Off-the-
Record Authenticated Key Exchange, then goes over to how the message
transmission works. Step three is about the re-keying that OTR often does
during the conversation between parties and in the end, the last step is the
publishing of MAC-keys. After the four necessary steps, an important step
is shown that ensures no passive or active attacker, such as Man-in-the-
Middle, is possible during a conversation. When combining all these steps,
we get a Diffie-Hellman ratchet which generates new cryptographic keys
for each new message.

2.4.1 Step 1: Authenticated Key Exchange

Upon starting a conversation, both Alice and Bob need to know if they both
want to have a conversation with OTR. This is done by one of them, which
means that Alice informs Bob that she is willing to use the OTR protocol to
speak with him. She sends Bob a Query Message requesting Bob to start an
OTR conversation with her. She can also in the same message state which
version of OTR she wants to use. In the end, it is up to Bob if he wants to
speak with OTR or not; he is going to be the one starting the Authenticated
Key Exchange if he agrees.

According to the site of Off-the-Record, cypherpunks, it does use a vari-
ation of Diffie-Hellman Key Exchanged called SIGMA. All exponentiations
are done module a particular 1536-bit prime, and g is a generator of that
group[23]. Alice and Bob do also have each of their long-term authentica-
tion public keys, which are pubA and pubB, respectively. The point here is to
do an unauthenticated Diffie-Hellman key exchange to set up an encrypted
channel, and inside that channel do mutual authentication.

Diffie-Hellman is used to find a way of generating shared secret
between two parties, in a way that is not possible for others to compute the
same shared secret. The key does not get shared during the exchange, but
the two parties create the key together, which is an important distinction.
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p is a specific fixed 1536-bit prime
g is a generator of (Z/pZ)∗

All operations are performed modulo p

Alice Bob

A = gamodp B = gbmodp

A

B

ss = Bamodp ss = Abmodp

= gabmodp = gabmodp

ssa == ssb

Figure 2.10: Plain Diffie-Hellman Key Exchange

Since both Alice and Bob have their 1536-bit prime number and a
generator of that group, they can start doing they Diffie-Hellman Key
Exchange. They agree on these number publicly, so that they are the only
ones who know them, but they do not need to be protected. Alice then
picks a random number only she knows, computes gamodp and sends the
number to Bob. Bob on the other side does the same, picks a random
number, computes gbmodp and sends it to Alice. When both Alice and Bob
have each others computed numbers, they calculate the common secret.
Alice calculates gabmodp and Bob calculates gbamodp, and if the number
is the same on both sides, they know that by using this number, their
messages are secure.

The plain Diffie-Hellman key exchange is vulnerable to active attacks,
such as man-in-the-middle. If Eve is in the middle of the key exchange,
she can take the message from Alice and send her key instead to Bob. Bob
would not know the difference; he is thinking that he is exchanging with
Alice, but is talking with Eve. The established key is equal for both sessions,
but while Alice associates it with Bob, he, on the other hand, associates
it with Eve [11]. This authentication failure would happen if OTR did
only use plain Diffie-Hellman, which they did in the beginning, but have
now implemented a signature-based authenticated DH exchange, named
SIGMA, which solves this weakness [32].

The SIGMA acronym is short for “SIGn-and-MAc,” because SIGMA
decouples the authentication of the DH exponentials from the binding of
key and identities. The former authentication task is performed using
digital signatures while the latter is done by computing a MAC function
keyed via gab and applied to the sender’s identity [32].
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SIGMA has a few different forms, from a basic form where it does not
provide identity protection, to a four message variant known as SIGMA-R
which OTR uses since it provides both defenses to the responder’s identity
against active attack and to the initiator’s passive attacks. The basic form
is first shown to give a better understanding of the SIGMA protocol

Alice Bob

ga

gb, B, SIGB(ga, gb), MACKm(B)

A, SIGA(gb, ga), MACKm(A)

Figure 2.11: Basic Form of SIGMA [32]

The output of the protocol is a session key Ks derived from the Diffie-
Hellman value gab, while the Ks is used as a MAC key in the protocol
derived from the same Diffie-Hellman value [32]. It is important that those
keys are computationally independent (information from one of the keys
can not be learned form the other key, or vice versa).

There are two fundamental elements in the logic of the protocol. The
first one is that the Diffie-Hellman exponential chosen by two parties is
protected from modification by the attacker via the signature that the party
applies to its exponential. The second one is the MACing of the sender’s
identity under a key derived from the Diffie-Hellman key. The second one
is the functionality to bind the session key to the identity of each of the
protocol participants in such a way that it ensures the “consistency” of Key-
Exchange Protocols [32].

The other form of SIGMA, shown in figure 2.12, which OTR uses, is the
four message variant called SIGMA-R without encryption:
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Alice Bob

ga

gb

A, SIGA(gb, ga), MACKm(A)

B, SIGB(ga, gb), MACKm(B)

Figure 2.12: Four Message Variant: SIGMA-R [32]

The difference between SIGMA-R and the basic form of SIGMA, is that
Bob actually delays sending his identity and authentication information for
the fourth message, after it has verified Alice’s identity and authentication
from the third message.

There is a problem with this four-way message version of SIGMA that
it is vulnerable to reflection attacks. An attacker can simply replay the
message back to Alice, as long as Alice is willing to accept a key exchange
with itself. Alice’s defense against this is to ensure that the messages
have a sense of direction, which means to add different tags to the MAC
for each party, or using different MAC keys for each direction [32]. By
implementing these measures, SIGMA-R can ensure that the attacks are
correctly prevented from happening. When the exchange between Alice
and Bob with the SIGMA protocol runs successfully, then they know each
other’s Diffie-Hellman public keys, and share a secret value.

On the first step of the Off-the-Record protocol, Alice and Bob pick a
random x and y, respectively. Alice sends gx to Bob, and then Bob sends to
Alice gy. Bob then waits until Alice has sent him the signature step from
SIGMA-R to ensure there are no reflection attacks against the two parties.
When Alice sends to Bob her SIGA(gy, gx) and MACKm(A), then Bob sends
the same but his MACs his key instead. In the end, they both compute the
shared secret SS = gxy.

2.4.2 Step 2: Message Transmission

Message transmission is where the encryption and authentication of
messages happen before sending them over the web. The Off-the-Record
Protocol uses AES [42] as its encryption protocol, using it in counter mode
[18]. The message is first encrypted using the AES in counter mode;
then the resulting ciphertext is authenticated using a keyed-hash message
authentication code (HMAC) [5].

The reason the Off-the-Record team chose AES in counter mode
was the desire of having malleable encryption scheme because that

21



increases deniability. Malleability is only a property of some cryptographic
algorithms. The basic of it is that an algorithm is malleable if it is possible
to transform a ciphertext into another ciphertext which then decrypts to
a related plaintext [11], which gives us increased deniability. This means
that a valid ciphertext can not be connected with either Alice or Bob since
anyone can create a ciphertext that can be decrypted correctly and then
compute a valid MAC from the ciphertext, because old MAC keys are
published to the web (more about this in step 4).

The Advanced Encryption Standard (AES) [42] is a block cipher which
can also be used as a stream cipher, which the counter mode does. There
are multiple modes of operation with AES, which encrypts and sends block
sizes of data, but all the modes have one goal; Encrypt data and provide
confidentiality for messages sent from Alice to Bob [46].

The counter mode is a confidentiality mode that features the application
of the forward cipher to a set of input blocks, called counters, to produce
a sequence of output blocks that are XORed (Exclusive-ORed)10 with the
plaintext to produce the ciphertext, and vice versa [18]. Each block in the
sequence of ciphers, need to be different from every other block. This is
not restricted to a single message, but across to all of the messages that are
encrypted under the given key [18].

To produce the ciphertext, during the encryption, the cipher function
is invoked on each counter block, as explained before, then the resulting
output is XORed with the corresponding plaintext block to get the
ciphertext. The same thing is done in the decryption but XORed with the
ciphertext to get the plaintext. What is important to understand, is that
this can be done in parallel on both sides, which means that the ciphertext
block can be independently decrypted and does not have to wait for the
ciphertext block which is before that one [18].

10https://en.wikipedia.org/wiki/Exclusive_or
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Figure 2.13: AES in CTR Mode [18]

During message transmission Bob cannot prove to Charlie that the
messages he gets are coming from Alice, even though he is assured of this
after the fact: AES counter mode allows messages to be altered once the
MAC key is published. Entire new messages, or full transcripts, can, in
fact, be forged.

When Alice wants to send a message to Bob, she needs to compute an
Encryption Key and a MAC Key. The encryption key is used to encrypt
the message while the MAC key is used to ensure the authenticity of
the message. This method is called encrypt-then-mac approach, where
the encryption key is a hash of the shared secret, EK = Hash(SS), and
then the encryption key is hashed another time to compute a MAC key
(MK = Hash(EK)).

After the encryption and MAC key are computed, Alice encrypts
first the message, EncEK(M) and then MACs the encrypted message,
MAC(EncEK(M), MK). The Enc is the symmetric encryption shown earlier
in this step, AES in counter mode. When Bob receives the message from
Alice, he first needs to compute his own EK and MK from the same SS that
both Alice and Bob share. After the computation is done, he verifies the
MAC using his MK and then decrypts the message with his EK.
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2.4.3 Step 3: Re-key

Step three is about re-keying as often as possible. Alice and Bob need to
pick a new x’, y’, and then do a new Diffie-Hellman exchange. The way Off-
the-Record does it today, is to change the keys every time the conversation
changes directions, this makes the duration of vulnerability to attack as
short as possible.

Once the new key is established it will be used to encrypt and
authenticate new messages, while the previous ones are erased [11]. After
Alice and Bob got themselves the new x’, y’, ss’ and EK’, they erase the
old ss, x, y, and EK, such that no one can forge or decrypt the messages
that have been sent. The reason to securely erase this information is to get
perfect forward secrecy in our instant message conversations. The MK key
does not get erased, and the reason for this is discussed in step four.

2.4.4 Step 4: Publish MK

The next step of OTR is to publish the MAC key. Alice and Bob do not
need to forget since they both know that they have moved over to MK’,
hence if one of them gets a message with the old MK, they will know that
the message has been forged. The old MAC keys are added to the next
message that Alice or Bob sends to each other, in plaintext, since they do
not care if they are readable

The reason for publishing it is because by doing this they will let other
people to forge transcripts of conversations between Alice and Bob. This is
useful since it provides extra deniability to both of the parties. The reason
for this is if someone goes to Alice and says they have a transcript of a
conversation between her and Bob saying something incriminating, Alice
can turn around the conversation and show the other person a transcript
of them doing something incriminating. None of them have significant
proof that the transcripts where real or not, since Alice and Bob have booth
published their MK.

One could say that Alice’s deniability relies on Bob’s deleting the MK,
but this is not the case since Alice’ secrecy relies on Bob deleting the key
information, but Alice’s deniability relies only on Alice publishing her
MK’s after she is done using them. This way no one can confirm that she is
the one behind the transcripts.

2.4.5 Socialist Millionaire Protocol

The problem with secure instant messaging is that there is no way to tell
if there has been a Man-In-The-Middle attack. The Diffie-Hellman Key
Exchange does not have any protection (authentication) if the exchange
has been changed in between by Oscar, that is why OTR implements the
Socialist Millionaire Protocol (SMP).

Look at it like two millionaires want to exchange information to see
whether they happen to be equally rich, without revealing anything about
the fortunes themselves [1].

24



This is what Socialist Millionaire Protocol does between Alice and Bob,
but they don’t want to check if they are equally rich, but they wish to know
whether x = y, where Alice and Bob have x and y respectively. Socialist
Millionaires Protocol allows Alice and Bob to compare x == y without
revealing any other information between them [23]. With our messaging
protocol, OTR, the secret information between them are the long-term
authentication public keys, and also information entered by themselves.

p is a specific fixed 1536-bit prime
g is a generator of (Z/pZ)∗

All operations are performed modulo p

Alice Bob

message x message y
a2, a3, s ∈N b2, b3, r ∈N

g2a = ga2
1 , g3a = ga3

1 g2b = gb2
1 , g3b = gb3

1

g2a, g3a

g2b, g3b

g2 = ga2
b2, g3 = ga2

b3 g2 = gb2
a2, g3 = gb2

a3

Pa = gs
3 Pb = gr

3
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1gx

2 Qb = gr
1gy

2

Pa, Qa

Pb, Qb

Ra = (Qa/Qb)
a3 Rb = (Qa/Qb)

b3

Rb

Ra

Rab = Ra3
b Rab = Rb3

a

Rab == (Pa/Pb) Rab == (Pa/Pb)
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=> (PaP−1
b )(ga3b3

2 )x−y

if x - y == 0 => correct

Figure 2.14: Socialist Millionaire Protocol (SMP)

Let us go through the figure 2.14 step by step. Both Alice and Bob pick
random exponents a2, a3, s and b2, b3, r respectively.Alice sends both g2a and
g3a to Bob, and he sends g2b and g3b to Alice. They then calculate their g2
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and g3 on each side by using what they got back from the other side.
The next step is to compute both P and Q on both sides and send them

to each other. When computing the Q on both sides, they use their shared
secret which they want to check and see that they are the same shared
secret. Alice uses message x, and Bob uses message y in the computation.

When they get each others Q and P, they hold off on using the P in the
computations until later, but use Q to compute R respectively. After they
are done computing R on their side, they send it to the other party.

The last computation before checking if they have the same shared
secret is to compute Rab. In the end both need check whether Rab ==
(Pa/Pb). If everything is done correctly, then Rab should hold the value of
(Pa/Pb) times (ga3b3

2 )(x−y). This means that the test at the end of the protocol
will only succeed if x == y or x− y is 0. Since ga3b3

2 is a random number not
know to any party if x is not equal to y, no other information is revealed,
and the conversation is terminated.

This is the Socialist Millionaire Protocol; it solves the problem of
checking if both parties are equally rich, using a shared secret only Alice
and Bob know of, while Oscar does not know this secret. They use the
SMP algorithm to verify that the other party knows the same shared secret,
and the job of SMP is to confirm this without revealing anything other. In
the end, if the secrets are not equal, the parties only get the information
that they are not equal. By this usage, SMP can assure the two parties are
indeed exchanging messages with the right person.

2.5 Summary

This chapter first presented different security principles which are import-
ant for secure messaging protocols to provide if they want to have a crypto-
graphic secure protocol. The first section went through what encryption is,
from unencrypted messaging between two parties to end-to-end encrypted
messaging.

It then explained other security principles which are as important as the
encryption, such as deniability, authentication, and confidentiality between
parties.

The last section of this chapter explained how the first end-to-end
encrypted instant messaging protocol, Off-the-Record, works. It went
through different steps it takes to authenticate two parties and how they
encrypt and sign each message before sending them over the Web. At
the end of the section, an explanation on why each party re-keys the
cryptographic keys for each message was given, and what the Off-the-
Record protocol has implemented to defend against “man-in-the-middle”
attacks

The next chapter is about the next state of the end-to-end encryption,
the Signal Protocol, which is based on the Off-the-Record protocol. It
explains how it is set up and how the protocol works.
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Chapter 3

Signal Protocol

This chapter describes a new end-to-end encryption protocol called
Signal which developers have started implementing in their messaging
applications, with the goal of having a better adoption than the Off-the-
Record protocol. The OTR protocol was one of the first protocols for instant
messaging that implemented end-to-end encryption. OTR had an original
feature, refresh the keys often: for each round trip of messages, the users
established a new Diffie-Hellman shared secret. When a user always gets
a new shared secret for each round trip, it will be impossible for others to
decrypt previous messages. This became known as ratcheting [10].

The Signal Protocol is designed by Moxie Marlinspike and Trevor Perrin
from Open Whisper Systems1. Open Whisper Systems wanted to develop
a new end-to-end encryption standard which works in both synchronous
and asynchronous messaging environments [34]. The goals of Signal
include end-to-end encryption and advanced security properties such as
forward secrecy and future secrecy [10]. Initially, Signal was divided into
two different application, TextSecure2 and RedPhone3. The former was
about SMS and instant messaging, while the latter used as an encrypted
VoIP4 application. TextSecure was based on the Off-the-Record Protocol
by taking the Ratchet from OTR and implemented a Double Ratchet,
combining OTR’s asymmetric ratchet with a symmetric ratchet [10], and
naming it Axolotl Ratchet. Signal went later on combining TextSecure and
RedPhone to form the new Signal application together with the protocol
having the same name

In recent years, the Signal Protocol has been adopted by numerous
companies, such as WhatsApp5 by Facebook, the Messenger6 also by
Facebook, and Google’s new messaging app, Allo7.

The next sections provide more technical information about different
methods that Signal uses to ensure end-to-end encryption. Section 3.1

1https://whispersystems.org/
2https://whispersystems.org/blog/the-new-textsecure/
3https://whispersystems.org/blog/low-latency-switching/
4https://www.voip-info.org/wiki/view/What+is+VOIP
5https://whatsapp.com
6https://messenger.com
7https://allo.google.com
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presents the Double Ratchet Algorithm [38], giving an overview of how it
works. Then section 3.2 presents Signal’s way of implementing the Diffie-
Hellman key agreement, called Extended Triple Diffie-Hellman8.

The pictures shown during this chapter are taken from the official
documentation about the Double Ratchet Algorithm and the X3DH Key
Agreement protocol, and permission has been given by Moxie Marlinspike
through an e-mail discussion.

3.1 The Double Ratchet Algorithm

This section presents more thoroughly the algorithm Double Ratchet. The
Signal Protocol uses it to exchange encrypted messages based on a shared
secret key, that two parties use. Typically the parties use some key
agreement protocol to agree on the shared secret key [38]. The Signal
Protocol uses the X3DH Key Agreement [39] Protocol which we describe
later in section 3.2

The Double Ratchet Algorithm has several steps. The first step is the
Key Derivation Function Chains (KDF Chains) [38]. The next two steps are
about the two different ratchet algorithms, the first being symmetric-key
ratchet and the second is the Diffie-Hellman ratchet. These three together
form the Double Ratchet algorithm.

3.1.1 KDF Chain

KDF Chain is a core concept in the Double Ratchet algorithm [38]. We
talked about the basics of a Key Derivation Function in section 2.3.2, it
takes a secret, random KDF key and some input data and then returns one
key used as a new KDF key for the next chain as well as an output key
for messages. The output data is always indistinguishable from random
provided the key is not known. As we mentioned in section 2.3.2, the
parameter r (here: KDF key) does not have to be a secret or random
number, because the KDF output provides a secure cryptographic hash of
the input data and keys either way.

8https://whispersystems.org/docs/specifications/x3dh/
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Figure 3.1: KDF chain processing three inputs and producing three output
keys [38]

The KDF Chain has the following important properties [38]:

• Resilience: The output keys appear random to an adversary without
knowledge of the KDF keys, even if the adversary has control of the
KDF inputs

• Forward security: Output keys from the past appear random to an
adversary who learns the KDF key at some point in time

• Break-in recovery: Future output keys appear random to an ad-
versary who learns the KDF key at some point in time, provided the
future inputs have added sufficient entropy.

The job of the KDF chain throughout the Double Ratchet session is to
store each parties KDF key for three chains: a root chain, a sending chain, and
a receiving chain (Alice’s sending chain matches Bob’s receiving chain, and
vice versa, which we show more in section 3.1.3, where KDF is integrated
with the Diffie-Hellman).

The KDF chains are both part of the Diffie-Hellman ratchet step and
the Symmetric-key ratchet step. While the parties exchange messages, they
need to exchange new Diffie-Hellman public keys. The secrets from the DH
output become the inputs to the root chain for the KDF chain, and then the
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output keys from the root chain become new KDF keys for the sending and
receiving chains. This is the Diffie-Hellman ratchet [38].

The outputs from the Diffie-Hellman ratchet, the sending and receiving
chains advances for each sending and receiving message, by using the
chains as inputs in the KDF and the output keys are then used to encrypt
and decrypt messages. This is called the symmetric-key ratchet [38].

3.1.2 Symmetric-Key Ratchet

The symmetric-key ratchet uses KDF chains for its sending and receiving
chains. The output keys are unique message keys which are used to either
encrypt or decrypt messages. The KDF keys for the symmetric-key ratchet
chains will be called chain keys throughout the rest of the Double Ratchet
description [38].

The KDF chains used for the sending and receiving chains are constant;
they do not need to be random or a secret because the chain key is derived
from the Diffie-Hellman KDF chain which is cryptographically secure. The
documentation explains the constant can be a single byte 0x01 for the
message key and then a single byte 0x02 for the chain key [38]. The sending
and receiving chains ensure that each message is encrypted or decrypted
with a unique key and can be deleted after use. There is only a single
symmetric-key ratchet step to calculate a new message and chain key from
an already given chain key. The diagram below shows two steps in this
process. The first KDF gets a chain key from the Diffie-Hellman KDF chain
and outputs a new chain key for the next KDF and a message key to encrypt
or decrypt a message.

Figure 3.2: Two steps in the symmetric-key ratchet [38]

The message key that is derived from the KDF chain is not used later
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on to derive new message keys or chaining keys. Because of this, it is fully
possible to store the message key without affecting the security of other
keys, only the message that belongs to the particular message key. It is
quite useful when the protocols handles out-of-order messages because a
participant can store the message key and decrypt the message later when
they receive the correct message for that message key. We talk more about
out-of-order messages in section 3.1.5.

3.1.3 Diffie-Hellman Ratchet

The Double Ratchet is formed by combining the symmetric-key ratchet and
the Diffie-Hellman ratchet. If the Double Ratchet did not use the Diffie-
Hellman ratchet to compute new chain keys for the sending and receiving
chain keys, an attacker could steal one of the chain keys and then compute
all future message keys and decrypt all future messages [38].

For this to work, each party generates a DH key pair, a public and a
private key, which will be their first ratchet key pair. When a message
is sent, the header must contain the current public key. When a message
is received, the receiver checks the public keys that are given with the
message and do a DH ratchet step to replace the receiver’s current ratchet
key pair with a new one [38].

The result is a kind of ”ping-pong” behavior as the two parties take
turns replacing their key pairs. The attacker will have a harder time to get
any valuable information from the parties, since if one of the messages gets
compromised, and the attacker learns the value of the current private key,
it will not make any difference since the private key will soon be replaced
with a new, uncompromised key [38].

From this point onwards, this section will present an example of how
the Diffie-Hellman ratchet works to get a shared sequence of DH outputs.

The initialization starts with Bob sending his ratchet public key to Alice,
while Bob does not know Alice’s ratchet public key. Alice will now do
the initialization step by performing a DH calculation between her ratchet
public key and Bobs ratchet public key.

Figure 3.3: Initialization of DH Ratchet by Alice [38]

Figure 3.4 shows Alice advertise her ratchet public key to Bob after she
is done with her Diffie-Hellman calculation. When Bob receives Alice’s
initial message, he performs a Diffie-Hellman ratchet step by calculating
the new DH output between Alice’s ratchet public key and his ratchet
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private key, which equals Alice’s DH output. The DH outputs are equal
because the figures are a simplification of the DH ratchet, and there is a
KDF chain which uses a Root Key (shared secret between Alice and Bob) to
output the same keys. He then replaces his ratchet key pair and calculates
a new DH output.

Figure 3.4: Initialization of DH Ratchet by Bob [38]

Bob sends his next message with the new ratchet public key. Eventually,
Alice receives Bob’s new message with his new ratchet public key. Alice
derives a new DH output with her ratchet private key and Bob’s new public
key to get the same DH output as Bob for decrypting the message and then
generates a new DH ratchet key pair to replace her old key pair. With the
new DH ratchet key pair, Alice derives another DH output with her new
ratchet private key and the same ratchet public key from Bob, which is used
in the next message exchange. These exchanges continue for each message
sent with a new ratchet public key and new DH output.

Until now the DH outputs have only been called outputs to simplify the
description of the DH ratchet, but the DH outputs are used in a KDF to get
the sending and receiving chain keys for the symmetric-key ratchet. Figure
3.5 shows the DH outputs are changed with sending or receiving chains.
The first time Alice sends out her message with her ratchet public key and
DH output, a sending chain is derived from the DH output through a KDF
chain, and Bob on his side derives a receiving chain key from his DH output
by using Alice’s public key and his private key. Bob then derives a new
sending chain key from his second DH output [38].
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Figure 3.5: Sending and receiving chains [38]

The figures shown until now have been a simplification of the DH
ratchet. The DH ratchet takes the output keys and uses them as KDF inputs
to a root chain, and then the KDF outputs are used as a sending or receiving
key. Using a KDF chain here improves the resilience and break-in recovery.
Figure 3.6 shows that the DH ratchet updates the root KDF chain twice, and
uses the KDF output keys as new sending and receiving chain keys [38].

Figure 3.6: Full DH ratchet step [38]

3.1.4 Double Ratchet

Double Ratchet is the algorithm we get by combining symmetric-key
ratchet and Diffie-Hellman ratchet.

• When a message is sent or received, a symmetric-key ratchet step is
applied to the sending or receiving chain to derive the message key
[38]

• When a new ratchet public key is received, a DH ratchet step is
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performed prior to the symmetric-key ratchet to replace the chain
keys [38]

This section is about how these algorithms work together to form the
Double Ratchet, seen from Alice’s perspective. Figure 3.7 shows after Alice
has done her initialization with Bob’s ratchet public key, and the Root Key
(RK) is the shared secret used as the initial root key for the KDF chain.
Alice generates her ratchet key pair and then sends the DH output to
the root KDF chain to calculate a new root key and a sending chain key
(CK) [38]. The figure is split up into four different parts. The ratchet is
where the ratchet key pair changes and sends Alice’s ratchet private key
and Bob’s ratchet public key to generate a DH output for the root KDF
chain input. The sending column is where the message key for encryption
generates through the symmetric-key KDF chain. The last column is where
the message key for decrypting the received message gets also derived by
the symmetric-key KDF chain. To ensure that the secrecy throughout the
Double Ratchet is upheld, the old RK gets deleted after it has been used to
derive a new RK.

Figure 3.7: Initial Double Ratchet Step by Alice [38]

Figure 3.8 shows Alice sending her first message to Bob, message A1.
The sending CK is used on a symmetric-key ratchet step to derive a new
CK and a message key, A1, to encrypt her message. The new CK is stored
for later use, while the old CK and the message key can be deleted since it
no longer is of any use to Alice.

Figure 3.8: First double ratchet message A1 [38]
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Figure 3.9 shows Alice receiving her first response from Bob, message
B1, and he has sent his new ratchet public key, which means Alice needs
to calculate a new ratchet key pair. Alice applies a new DH ratchet step to
derive a new receiving and sending chain keys. Alice uses her old ratchet
private key and Bob’s new public key, to derive a new RK and a CK for
the receiving KDF chain. The receiving chain key is used to derive a new
receiving chain key and a message key to decrypt Bob’s message. Then she
derives a new DH output for the next root KDF chain with her new ratchet
private key to derive a new RK and a sending CK.

Figure 3.9: First received double ratchet message B1 [38]

The next figure, 3.10, shows how many ratchet steps Alice does when
sending a message A2, receiving a message B2 with Bob’s old ratchet public
key, and then send two new messages A3 and A4 to Bob. Alice received
a message B2 with Bob’s old ratchet keys, which means that Alice only
needs to do a symmetric-key ratchet step to derive a new receiving CK
and a message key to decrypt message B2. Before Alice sends her second
message A2, she needs to do a symmetric-key ratchet step to derive a new
sending CK and a message key to encrypt her message A2. The same must
be done with message A3 and A4, by ratcheting the symmetric-key ratchet
two more times to derive the correct message keys.

35



Figure 3.10: Double ratchet message A2, A3 and A4, received B2 [38]

Figure 3.11 shows the state when Alice receives messages B3 and B4
from Bob with his new ratchet public key, and the sending of Alice’s last
message, A5. Alice receives new messages from Bob with his new ratchet
public key, and she first derives a new DH output to ratchet the root KDF
chain to get a new RK and a new receiving CK to decrypt Bob’s messages.
The receiving CK is used to run the symmetric-key ratchet step two times,
ones to derive a new CK and a new message key for decryption of message
B3 and then another ratchet step to derive the second CK and message key
for message B4. Alice generates a new ratchet key pair and uses her new
ratchet private key to derive a new RK and a new sending CK with Bob’s
new ratchet public key. The sending CK is used to do a symmetric-key
ratchet step to derive a new CK and a message key to encrypt her new
message, A5.
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Figure 3.11: Double ratchet message A5, received B3 and B4 [38]

3.1.5 Out-of-Order Messages

The Double Ratchet handles lost or out-of-order messages by including
in each message header the message’s number in the sending chain
(N=0,1,2,...) and the length (number of message keys) in the previous
sending chain (PN) [38]. The reason for this is for the receiver to advance
the keys to the relevant message key, while still storing the skipped
message keys in case they receive the message at a later time.

When receiving a message, and a DH ratchet is triggered, then the
received PN minus the length of the current receiving chain is the number
of skipped messages in that receiving chain. The N which is received is
the number of messages which are skipped in the new receiving chain after
DH ratchet step.

If a received message does not trigger a DH ratchet step, then the
receiver needs to minus the received N with their own receiving chain
length.

To explain this with a figure, we can use the message sequence from the
previous section, but here message B2 and B3 are skipped. Alice received
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message B4 from Bob, with the PN = 2 and N = 1. Alice sees that she would
need to do a DH ratchet step, but first, she calculates how many message
keys she needs to store from her current receiving chain (Bob’s previous
sending chain). Since PN = 2 and her current receiving chain length is 1,
the number of stored keys from the current receiving chain is 1 message
key (B2). Then she does a DH ratchet step where a new receiving chain
is derived. Because the length of her new receiving chain is 0, she needs
to store a message key from her new receiving chain (B3). After Alice has
stored B2 and B3, she can derive the last message key to decrypt message
B4.

Figure 3.12: Handling of Out-of-Order Messages [38]

3.2 The X3DH Key Agreement Protocol

The Double Ratchet algorithm needs some key agreement protocol
between two parties. In section 3.1 we talked about using the Extended
Triple Diffie-Hellman key agreement protocol(X3DH). X3DH is used to es-
tablish a shared secret between two parties who mutually authenticate each
other based on public keys [39], and at the same time provide both forward
secrecy and cryptographic deniability.

This method of doing key agreement is designed for asynchronous
settings where one user, Bob, is offline but has published information
to a server. Another user, Alice, wants to use that information to send
encrypted data to Bob, and also establishes a shared secret for future
communication [39]

3.2.1 Preliminaries

There are a few specifications that are already set and chosen beforehand
for someone to implement the X3DH protocol. Three parameters need to be
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followed by everyone; curve, hash, and info and these are used throughout
this section. Curve means either elliptic curve X255199 or X44810; hash
means either 256 or 512-bit hash function11 and a parameter, info, which
is an ASCII string identifying the application [39].

Throughout this section, a set of keys are used with the protocol. These
keys are chosen because when Alice wants to send Bob some initial data
using encryption and establish as shared secret, she asks the server for
Bob’s keys which he has uploaded to the server in advance to allow other
parties to establish a shared secret with him. A server is used to store
messages from Alice and Bob which Bob later can retrieve, and the server
keeps these sets of keys for Alice and Bob to retrieve when needed [39].
These keys are elliptic curve public keys:

• IKA: Alice’s identity key

• EKA: Alice’s ephemeral key

• IKB: Bob’s identity key

• SPKB: Bob’s signed prekey

• OPKB: Bob’s one-time prekey

The public keys used within an X3DH protocol run must either all be
in X25519 form or X448 [39]. Each party as a long-term identity public key,
but Bob also has a signed prekey, which he changes periodically, and a
set of one-time prekeys. The one-time prekeys are used in a single X3DH
protocol run.

3.2.2 X3DH Protocol

The X3DH Protocol has three different phases that this sections is going
through:

1. Bob publishes his identity key and prekeys to a server

2. Alice fetches a “prekey bundle” from the server, and uses it to send
an initial message to Bob

3. Bob receives and processes Alice’s initial message

Phase 1: Publishing keys

Phase one is about what Bob needs to do before Alice can get any
information from the server about Bob. He will need to send a set of elliptic
curve public keys to the server to be stored:

• Bob’s identity key IKB

9https://tools.ietf.org/html/rfc7748
10https://tools.ietf.org/html/rfc7748
11https://www.wikiwand.com/en/Cryptographic_hash_function
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• Bob’s signed prekey SPKB

• Bob’s prekey signature Sig(IKB, Encode(SPKB))

• A set of Bob’s one-time prekeys (OBK1
B, OBK2

B, OBK3
B, ...)

Identity keys need to be uploaded to the server once, while other keys,
such as new one-time prekeys can be uploaded again later if the server is
getting low, by informing Bob to upload more. How the one-time prekeys
are used is explained thoroughly in phase two. On the other hand, new
signed prekey signatures need to be uploaded periodically, and it is up to
Bob when he wants to upload them, every day, once a week, or once a
month [39].

If the other user has not managed to update their signed prekeys
because of delay in transit, and they send messages to Bob before
getting new prekeys, it is important that Bob stores previous private keys
corresponding to the old signed prekey, even after uploading a new signed
prekey to the server [39]. It is important to delete the private key eventually,
to keep the forward secrecy.

Phase 2: Sending The Initial Message

Alice contacts the server and fetches a ”prekey bundle” containing Bob’s
keys. She receives the same keys Bob pushed to the server in phase one.
Alice now has Bob’s identity key, signed prekey, prekey signature and
optionally a single one-time prekey.

Alice receives Bob’s one-time prekey if the server still has more of them
since it will delete a one-time prekey each time it sends it to another user.
If the server does not have more of them in store, the bundle will then not
contain the prekey [39].

Alice tries to verify the prekey signature, but if it does not verify
correctly she will need to abort the protocol. The verification process is
written more in the documentation about the signatures from Signal [48].
When the verification is a success, Alice will generate an ephemeral key
pair with the public key EKA [39]. If the bundle does not contain a one-
time prekey, Alice will calculate:

DH1 = DH( IK A , SPK B )
DH2 = DH(EK A , IK B )
DH3 = DH(EK A , SPK B )
SK = KDF(DH1 | | DH2 | | DH3)

If the bundle does however contain a one-time prekey, another DH
calculation is added:

DH4 = DH(EK A , OPK B)
SK = KDF(DH1 | | DH2 | | DH3 | | DH4)

Figure 3.13 explains the calculation process better by showing how the
different keys are calculated. DH1 and DH2 provide mutual authentica-
tion, while DH3 and DH4 provide forward secrecy [39]

40



Figure 3.13: DH1...DH4 calculations [39]

It is important to know that Alice deletes her ephemeral private key and
the DH outputs to preserve secrecy after she is done calculating the SK. She
calculates an “associated data” byte sequence AD that contains information
for both parties [39].

AD = Encode ( IK A ) | | Encode ( IK B )

Alice could concatenate more information to the sequence, such as
usernames, certificates or other information which may be important. Alice
then sends her initial message to Bob containing:

• Alice’s identity key IKA

• Alice’s ephemeral key EKA

• Identifiers stating which of Bob’s prekeys Alice used

• An initial ciphertext encrypted with some AEAD encryption scheme
[50] using AD as associated data and using an encryption key which
is either SK or the output from some cryptographic pseudo-random
function keyed by SK

Alice’s initial ciphertext is typically used as the first message in a post-
X3DH communication protocol, such as the Double Ratchet protocol from
section 3.1. The ciphertext has two roles, serving as the first message within
some post-X3DH protocol, and as part of Alice’s X3DH initial message to
Bob [39].

Phase 3: Receiving The Initial Message

Phase three of the X3DH is mostly the same as phase two. Bob retrieves
Alice’s initial message which contains Alice’s identity key and ephemeral
key from the message. Bob will then load his identity private key and the
private key(s) corresponding to the signed prekey and one-time prekey that
Alice used [39].

Bob repeats the same steps with DH and KDF calculations to derive his
own SK and then deletes the DH values the same as Alice did. Afterwards,
he constructs the AD byte sequence, and in the end, tries to decrypt the
initial ciphertext using the SK and AD. The decryption is the only difference
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Bob does to what Alice did on her side. If the decryption fails, Bob will
delete the SK and the protocol aborts and the participants need to restart
the protocol from the start [39].

If the decryption is successful, he gets the information that Alice had
encrypted, and the protocol is complete for Bob. He deletes any one-
time prekey private key that was used during the protocol, to uphold the
forward secrecy and not get it compromised.

3.3 Summary

This chapter described in detail two different methods that together
form the Signal Protocol. The first is an algorithm called Double-
Ratchet algorithm which is combined with a Diffie-Hellman ratchet and
a Symmetric-key ratchet. It explained how the protocol is set up by the two
ratchets and showed how they work together.

The second method is a protocol called X3DH Key Agreement Protocol
which is used to come to an agreement between parties on a shared key,
to be use to encrypt messages when they want to communicate with each
other.

In the next chapter, the analysis of three secure messaging protocols is
conducted to see what types of security principles they provide in both
one-to-one and many-to-many conversations.
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Chapter 4

Analysis of Secure Messaging
Protocols

This chapter presents the analysis of secure messaging protocols which are
used by applications that are analyzed in Chapter 5. We discuss:

• the systematization method which is chosen,

• what kind of threat models are taken into consideration when
evaluating the protocols, and

• how the table 4.1 is structured with respect to the security and privacy
properties.

The structure of this chapter is based on the research paper by Nik Unger
et al. [53].

After the discussion on how the analysis was done, we look in detail at
three protocols which use some of the same security principles on securing
message conversations with end-to-end encryption. The first is Off-the-
Record, which is the baseline for the two other protocols, Signal and Matrix.

4.1 Systematization Method

4.1.1 Threat Model

When evaluating the security and privacy properties of the secure mes-
saging protocols, we assume there are multiple threats that could occur
during the evaluation. Our threat model when going through the evalu-
ation of the protocols in this chapter may occur by the following adversar-
ies:

• Active adversaries: Man-in-The-Middle attacks are possible on both
local networks and global networks by adding a proxy between the
applications and servers handling the messages.

• Passive adversaries: These adversaries log everything that is sent to
and from a user and could potentially use that information to keep
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track on who they talk to and when. Passive adversaries could also
log information such as messages and keys, even though the contents
of the messages are encrypted.

• Service providers: The messaging systems that require centralized
infrastructure (such as Signal and Matrix), need to keep the inform-
ation about users secure. The service operators could at any time
become a potential adversary.

We assume the endpoints on the applications that these protocols are
implemented into are secure and that the user’s devices do not have any
kinds of malware or exploits.

4.1.2 Structure

The structure of this section is based on the research paper by Nik Unger
et al. where we take the same security and privacy properties which
have been explained in the research paper [53] and in section 2.2. We
only look at the conversation security of three different secure messaging
applications which all support end-to-end encryption, but only two of
them support end-to-end encryption for group conversations. The problem
areas are divided into three separate areas; security and privacy, usability
and adoption, and group chat features. Usability features of the secure
messaging protocols have been left out of this chapter, because we look at
the different usability features in chapter 5 and test what kind of features
the applications delivers.

• Security and Privacy properties: We look at the underlying protocol
on how it is set up and if they handle the encryption as it is meant.
When going through the evaluation of the protocols, we assume the
protocols are implemented the way it is designed without having
any known exploits. The security and privacy properties chosen
are basic properties which are achieved by using different types of
cryptographic primitives.

• Usability and Adoption: Even though we go through usability
features in the next chapter, it is important to at least look at some
usability and adoption factors, such as resilience properties when
evaluating the protocols.

• Group chats: In section 2.2.9 we discuss the group chat properties
which should be provided by the protocols and applications using
them.
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4.2 Secure Messaging Protocols

Table 4.1: Result of the Analysis of Secure Messaging Protocols

Protocol Client Security and Privacy Adoption Group Chat
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= provides property = partially provides property

4.2.1 Off-the-Record

The Off-the-Record protocol is based on the authenticated Diffie-Hellman
key exchange, but they introduced a different ratcheting approach, by
attaching new DH contributions to messages [8]. The authenticated Diffie-
Hellman design, such as SIGMA (used in OTR), is when the participants
generate new ephemeral session keys and authenticate the exchange with
their long-term keys. The shared secret from this key exchange is used
to derive a sending and receiver cipher key for each party, as well as a
set of MAC keys for each party [35]. Afterwards, the protocol uses those
to protect messages using an encrypt-then-MAC approach which in the
end provides confidentiality, integrity, and authentication. The SIGMA
protocol also adds participation consistency feature for key exchange [32].

The OTR protocol signs the messages with the shared MAC keys and
not the long-term keys, but to strengthen the message unlinkability and
message repudiation features, they also publish the MAC keys and at the
same time use malleable encryption [8]. OTR only signs the ephemeral
keys and not every parameter during the key exchange; then it provides
partial participation repudiation since the conversation partners can use
the signed ephemeral keys to forge transcripts.

Backward secrecy is provided when message keys are computed by
new DH values which are advertised by the sender with each sent
message. The security property is provided because a compromised key
regularly gets replaced with new key material during the conversation
[53]. Anonymity preservation is provided by OTR since the long-term
public keys are never observed neither during the key exchange nor the
conversation. Causality preservation is partially achieved since messages
implicitly reference their causal predecessors based on which keys they use
[53]. Speaker consistency is partially obtained since an adversary cannot
drop messages without also dropping all future messages because then the
recipients would not be able to decrypt succeeding messages [53]. The
aftermath of the speaker consistency is that the recipient needs to hold
on to out-of-order messages because if they do not come in order the
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message will be encrypted with an unexpected key, and at the same time
the window of compromises enlarges, and the OTR ends up only partially
providing the forward secrecy. Out-of-order and dropped messages are
partially provided because if a message is out-of-order or dropped during
the transmission, the protocol can store the decryption key until the
participant receives it. The problem of storing the decryption key is that
it raises the possibility of successful attacks by adversaries.

The Off-the-Record protocol is made for instant messaging, which does
not provide asynchronous messaging between participants, but because of
the synchronous capability, the OTR protocol does not rely on additional
services to establish a connection between two participants.

4.2.2 Signal

The Signal protocol is made up of a Double Ratchet algorithm, 3-DH
Handshake, and prekeys for the asynchronous ability it provides. The
Double-Ratchet is, as we talked about in chapter 3.1, composed of a ratchet
based on a KDF and a ratchet based on the Diffie-Hellman key exchange
(OTR DH-ratchet), which takes the same security features as the Off-the-
Record protocol, but in some cases adds stronger or new features as well.
Forward secrecy is provided because the KDF ratchets, and the backward
secrecy is provided since even though the KDF keys gets comprised, they
eventually will be replaced by new keys.

3-DH Handshake provides the same level of authentication as the AKE
from Sigma, but 3-DH manages to achieve full participation repudiation
since anybody can forge a transcript between two parties [53]. It does not
manage to continue providing anonymity preserving because 3-DH uses
the long-term public keys during the initial key agreement.

The prekeys are used to achieve asynchronous messaging system by
sending a set of prekeys (ephemeral public DH contributions) to a central
server, and then a sender can request the next prekey for the receiver to
compute encryption keys. By using a central server to keep the prekeys,
the Signal protocol loses the no additional service property.

Out-of-order and dropped messages are fully supported on one-to-one
conversations asynchronously by the use of prekeys, as it is implemented
in the Double Ratchet algorithm together with the X3DH Key Agreement
which we have discussed in chapter 3. A set number of prekeys are
uploaded to a central server which stores them securely and sends one at a
time to the user who requests a key to encrypt a message.

Group conversation is achieved by using multicast encryption, which
when sending a single encrypted message to the group, it is sent to a
server and then relays it to the other participants while the decryption
key is sent as a standalone message to each member of the group
conversation. The group conversation provides asynchronous messaging,
speaker consistency and causality preservation are achieved by attaching
message identifiers, of the message before, to the new messages [53], but it
cannot guarantee participant consistency. Multi-device is partly provided
by Signal, in that sense that only an extra computer can join in on the
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conversation by using the Signal Desktop application1, which is only a
Chrome Extension2 and not its own application.

The Signal Protocol does provide computational and trust equality,
subgroup messaging, contractible and expandable properties. By using
pairwise group messaging and multicast encryption, Signal gets the ability
to push group management into the clients themselves, which makes it
easier for the users to change the group, expand it or shrink it in size,
without having to restart the whole group conversation and protocol.
When users want to send a group message they send a message to each
of the users that are participating and adding a parameter to the header
explaining that it is meant for the specific group chat. The Signal server
does not know about the group conversation, since the messages are
encrypted using their normal public key. The pairwise group messaging
also makes the computation of new cryptographic keys and trust equally
as demanding as if there only was a one-to-one conversation.

4.2.3 Matrix

The Matrix protocol consists of two different algorithms, the olm3 for
one-to-one conversations and megolm4 for group conversations between
multiple devices. The olm algorithm is based on the Signal Protocol which
means they achieve the same security properties as Signal does, while the
megolm algorithm is a new AES-based cryptographic ratchet developed for
group conversations. The NCC Group has audited both of the algorithms
[4].

While the Matrix protocol does supply the users with the same security
properties as Signal, it does have some extra features which are provided
by the megolm algorithm. Multiple devices are possible with Matrix
because megolm implements a separate ratchet per sending device which
is participating in a group conversation [43]. Each group conversations
manage when the ratchet should be replaced by the senders, such as when a
new device joins, leaves or after N number of messages. The protocol does
not restart when the ratchet is replaced with a new one, which provides
computational and trust equality, subgroup messaging, contractible and
expandable properties.

The NCC Group has audited both of the algorithms [4] and found out
that megolm has some security flaws about forward and future secrecy.
If an attacker manages to compromise the key to Megolm sessions, then
it can decrypt any future messages sent to the participants in a group
conversation. The Matrix SDK, which is used in the applications that
have implemented the Matrix protocol such as Riot; the Megolm keys get
refreshed after a certain amount of messages sent between the participants.
Forward secrecy is also partially provided since the megolm maintains a
record of the ratchet value which allows them to decrypt any messages

1https://whispersystems.org/blog/signal-desktop/
2https://en.wikipedia.org/wiki/Browser_extension
3https://matrix.org/docs/spec/olm.html
4https://matrix.org/docs/spec/megolm.html
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sent in the session after the corresponding point in the conversation [44].
The Matrix developers have stated that this is intentionally designed [27],
but also said that it is up to the application to offer the user the option to
discard old conversations [44].

4.3 Discussion

The table 4.1 shows that none of the secure messaging protocols we have
gone through in this chapter can give the users every security property.
There is room for improvement, but for this to work, the researchers need
to work together throughout the different protocols to come up with new
ways of implementing the rest of the properties that are not achieved.

While the Off-the-Record protocol does not need any additional
services to function as it is designed, it cannot give the user’s group
conversation in the state it is now. There have been a few research papers
looking at group conversations with OTR in mind [7, 33, 24], but they have
not received enough traction by the users or developers because it does not
support asynchronous chat conversations.

While Signal only allows for one single device to be used, it does
support desktop through the Chrome Extensions, but it does not support
native desktop application or multiple mobile phones to be added to
a users account. They could implement the same function as group
conversations with multicast encryption, where the user who sends the
message has information on all of its devices and encrypts the message for
each n-number of devices, which then gets forwarded to all of them at the
same time. The efficiency could be a problem, and the Signal team needs to
find a way of doing it efficiently because users are used to multiple devices
when having a conversation.

The Matrix protocols support multiple devices, and it does not hurt the
efficiency of the conversations. On the other hand, it does not achieve full
forward, and backward secrecy from the protocol, but the implementation
of the protocol supports it.

While Signal and Matrix are providing extremely useful secure mes-
saging protocols, the adoption rate is going fairly slow. The Signal protocol
has been audited by a couple of research groups in 2016 [10, 31] and since it
is open source, the community can come together and improve on the im-
plementations of both the protocol and implementations. They have also
implemented their protocol in applications that have millions of users, such
as the WhatsApp5 and Google Allo6. The Matrix protocol has also been
audited which means that researchers are taking them seriously and sees a
healthy future for them, and at the same time strengthens the credibility of
the protocol.

We consider this information throughout this chapter to be useful
for other to read through and use as a building block for their research
on these protocols. The usability properties for each protocol and its

5https://whatsapp.com/
6https://allo.google.com
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implementations are represented in the next chapter, when we go through
the applications that implement these protocols and look at how the
usability is done.

4.4 Summary

This chapter went through three secure messaging protocols which prom-
ise end-to-end encrypted messaging. Off-the-Record is the protocol which
only supports one-to-one synchronous conversations which mean users
need to be online to chat with each other, while Signal and Matrix offer
asynchronous chat conversations.

The secure messaging protocols do not provide every single security
property, which means there is room for improvement for all of the
protocols. Security researchers need to work together throughout the
protocols to come up with ways of implementing the rest of the properties
that are not achieved.

The next chapter is about the testing methodology and the different
test scenarios and test cases for secure messaging applications which
implement the Signal and Matrix protocol to ensure the users have one-
to-one and many-to-many asynchronous chat conversations.
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Chapter 5

Implementations of Signal
Protocol

This chapter presents applications that have emerged after the NSA and
Edward Snowden scandals, as well as old applications that implemented
secure messaging capabilities in the last couple of years. It investigates
a set of usability properties the application have when it comes to secure
messaging.

The first section presents the testing method of the application analysis,
how the case study is set up and which applications the analysis is going
to test. The section presents each application and the step by step testing of
each test scenario.

5.1 Testing Method

This section explains in detail what types of mobile phones were used
during the test, and which applications were tested. The applications
used during the testing phases are apps that advertise secure messaging
conversation capabilities between one-to-one and many-to-many.

For this test, we used two separate Android mobile phones1. The first
mobile phone is a Sony Xperia Z5 running stock Android 7.0 operating
system with a December 1st security patch, and kernel 3.10.84-perf-
gda8446.2 The second phone is a Google Nexus 5X running stock Android
7.1.2 with a January 5h security patch, and kernel 3.10.73-gbc7f263.3 Both
phones have their personal phone number; the Sony phone has the contact
information of the Nexus phone named Bob, while the Nexus phone has
the contact details of the Sony phone named Alice. The reason behind the
contact details is to quickly find each other when initiating a conversation
during the testing. The mobile phones in use are:

1https://www.android.com/
2https://www.sonymobile.com/us/products/phones/xperia-z5/
3https://www.google.com/intl/no_no/nexus/5x/
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Table 5.1: The phone models involved in the testing

Phone Alice Bob
Model Sony Xperia Z5 Google Nexus 5X
OS Android 7.0 Android 7.1.2
Security Patch December 1st 2016 January 5th 2017
Kernel 3.10.84-perf-gda8446 3.10.73-gbc7f263
CPU Qualcomm MSM8994 Snapdragon 810 Qualcomm MSM8992 Snapdragon 808
Memory 3GB 2GB

The applications used during the testing phase are locked to one version
number and do not get updated to keep the research consistent. Both
devices have the same applications installed and the identical version
number. The apps tested with their respective version number are:

Table 5.2: Test Applications

Application Version
Signal 3.30.4
WhatsApp 2.17.79
Wire 2.28.317
Viber 6.6.0.888
Riot 0.6.9
Telegram 3.17.1

5.1.1 Test Scenario

This section explains the test scenarios we went through to test a few
security and usability steps to ensure that the security within conversations
are less likely to be compromised. The test scenarios were the same for each
application, and screenshots were taken during the testing phases to gather
enough information for later to look through and analyze each step on how
the applications handled the tests. We are going to study which properties
the applications support for each test scenarios. These particular properties
are chosen to ensure that the applications have both the most secure and
usable conversations. The test scenarios the applications are going through
are:

1. Setup and Registration

2. Initial contact

3. Message after key change

4. Key change while a message is in transit

5. Verification process between participants

6. Other security implementations
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Setup and Registration

The setup and registration process is the first steps a user needs to
go through after installing the application. This test checks how the
applications handle the registration process, what the user needs to do to
register a new account and if there are other ways to register or only with
a phone number.

After a user has initiated the registration process, we look at how the
user gets verified by the application and provider, does the user receive
a verification code by SMS and then type the code to verify or does the
verification code get sent over a phone call. If the application does not
use a verification code during the registration phase, the risk of being an
identity theft could be high because of using someone else’s phone number
to register a new account.

The properties we are looking at when going through this test scenario
are:

• Phone registration: Register account with a phone number.

• E-mail registration: Register account with an e-mail address.

• Access SMS inbox: Access to SMS Inbox to read the verification code.

• Contact list upload: Upload contacts to see if others are using the
same application.

• Verification by SMS: Receive verification code through SMS.

• Verification by Phone Call: Receive verification code through a
phone call.

Initial Contact

This test scenario is a part of each of the other scenarios where two users
have a conversation. When Bob sends Alice a message, we look how the
application handles the first message sent to the other participant. Are the
participants informed of the secure messaging capabilities and does the
application show how the cryptographic keys are used?

The properties we are looking at when going through this test scenario
are:

• Trust-On-First-Use: Automatically verify each other on initiation.

• Notification About E2E Encryption: A notification box to explain the
user that messages are end-to-end encrypted.

Message After a Key Change

This test is about how the application handles changes of cryptographic
keys after Bob deletes the application in the middle of a conversation with
Alice. After Bob has reinstalled his application, Alice sends him a new
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message and examines if the application gives Alice any information about
the key changes.

When a user deletes a secure messaging application, the cryptographic
keys are deleted from the device to strengthen the security of the messages
the participant has already sent. When a participant then reinstalls the
application, a new set of cryptographic keys are generated. The test looks
if the application gives Alice any information about Bob’s newly generated
set of cryptographic keys, or if the conversation moves along without any
notification.

The properties we are looking at when going through this test scenario
are:

• Notification about key changes: Notifies Alice that Bob has changed
cryptographic keys.

• Blocking message: Blocks new message from sending before Alice
and Bob verify each other.

Key Change While a Message Is In Transit

Cryptographic key changes while a message is in transit is mostly the same
as the test scenario before, but what happens when a message is lost before
new keys are generated. Bob deletes his application without telling Alice;
she then sends Bob a message, but the message is lost in transit. Does
the application try to re-encrypt the message after Bob has generated new
cryptographic keys or does the message get lost forever?

The properties we are looking at when going through this test scenario
are:

• Re-encrypt and send message: Re-encrypts the message when the
application finds out that the receiver has changed cryptographic
keys and sends it.

• Details about transmission of message: Users can see the difference
between sent and delivered messages.

Verification Process Between Participants

In a middle of a conversation, Alice and Bob want to verify each other that
they are having a conversation with honest participants. This test looks at
how the verification process works and if it is a secure and usable method
of doing the verification between participants. The reason to verify the
conversations’ recipient is to ensure that no “man in the middle” attack has
occurred.

The properties we are looking at when going through this test scenario
are:

• QR-code: Verify each other through a QR-code.

• Verify by Phone call: Call each other with E2E-encrypted phone call
and read keys out loud.
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• Share keys through 3rd party: Share the keys through other
applications.

• Verified check: Users can check later if a specific user is already
verified.

Other Security Implementations

What about other security implementations in the applications? Some
applications may have different ways of securing the applications from
intrusion or other attacks.

The properties we are looking at when going through this test scenario
are:

• Two-step verification: When registering after a reinstall or new
device, then add a second passphrase/code which only the specific
user knows.

• Passphrase/code: Add a passphrase/code that only the user knows
and enters it to gain access to the application.

• Screen security: The user is not allowed to screenshot within the
application.

• Clear trusted contacts: Clear all the contacts the user has verified,
which means the user needs to verify each contact once again.

• Delete devices from account: If the application allows multiple
devices, then there should be an option to delete devices which are
not in use anymore.

5.2 Running The Different Test Cases

5.2.1 Case 1: Signal

Signal is an instant messaging application, but also a voice calling
application for both Android and iOS4. It changed the name to Signal after
Open Whisper Systems5 decided to merge their voice calling application,
RedPhone6, with their secure messenger, TextSecure7, in 2014. A unified
application was a good way to not confuse the end user by installing
multiple applications when they could only have one and integrate both
of them into it.

What sets the Signal application apart from the other applications,
except for Riot, is that it is completely open source and that anyone who
wants to contribute can do so. This reassures people who use it that it
does what they are saying that it does since anyone can come and audit the
source code and the cryptographic protocol that is used.

4http://www.apple.com/no/ios/ios-10/
5https://whispersystems.org/
6https://whispersystems.org/blog/low-latency-switching/
7https://en.wikipedia.org/wiki/TextSecure
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Initial Set Up

An account can only be registered to one device at a time, which means
that if a user uses the same number on a second device, the first device
gets deactivated automatically, for security reasons and to keep the private
cryptographic keys on one device.

Figure 5.1a shows the first view a user gets when opening the app for
the first time. Twilio8 is used for the handling of SMS verification process
with the Signal server when registering an account and some contact
information may be transmitted to the server, but it is not stored.

Figure 5.1b explains the different steps the Signal app goes through to
register and verify a new user account. The verification code is sent as an
SMS, and the app reads the SMS automatically to verify the new user. After
the verification, the app generates new device cryptographic keys used in
conversations between participants for end-to-end encryption and at the
end registers the account with the server.

If the user does not give the application access to their SMS inbox, then
it has to wait for the SMS verification timer to time out, as shown at the
bottom of figure Figure 5.1b. When the timer has timed out, the Signal
application calls the user and gives out a verification number to be typed
in manually.

(a) Phone number registration (b) Verifying the phone number

Figure 5.1: Signal: Registration process

Message after key change

This test is about checking what happens when the cryptographic keys
change a user in a conversation deletes and then reinstalls the Signal app.

8https://www.twilio.com/
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Figure 5.2a shows the first two messages that Alice has sent to Bob asking
him to delete and reinstall the app for Bob’s cryptographic keys to change.
The double checkmark shown on each message in figure 5.2a, means it has
been received and read by Bob. The lock on each message presents to both
participants that the message is encrypted from one end to the other end
and nobody in between can read it.

Figure 5.2b shows when Alice sends Bob another message after he has
deleted and reinstalled his Signal application. The application notifies
Alice that the message has not been delivered with a red notification icon
on the left of the message. It also gives information to press on the message
to get more details about the notification.

Figure 5.2c is the view the user gets when pressing the message that
was not delivered in figure 5.2b. Alice gets presented with information
that Bob has a new security number (cryptographic keys), and she needs to
verify the new keys to get the ability to send Bob new messages. How the
verification process is handled between Alice and Bob is shown in a later
test scenario.

After the verification process between Alice and Bob is done, they
can continue the conversation, and a notification gets posted in the
conversation that Bob has changed his security number, as shown in figure
5.2d.

(a) Alice’s first message (b) Message after reinstall

Figure 5.2: Signal: Message after key change
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(c) Verifying Bob again (d) Message after verification

Figure 5.2: Signal: Message after key change (cont.)

Key Change While a Message Is In Transit

This test scenario is mostly the same as the previous test scenario, but the
difference here is to check what the Signal app does when a message is sent
before Bob has managed to reinstall his Signal application.

Figure 5.3a shows the initialization of the conversation between Alice
and Bob, and then Alice asks Bob to delete the application to see how the
Signal app handles lost messages in transit.

Figure 5.3b shows the conversation after a couple of messages from
Alice to Bob. The second message is sent after Bob has deleted his
application, and it shows that there is only a single checkmark on that
message, which means the message has been sent, but not received by Bob.

The third message sent by Alice explains that Bob has finally reinstalled,
but he never receives the second message which was sent before he
reinstalled. After Alice and Bob verified their new security number
between themselves, all new messages are received and encrypted by both
sides, but the second message is never received.

The reason for never receiving the second message in figure 5.3b is
because the Signal application never stores messages that are encrypted
after they are sent to the server, and the messages are never re-encrypted
by Alice when Bob has changed his cryptographic keys.

58



(a) Message before key change (b) Message after key change

Figure 5.3: Signal: Key change while message in transit

Verification Process Between Participants

Signal has some great methods of letting the users verify each other. The
user has three different options on verifying the other participant.

The first verification process is using the built-in calling option in
Signal which is end-to-end encrypted and then read out loud to the other
participant the security numbers that are shown in figure 5.4a. If the Signal
calling is not secure enough for the participants, they can meet up and read
the numbers out loud to each other.

The second method is using the QR-codes9 that is shown in figure 5.4a.
The Signal app has a built-in QR-code scanner as well, which means that
the participants can use that to scan the other participants QR-code to
verify it is the same person in the chat.

The third option to verify the other user is if the users do not trust
the Signal application in handling the verification process. It is possible to
share the security numbers to other applications on the user’s phone. The
user may have PGP10 enabled e-mail on their phone, and they trust it more
than the Signal application, then this method is a better way of verifying
the other user.

9http://www.qrcode.com/en/index.html
10https://en.wikipedia.org/wiki/Pretty_Good_Privacy
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(a) Verification page (b) Verified

Figure 5.4: Signal: Verification process

Other Security Implementations

The Signal application has some extra privacy settings if a user feels
it needs them. The first extra privacy setting is the ”Safety numbers
approval” as seen in figure 5.5a. The setting is activated by default which is
an important setting to have activated from the start. When a user changes
it safety numbers (cryptographic keys) by deleting and reinstalling the app,
it will change device keys. When the device keys change, the messages will
not be shown to the user receiving the messages from the new user device,
until the new safety numbers are approved.

The second privacy setting is not that important for the majority of
users, but a good implementation none the less. ”Screen security” does
not allow the user to screenshot as long they are inside the application.

The last privacy setting is the ability to enable a passphrase. The
passphrase locks the Signal application and all message notifications with a
passphrase which hinders other users than the owner of the application to
get access to the notifications and Signal. It is possible to add an inactivity
timeout passphrase which locks the application after some given time.
Figure 5.5b shows the notification which is locked and when the user tries
to open the application, the screenshot in figure 5.5c shows that the user
needs to enter their passphrase they chose when the setting was activated.

60



(a) Privacy settings (b) Notification locked (c) Passphrase input

Figure 5.5: Signal: Other security implementations

5.2.2 Case 2: WhatsApp

WhatsApp started as a small company in 2009, bought by Facebook in 2014
when it had 465 million monthly active users [49] and in 2017 that number
has grown to 1.2 billion [49]. It started with only doing cross-platform non-
secure instant messaging, but by the end of 2014 they announced that every
user was going to start sending end-to-end encrypted messages using the
Signal protocol [36]. This was a huge step for Open Whisper Systems who
made the Signal Protocol since they would now have made the biggest
instant messaging application use their protocol, and in April 2016 they
made the complete transition from non-secure messaging to fully support
end-to-end encryption with the Signal Protocol [37].

Initial Set Up

An account on WhatsApp works the same way as the Signal application,
where the account only works on one device at a time.

Figure 5.6a shows the first page a user gets greeted with when starting
the application for the first time. WhatsApp uses their infrastructure to
handle the SMS verification process instead of any other 3rd party such as
Twilio that Signal uses.

Figure 5.6b shows the verification page after the user has entered their
phone number. WhatsApp automatically enters the verification code that is
sent to the user’s SMS inbox, but if the user has not given the app access to
the inbox, they can enter the verification code manually. If for some reason
the verification code does not arrive, the user has the option to either resend
the SMS or notify WhatsApp to call the user to receive the verification code
through a phone call.
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(a) Phone number registration (b) Verifying the phone number

Figure 5.6: WhatsApp: Registration process

Message after key change

Figure 5.7a shows when Alice sends her first and second message to Bob,
for them to initiate a conversation together. The yellow notification box at
the top of the conversation is WhatsApp notifying both participants that
the conversation is end-to-end encrypted and they can read more about
the encryption by pressing the box. Each message is shown with a double
checkmark which means that the message from Alice is received and read
by Bob. Alice’s second message is her asking Bob to deleted and then
reinstall the application to see how WhatsApp handles new cryptographic
keys.

Figure 5.7b shows a new notification box has appeared on Alice’s
conversation page with Bob after he has reinstalled his application.
WhatsApp automatically checks if new cryptographic keys (security code)
are changed even though she has not sent him any message asking if he has
reinstalled his application.

When Alice taps the notification box from figure 5.7b, a popup as shown
in figure 5.7c, informs Alice why Bob’s cryptographic keys have changed
and the option to verify him before she sends him new messages. How the
verification process works in WhatsApp is described in a later test scenario
about the verification process.

After Alice has verified Bob’s new cryptographic keys, she sends him
a new message and asks if he has reinstalled the application. The message
has again the double checkmark that the message is received and is end-to-
end encrypted.
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(a) Alice’s first message (b) After Bob has reinstalled

(c) Info about Bob’s new keys (d) Message after verification

Figure 5.7: WhatsApp: Message after key change

Key change while a message is in transit

This test scenario is mostly the same as the previous one, but here we look
at how the WhatsApp application handles messages sent before Bob has
managed to reinstall.

Figure 5.8a shows the initial message Alice sends to Bob asking him to
delete the application.

Figure 5.8b shows Alice sending a second message to Bob after he has
deleted his application. The single checkmark on the message means that
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the message has been sent, but not received and read by Bob.
When Bob reinstalls the application, both the second message Alice sent

and the same yellow notification box is added to the conversation. Figure
5.8b shows the conversation after Alice sends a third message asking about
her second message, if Bob actually received it without her re-encrypting
and sending it a second time. Bob does receive the message which was
sent before he reinstalled his application, which means that WhatsApp re-
encrypts messages when the receiver has gotten new cryptographic keys,
without Alice verifying the keys first.

(a) Alice’s first message (b) Bob deletes his app (c) Bob reinstalled

Figure 5.8: WhatsApp: Key change while message in transit

Verification Process Between Participants

Whatsapp have implemented the same verification process as Signal has
done. It uses the Signal numerical format for verification, a QR-code for
scanning with the built-in scanner and the user can choose if they want
to copy the security numbers outside of the Whatsapp application. The
reason for this may be that when they decided to implement the Signal
end-to-end security protocol, they implemented every single step of the
Signal implementation to uphold the specifications. WhatsApp does also
have end-to-end encrypted calling, which means that the users can call
each other to read the security code and verify.
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Figure 5.9: WhatsApp: Verification process

Other security implementations

WhatsA has a few different settings to strengthen the application’s security.
Figure 5.10 shows the settings page for the user’s account, where we

can see there are settings to change the number of the account or delete the
account.

When a user goes to the security page, the figure 5.10b is shown to the
user. The “show security notification” option triggers a notification to Alice
when Bob has either reinstalled the application or received a new device.
When the option is turned off Alice does not receive any notification the
way our earlier test scenarios about key changes were handled.

Figure 5.10c shows the two-step verification settings that WhatsApp has
implemented, where the user needs to enter an additional passphrase when
registering the account with the same number on a new device or after a
fresh reinstall.
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(a) Privacy settings (b) Security notification (c) Two step verification

Figure 5.10: WhatsApp: Other security implementations

5.2.3 Case 3: Wire

Wire is an application that utilizes end-to-end encryption with the protocol
Proteus, that is heavily based on the Signal Protocol, but implemented
by themselves [21]. It started in 2012 by developers who previously
worked at Microsoft11 and Skype12, and finally released their own instant
messaging application in 2014 [47]. The first version did not offer end-to-
end encryption between people until March 2016, when they launched the
encryption on instant messaging and their video calling feature [2].

Wire offers the same features as the other applications, such as text,
video, voice, photo and music messages, and does it by still providing end-
to-end encrypted messages. It is supported on multiple platforms, from
smartphones to personal computers, by also having every platform open
sourced.13

Initial Set Up

The Wire app has a little different registration process than the other
applications. It starts the same as the others, as can be seen in figure 5.11a,
with a phone number registration. Wire allows users to register with a
phone number, or an email address, which is not the same as the other
applications. The latter is only supported by registering through their web
application, not the phone.

Figure 5.11b shows the verification process, which the user needs to
enter the verification code manually, which they get as an SMS. If the user
does not get any verification code through the SMS, they can register the

11https://www.microsoft.com/nb-no/
12https://www.skype.com/en/
13https://github.com/wireapp
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account through the Wire web application with their email address. If the
user never receives the verification code, it can ask Wire to call the user to
receive it, but it is not entered automatically by the application.

When a user reinstalls the application or gets a new device, they do not
need to go through the registration again. Wire gives the users the option
to log into the application with their phone number or email address if
they have registered an email to their account profile. Users get the option
to register an email and password the first time they register their phone
number.

Figure 5.11b shows the option to log in with an email and password,
and figure 5.11c illustrates the log in function with a phone number.

(a) Phone number registration (b) Phone verification

(c) User login with mail (d) Login with phone number

Figure 5.11: Wire: Registration process
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Message after key change

Figure 5.12a shows Alice’s initial contact with Bob, telling him to delete and
then reinstall the application to see how Wire handles key changes. Wire
uses text under each message to explain if the message was delivered to
Bob.

Figures 5.12b and 5.12c illustrates Alice sending a third and fourth
message to Bob after he has reinstalled his application. Alice does not get
any notification by Wire that Bob has gotten new cryptographic keys; it
may look to Alice that Bob has the same keys as before.

Alice can check Bob’s account information to see if he has got new
cryptographic keys. Figure 5.12d shows Bob’s device keys under his
account that he has new device keys after reinstalling the application, but
Wire does not give any information to Alice about this. There are three
different device keys under his account because Wire allows for multiple
devices to one account, which means that Alice needs to verify each device
to know that the conversation is secure with end-to-end encryption. The
two top devices have a full blue shield which means they are verified,
while the bottom device is only has a half full shield because it has not
been verified yet.

(a) Alice’s first message (b) After Bob has reinstalled

Figure 5.12: Wire: Message after key change
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(c) No notification about key change (d) Bob’s device keys

Figure 5.12: Wire: Message after key change (cont.)

Key change while a message is in transit

Figure 5.13a shows the initial message from Alice to Bob telling him to
delete the message to see how Wire handles messages lost in transit.

Figure 5.13a is after Alice has sent a few messages to Bob to see if
lost messages are sent after Bob has reinstalled or if they are lost. The
second message is the message before Bob has reinstalled, showing that the
message is only “sent” and not delivered as the third message which was
sent after Bob had reinstalled. This shows that Wire does not notify Alice
about Bob’s new keys, and at the same time does not deliver messages with
old cryptographic keys to devices with new keys.
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(a) Alice’s first message before deletion
of Bobs app

(b) No notification after Bob had rein-
stalled

Figure 5.13: Wire: Key change while message in transit

Verification Process Between Participants

Wire’s verification process does not have the same options for verifying
each participant as the other applications, but it does have a useful option
after the verification is done.

When Alice wants to verify one of Bob’s devices, she goes into Bob’s
profile, and there is a dedicated tab for all of his devices. Figure 5.14a shows
Bob’s list of all his devices, where he at the beginning of the testing only has
one set of device keys.

Figure 5.14b shows the pager after Alice taps on one of the devices
from the list. Here it is possible to see the phone’s ID number and the
public device keys. Alice can either call Bob and verify over the phone
that the keys are Bob’s keys, or meet up with him in person to confirm the
keys. When the verification is done, Alice needs to toggle the “not verified”
switch to know that this particular device is verified.
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(a) List of Bob’s devices (b) Bob’s public keys for one device

Figure 5.14: Wire: Verification process

Other security implementations

Wire does not have any extra security implementations such as Signal or
WhatsApp. The application does have some options inside the settings to
change how the message conversation looks or adding email to the account
for easier login.

The user can look at the devices which have been used with the
account(5.15), and if there are any devices which the user does not own or
recognize, they can delete the specific device. After the user has deleted a
specific device, they are prompted to change the password for that account,
in case someone has managed to compromise it.
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Figure 5.15: Wire: Other security implementations

5.2.4 Case 4: Viber

Viber is yet another instant messaging application that launched in 2010,
and has managed to become quite popular throughout the world with
its 800 million overall users and 266 million monthly active users [30].
It has the same properties as the other applications, where users are
capable of forming groups, send messages, call each other and sending
pictures, videos or voice messages to other users of Viber [29]. It works on
smartphones and personal computers, which means it is cross-platform.

Viber did not have end-to-end encryption in the beginning, but
implemented it on April 2016, for both one-to-one and group conversations
[41]. It does not use the Signal Protocol, but they have stated it has the
same concepts of the “double-ratchet” protocol used in Signal, but rather
implemented their own implementation from scratch [41].

Initial Set Up

The user registration process on Viber is the same as the other applications
we have looked through in the previous test cases. Figure 5.16a shows the
user input for the user’s phone number for the registration.

Figure 5.16b shows the activation process of the user account. The user
can either give Viber access to the SMS inbox to enter the verification code
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automatically or do it manually if the user does not want to give access.
If the SMS with the verification code does not arrive within a minute, the
user can ask the application to either resend a new verification code or get
the code through a phone call.

(a) Registration with phone number (b) Verification of phone number

Figure 5.16: Viber: Registration process

Message after key change

Viber does not notify either Alice or Bob when the cryptographic keys
change during a conversation. After a few tests, the only way of
knowing if the cryptographic keys changed was if the participants within a
conversation verified each other first and then started testing the scenario.
The verification process is showed in a later test scenario.

Figure 5.17a shows Alice initiating the conversation between her and
Bob, and asks him to delete the application and then reinstall to see if any
notification is posted within the conversation. The last message Alice has
sent is shown as “seen” if Bob has received and read the message. Viber
does not give any other notification if the message is sent or not, only if the
message is read.

After Bob has reinstalled the application, Alice sends him a third
message asking if he has reinstalled (5.17b). Viber does not give any
notification to Alice that Bob has generated new cryptographic keys when
he answers.

The only way for Alice to know that Bob has new cryptographic keys
is to check the details of the conversation by swiping from right to left
(5.17c) and then check if “Trust this contact” tab has changed to “Re-trust
this contact”. Alice needs to re-verify Bob if she wants to make sure the
conversation is end-to-end encrypted.
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(a) Alice’s initial message
to Bob

(b) No notification about
key changes

(c) Bob needs to be re-
trusted

Figure 5.17: Viber: Message after key change

Key change while a message is in transit

Key changes in transit are handled the same way as key changes after the
reinstall of the application, which we went through in the last test scenario.
Alice initiates the conversation by sending a message to Bob right before
he deletes the application (5.18a).

Figure 5.18b shows Alice sending a second message to Bob before he
has reinstalled his application, and there is no information given to Alice if
the message is sent or read by Bob.

Figure 5.18c shows when Alice sends her third message to Bob after he
is done reinstalling his application. Alice never receives any notification by
Viber that Bob has new cryptographic keys or that he has not received the
second message Alice sent to Bob. There is no information on the second
message if the message is sent, and Viber does not re-encrypt messages and
re-sends them later on.
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(a) Alice’s initial message
to Bob

(b) Message after Bob has
deleted

(c) Bob did not get the
second message

Figure 5.18: Viber: Key change while message in transit

Verification Process Between Participants

The verification process of verifying a contact in Viber is quite straight
forward. If Alice wants to verify Bob she needs to go to one of their
conversations, swipes from left to right to get the information tab and then
go down to the “Trust this contact” option (5.19a).

Figure 5.19b shows the popup notification box after Alice clicks on the
“Trust this contact” option. The only verification option Alice can use to
verify Bob is by calling Bob and then read the cryptographic keys over the
phone.

Figure 5.19c shows when Alice calls Bob and wants to verify, the popup
message shows the cryptographic keys both Alice and Bob share. When
they have verified each other, they press the “Trust this contact” button,
and they are then verified.
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(a) Conversation info (b) Verify a contact (c) Alice verifying Bob

Figure 5.19: Viber: Verification process

Other security implementations

Viber does not have any extra security implementations in their applica-
tion. Figure 5.20 shows the privacy settings page where the only security
implementation is the “Clear trusted contacts” which clears all the contacts
the Alice or Bob have verified throughout the time they have had an ac-
count.

(a) Viber: Privacy settings (b) Viber: Multiple Device List

Figure 5.20: Viber: Other security implementations
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5.2.5 Case 5: Riot

Riot is a new chat client that does not utilize the Signal Protocol directly
for its end-to-end encrypted capabilities, but it is built on top of Matrix14.
Matrix is an open network for secure, decentralized communication
platform which uses bridged networks and cross-platform possibilities
plus full end-to-end encryption that is based on the Double Ratchet
Algorithm from the Signal Protocol.

The benefit with Riot is you do not need to rely on servers by the
Matrix team, the way Signal works. Riot and Matrix is open source,
which means that anyone can set up their own servers with the Matrix
implementation and use its end-to-end encryption. This is an excellent way
for companies who want to have secure chats between employees and not
have anything to do with others outside their own network. Riot does also
have the same capabilities as other instant messaging applications, such
as group chat, VoIP and video calling, file transfer and integrations with
other applications such as Slack15 or IRC16 for a better and more seamless
integration with others.

Initial Set Up

The Riot application is the only messaging client we test that does not rely
on a phone number, but a user registers an account with an email and
username (5.21a).

When a user registers through the app, they are instructed to check their
email to continue with the registration, because Riot sends a confirmation
link which the user needs to click. Figure 5.21b shows after the user
has clicked the confirmation link and are then presented with a captcha
verification for an extra layer of security.

14https://matrix.org/
15https://slack.com/
16https://www.wikiwand.com/en/Internet_Relay_Chat
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(a) Registration by email (b) Captcha code

Figure 5.21: Riot: Registration process

Message after key change

Riot is not the typical instant messaging application such as Signal or
WhatsApp. Their vision is to make an application which works the same
way as Slack or IRC, where there are chat rooms to join and talk to others.

Alice starts a chat room, invites Bob and then activates end-to-end
encryption. It is not on by default because the end-to-end encryption is
still in beta and will be toggled on by default when it is out of the beta.
Figure 5.22a shows the chat room, and as one can see, there are some open
locks on each of the messages from Alice and Bob in the beginning. This
is because those are sent before the encryption was toggled on and how
the end-to-end encryption is toggled on is shown in the test scenario about
other security implementations. When Alice sends her initial message to
Bob about deleting the app and reinstalling it, as shown in figure 5.22b, the
lock is changed to closed since the end-to-end encryption is on.

Figure 5.22c shows that Alice sends her third message to Bob and asks
if he has reinstalled, and Bob answers that he has reinstalled, but he had to
re-verify Alice because his device keys were changed during the reinstall.
Alice can also see that she has to re-verify Bob because his message has
a yellow notification triangle showing that his new keys have not been
verified and should not be trusted until that is done.
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(a) Initial conversation,
Alice and Bob connecting

(b) Alice’s initial message
to Bob

(c) Message to Bob after
he reinstalled

Figure 5.22: Riot: Message after key change

Alice needs to verify Bob’s new device keys, and she can do that by
going into his profile account and look at the devices he has. Figure 5.23a
shows how the devices are listed on Bob’s profile account, where the yellow
notification triangle is there to illustrate which devices are not yet verified.
How Alice verifies Bob will be shown in a later test scenario. After Alice
verifies Bob, the messages are then listed with a correct closed lock, which
entails that the messages are encrypted correctly (5.23b).

When a new user or a previous user, but with new keys, enters the chat
room, there should not be a possibility of reading previously sent messages.
Riot does this correctly, by not showing the previous messages when Bob
enters the room after he reinstalled the application, but it does show him
that there have been some messages exchanged between Alice and Bob
earlier (5.23c).
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(a) Verifying Bob the 2nd
time

(b) New messages are
verified

(c) Bob’s view of previous
messages

Figure 5.23: Riot: Message after key change (cont.)

Key change while a message is in transit

Riot handles key changes the same way if it is in transit or not. Figure 5.24a
shows Alice’s initial message before Bob deletes his Riot application. After
Bob has uninstalled, Alice sends her second message (5.24b) to him to see
what happens after he has reinstalled; if he can read or at least see it on
his chat conversation. The last figure, 5.24c, shows after Bob has reinstalled
the application and Alice sent her third message to ask if he could read the
second message. Bob responds with that he could not read the message
since it showed the same as with the last test, he could not decrypt them.
This shows that Riot handles the key changes the same way as before, Bob
can see there were some messages sent, but could not decrypt since he had
new encryption keys and lost the old ones.
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(a) Alice’s initial Message
to Bob

(b) Message before Bob re-
installed

(c) Bob’s message after re-
install

Figure 5.24: Riot: Key change while message in transit

Verification Process Between Participants

The verification process is quite easy on the Riot application, and they give
lots of information to the user about the users they interact with. When
Alice wants to verify Bob’s devices, she needs to look at his profile account
to find Bob’s list of devices to verify, by clicking on the ”Device” tab as
shown in figure 5.25a. Alice gets a list of Bob’s devices in figure 5.25b, and
if one of the devices has the yellow notification triangle, then that specific
device has not been verified earlier by Alice. She can either verify the
device or blacklist it, which means she does not receive any messages or
invites from that specific device.

Alice decides to verify Bob’s device, clicks on the verify button and gets
a verification popup (5.25c). The popup is informative for users, but may
have a little too much information, and could look cluttered for end-users.
It is stated on the popup that the verification information and process will
be more sophisticated later when the application starts to reach the end of
the beta period. For Alice to verify Bob, she would need to either call Bob
and exchange the device keys, or meet in public to exchange them there
and in the end press the ”I verify that the keys match” button.
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(a) Profile details (b) List of Bob’s devices (c) Verifying Bob

Figure 5.25: Riot: Verification process

Other security implementations

Riot does not have that many extra security implementations, but since
the application is only in beta, they may be implemented during the beta
period. Figure 5.26 shows the settings page for details about a room. The
administrator of the room (the one who initialized the room) is the only
user who can change the settings of the room. The last setting shown
in the figure is the option to enable encryption in that specific room.
When encryption is first enabled, it can not be disabled throughout the
conversation.

Figure 5.26: Riot: Other security implementations
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5.2.6 Case 6: Telegram

Telegram is an instant messaging platform which was developed in 2013
after the NSA scandal. It has been developed for smartphones, tablets
and even computers [52]. It is possible to talk to a single person,
group communication, and the possibility to send files to other people
in your contacts. The difference between Telegram and the other secure
instant messaging applications is that it does only offer opt-in secure
messages, while normal conversations are cloud chats that are not end-to-
end encrypted. It would be better if they could have secret chats as default,
the same way Signal, and others do it, but they want to offer seamless cloud
chat synchronization between all connected devices [17].

When it comes to the secure chats, they have implemented their own
version of a cryptographic protocol that they have named the MTProto
Protocol [16]. The same protocol is also used for normal cloud chats to
encrypt the communication between the server and the client.

The end-to-end encrypted chats that Telegram provides does not allow
users to screenshot inside the secret chat conversation. Therefore, the
images within the conversation are shot with an external camera.

Initial Set Up

The initial setup of the Telegram application and user registration is the
same the other applications. Figure 5.27a shows where the user inputs their
phone number for the registration, and figure 5.27b shows the activation
process. Telegram sends an activation code with SMS, can either input
manually or give Telegram access to do it automatically, and if the message
does not get received by the user in the next two minutes, it sends a new
message. If the user never receives the verification code by SMS, then it can
ask Telegram to call the user and activate it through phone call.
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(a) Phone number registration (b) Verification of phone number

Figure 5.27: Telegram: Registration process

Message after key change

Telegram does not have end-to-end encryption on by default, which means
that Alice needs to start an explicit secret chat with Bob. The normal
messages, which are called cloud chats [52] on Telegram, do not have any
encryption. Figure 5.28a shows the first view Alice gets when initiating a
conversation with Bob. Telegram gives information about the secret chat
that it is end-to-end encrypted and that it does not allow forwarding of
messages for security reasons.

Figure 5.28b shows Alice initiating a secure chat conversation with Bob,
and the double checkmarks illustrate that Bob has received and read the
message, while a single checkmark illustrates the message has been sent.
Alice tells Bob to reinstall the application to test if the key changes have
any impact on the conversation between them.

Alice knows Bob has reinstalled his application and tries to send a new
message to Bob, as shown in figure 5.28c. Bob never received the message,
even after he has reinstalled the application. This shows that Telegram only
uses the same keys while the application is installed, and if it is uninstalled,
the device loses its keys. Alice is sending messages with the old device keys
and will need to generate new ones by initiating a new secret chat with Bob
for that to work, and exchanging new security keys.

Telegram does not store keys anywhere, or any other information that
two users have had a secret chat, to check if one of the users have reinstalled
the application or not. It is all upto the users to initiate new secret chats if
the keys are lost or deleted securely by one of the participants.
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(a) Initial contact (b) Alice: Initial message (c) Message after reinstall

Figure 5.28: Telegram: Message after key change

Key change while a message is in transit

This section does not have any value when it comes to the way Telegram
handles messages that have been sent while Bob was reinstalling the
application. As we described in the last section about key changes in
Telegram, it does not store any information that Alice or Bob were having
a secret chat, it is all done by the client and nothing is sent to the server
saying they were having a conversation between them.

Verification Process Between Participants

The verification process between Alice and Bob is rather difficult when
using secret chats in Telegram. If Alice wants to verify Bob’s encryption
key she needs to go the specific secure chats settings page and click on the
”Encryption Key” button, then the verification page will show. Telegram
does not support calling, only messaging, which makes it harder for Alice
to verify Bob. Figure 5.29 shows the verification page, with an image
derived from the encryption key, and the encryption key below. There is no
way for Alice to verify the conversation only by looking at it and getting to
the conclusion that it is the right one.

The verification page should have used a real QR-code, the same way
Signal and WhatsApp do it, and implement a QR-code scanner which can
scan the code and verify it is the right encryption key.
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Figure 5.29: Telegram: Verification process

Other security implementations

Telegram supports quite a few other security implementations. Inside the
settings page, there is an option to look at the ”Privacy and Security”
settings for the application. Figure 5.30a shows the settings which are
possible to change within the application. Telegram supports two-step
verification, which is when a user wants to log in on another device or after
a reinstall, then they need to write a second, personally chosen, password
after the activation code received by SMS. ”Active sessions” is a list of
devices the user has logged into. The last option, ”Account self-destructs,”
is a security measurement where if the user has not used their account in
the last six months, the account gets deleted by Telegram. The length of the
counter for self-destructing can be changed to one month, three months,
six months or one year.

Figure 5.30b shows options the user gets when clicking on the
”Passcode Lock” on the ”Privacy and Security” settings list. This function
locks the whole application with a passcode the user chooses. Telegram has
implemented the possibility to unlock the application by fingerprint if the
user has added a fingerprint in the operating system, in our case Android
system. A user has the chance to change when the application should auto-
lock, from one minute to five hours. The last option shown is the ”Allow
screen capture” which if enabled allows users to screenshot anything inside
the application, and if it is not enabled, they do not have access to do so,
except secure chats that are never allowed to screenshot.
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(a) Privacy and Security settings (b) Passcode settings

Figure 5.30: Telegram: Other security implementations

5.3 Summary

This chapter went through the testing methodology and explained the
different test scenarios and test cases. It illustrated the steps such that the
reader can do the same when going through the tests.

The next chapter gathers all the information from this chapter and
presents the results for each test scenario.
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Chapter 6

Results

In this chapter we present the results from our testing in chapter 5 of
the secure messaging applications. We show the results for each test
scenario and display what types of properties each application provide and
which properties are missing. We discuss the results in chapter 7 for each
application as a whole.

6.1 Setup and Registration

Table 6.1: Results: Setup and Registration

Application Properties

Phone Registration E-mail Registration Access SMS Inbox Contact list Upload Verification by SMS Verification by Phone Call

Signal 3 7 3 3 3 3

WhatsApp 3 7 3 3 3 3

Wire 3 3 7 3 3 3

Viber 3 7 3 3 3 3

Riot 7 3 7 3 7 7

Telegram 3 7 3 3 3 3

3= Provides property 7= Does not provide property

The applications provided mostly the same properties when it came to the
setup and registration test scenario. All the applications except Riot are
created to register with the user’s phone numbers while Riot needs an e-
mail address. When testing the Wire application, we found out that it is the
only application that supports both phone number and e-mail address to
register an account and later use it to log in.

Access to the SMS inbox is not obligatory by any of the applications,
but it is set up to be easier for the user because then they would not need
to enter the verification code manually. While Riot does not use a phone
number for verification which means it does not need access at all, Wire
has decided to not ask for access because they do not see any reason that
the user cannot enter the verification code themselves.

The contact list is asked to be uploaded to the server by all the
applications because it is easier to find out if any of their contacts are
already using a given application. If any of the users do not want to upload
it to the server, they could be 100% anonymous and only give out the
number to particular persons.
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All the applications have the same properties when it comes to
verification by SMS and phone call. They all first give the user the chance
to verify by reading the SMS and if the user never receives the SMS, then
they can ask the application to call them.

6.2 Initial Contact

Table 6.2: Results: Initial Contact

Application Properties

Trust-On-First-Use Notification About E2E Encryption

Signal 3 7

WhatsApp 3 3

Wire 7 7

Viber 7 7

Riot 7 3

Telegram 7 3

3= Provides property 7= Does not provide property

The initial contact is when Alice and Bob decide to start a conversation
and the test checks if the applications have a Trust-On-First-Use (TOFU)
and if they give any notification that the conversation is end-to-end
encrypted. Signal and WhatsApp have a TOFU method, where both
trust the participants in a conversation without verifying first. The
other applications need to verify each other first to be assured that the
conversation is secure.

A notification at the start of the conversation would be useful to a new
user who does not know what end-to-end encryption is, and it only needs
to be at the beginning such that users do not get bothered. Only half of
the applications have this notification implemented in their applications,
and the others should do an internal testing if it helps users understand
end-to-end encryption.

6.3 Message After A Key Change

Table 6.3: Results: Message After a Key Change

Application Properties

Notification about key changes Blocking message

Signal 3 3

WhatsApp 3 7

Wire 7 7

Viber 7 7

Riot 3 7

Telegram 7 7

3= Provides property 7= Does not provide property
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When looking at the way applications handled key changes, it became
apparent that the difference in handling between the applications is quite
big. Only the Signal application had both blocking messages and showed
a notification that the other user in the conversation did not have the same
cryptographic keys after a reinstall. A blocking message is when the sender
cannot send the message before they verify the new cryptographic keys of
the receiver if the receiver has generated new cryptographic keys during
the conversation.

The other applications which did not give any notification or blocked
a sending message could become a security issue if a man-in-the-middle
attack has happened since one of the participants would never get the
notification of key changes. Wire and Viber should modify the way
they handle the key changes because this could become quite ugly if
somehow there is an exploit in the application and man-in-the-middle
attacks are possible. Telegram has the secret chats that do not work if
cryptographic keys change because the application does not store any
information about secret chats and then the participants would need to
start a new conversation with each other to continue the conversation.

The blocking messages should be tested with users in a case study,
where they go through each application and see if it is a good choice to
block messages when keys change for usability. There could maybe be
some problems where the users do not look at it after a while and verify
new users without actually verifying the right person. This is out of our
scope but could be relevant for future work.

6.4 Key Change While a Message Is In Transit

Table 6.4: Results: Key Change While a Message Is In Transit

Application Properties

Re-encrypt and Send Message Details About Transmission of Message

Signal 7 3

WhatsApp 3 3

Wire 7 3

Viber 7 7

Riot 7 3

Telegram 7 3

3= Provides property 7= Does not provide property

The only application to re-encrypt the messages and send it once again
after the receiver got new cryptographic keys was WhatsApp, which is a
useful usability property to have, and hopefully, the rest of the applications
also implement this type of mechanic to their conversations. There is one
problem with the way WhatsApp re-encrypts and sends the message again;
it never asks the user if it is the correct receiver because the keys have
changed. WWhen an application re-encrypts without asking and verifying
that the receiver is correct, then it could become a security issue if someone
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has managed to get access to the receiver’s account and impersonate them.
If the impersonator has access, and the application does not try to verify,
then the messages are sent to the wrong user.

The “details about the transmission of a message” property is if the
applications show the sender that the message is either sent, delivered or
seen by the receiver. If the message is never delivered because of changes
to the receivers cryptographic keys, then the message only shows “sent”
for the sender, but if the message is re-encrypted and sent correctly, then
the message detail says “seen” by the receiver. The only application that
does not show any information if past messages are sent or delivered is the
Viber app. Viber does not show any details about the transmission of the
message, only if the receiver reads the last message.

6.5 Verification Process

Table 6.5: Results: Verification Process

Application Properties

QR-Code Verify By Phone Call Share Keys Through 3rd Party Verified Check

Signal 3 3 3 7

WhatsApp 3 3 3 7

Wire 7 3 7 3

Viber 7 3 7 3

Riot 7 3 7 3

Telegram 3 7 7 7

3= Provides property 7= Does not provide property

The user experience when verifying two participants was good throughout
all the applications, but at the same time, they could implement each
other’s way of confirming participants.

Signal and WhatsApp show the easiest verification by using a QR-code
with their built-in barcode scanner, but both had shortcomings because
they did not have a check which revealed that the particular user is already
verified. Wire, Viber, and Riot confirmed when a user is already verified,
but they did not have the useful QR-code nor any way of sharing the keys
outside of the application.

Telegram was the only application which only offered a QR-code but no
way of actually scanning the code. Users had to read the secret keys which
are shared between them, and the QR-code picture is made to compare
between participants without any technical way of doing it, only by looking
at it.
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6.6 Other Security Implementations

Table 6.6: Results: Other Security Implementations

Application Properties

Two-Step Verification Passphrase/Code Screen Security Clear Trusted Contacts Delete Devices From Account*

Signal 7 3 3 7 7

WhatsApp 3 7 7 7 7

Wire 7 7 7 7 3

Viber 7 7 7 3 3

Riot 7 7 7 7 3

Telegram 3 3 3 7 3

3= Provides property, 7= Does not provide property, * = supports
multi-device

When looking at other security implementations that the applications have
implemented outside of the conversations; we found out that the apps have
implemented some valuable settings for the user to strengthen the security
around their account.

Signal and Telegram both had a passphrase or code when the applic-
ation was not used after some specific time. The user had to enter their
chosen phrase/code to gain access to the application after the timeout. Both
of the applications have also implemented screen security to not give the
users the ability to screenshot conversations. There is a settings to toggle
the security off, but it is on by default on both Signal and Telegram.

WhatsApp and Telegram have two-step verification capabilities which
means that whenever a user reinstalls the application or changes devices,
they need to enter a second password after the normal verification code
from the provider, to gain access to their account on the new device.

The only application which had a list of verified contacts, and the option
to delete them, was Viber. Clients such as Wire and Riot, which have
a verified check on each contact within a conversation, do not offer this
option to have a list and delete the trusted contacts from there, which
should not be that big of a problem to implement since they already know
which contacts and their devices are verified.

The “delete devices from account” is only looked at if the application
tested supports multiple devices. All the applications which supported
multiple devices also had a list of devices such that the user could delete a
device which is not in use anymore.

6.7 Summary

This chapter went through the six test that was done on six secure
messaging applications and looked at what kind of properties are and
are not provided by the apps. It showed that there is a big difference
gap between the apps, and the apps could learn something from their
competitors who have solved some of the problems a secure messaging
application faces.

The next chapter is about the discussion of these results, where
applications are given some general criticism and how the developers
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could implement features which would benefit both the users and the
security of the application.
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Chapter 7

Discussion

Chapter 6 presented the results from the different test scenarios done for
each application. The results from each of the test scenarios vary, but there
was room for improvement for each of the test cases.

This chapter discusses the results from the previous chapter. Instead
of talking about each test scenario the last chapter showed results for;
each application is discussed as a whole, and some recommendations for
improvement is given to the developers. The limitations of the research
which were found during the testing are discussed and what kind of
improvement could be done in future experiments.

7.1 Signal

The Signal application did not show many weaknesses throughout the
test, but we did find some potential improvements. Signal showed that
they had a good grasp on the user experience with an easy verification
process, where they used QR-Codes to verify and at the same time give
users options to call each other to verify through end-to-end encrypted
phone calls.

The notification about key changes pops up on the sender’s side
of the conversation, after they have sent a message, and not before or
immediately when the receiver has generated new cryptographic keys.
When a sender does send a message after key changes, the message gets
blocked by the application until they verify each other. This is a useful
property to have, but the notification that the keys have changed gets
revealed after the verification instead of immediately when one of the users
has new keys.

Overall the application has both good security when it comes to end-
to-end encryption and useful user experience properties which would not
cause problems for new users to jump right in and use.

7.1.1 Recommendations for Improvement

We came up with a few improvements which would benefit the Signal
application, but it is important to note that these improvements should go
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through testing before deploying them to production.

• Re-encrypt and send lost messages: Give the user some form of
option to re-encrypt a lost message to resend after the users are
done with the verification. The sending user always knows when a
message is sent, delivered or read because of the checkmarks on each
message within a conversation. This benefits both the sender and
receiver because messages would not get lost during a conversation.

• Notification about key changes: Move the notification message,
which pops up on both users within a conversation after the
verification process, to before someone sends a message, right after
one of the users generates new keys. If the notification is moved
before sending a message, then the sender knows before sending a
message that keys are changed and would like to know if is the same
receiver before sending messages that may be confidential.

• Notification on E2E encryption: On each new message conversation
that is initiated, give a notification at the beginning of the conversa-
tion that it is now end-to-end encrypted and the possibility to read
more about it if the users want to. This information could help edu-
cate the end-user about what E2E-encryption is and why they should
care about it.

• Verified check: Add a way of knowing if a user is already verified or
not because the Signal application does not have any way of knowing
at this time. If the application keeps the information about which
contact is verified by the user, then it can quickly show when one of
the contacts changes cryptographic keys and could ask the user to
verify each other again to regain the security properties.

• Two-step verification: Add a new security option to enable two-
step verification for when a user changes devices or reinstalls the
application. This could prevent users losing control of their accounts
since hackers would need to know the second password after a
verification to get access to the account.

7.2 WhatsApp

We did not find many weaknesses with the WhatsApp application, but as
with the Signal application, we did come up with a few improvements that
could benefit the user.

We found out that WhatsApp does enough to strengthen the security
around the user’s account and messages and there is a small chance of any
kinds of man-in-the-middle attacks, but there could be some impersonation
attacks. These types of attacks could happen because, by default, the
WhatsApp application does not give any notification about key changes
to the user. If the users suddenly got notifications about changes after end-
to-end encryption was added to the application, then user confusion may
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occur and lead to angry users or deletion of the application. The problem
of not having it on by default is that it gives the users a false sense of
security because they never know if something has changed throughout
the conversation.

7.2.1 Recommendations for Improvement

There are some improvements which we recommend WhatsApp imple-
ment to secure the application even more than it is today:

• Re-encrypt and resend after verification: The WhatsApp application
immediately re-encrypts a lost message when it finds out that the
cryptographic keys have changed and the receiver never received
the message. The application should wait until the user has
verified new keys before re-encryption because of the possibility of
an impersonator. If an adversary has managed to impersonate a
contact and WhatsApp re-encrypt and sends lost messages, then the
possibility of sending private messages to the wrong person rises
drastically because the sender cannot stop the message being sent
after keys change.

• Option for blocking messages: Add an option for the user to enable
blocking messages before the users within a conversation verify each
other. If WhatsApp adds an option to block messages before two
participants verify each other, then the possibility of sending private
messages to an impersonator drops significantly, because they would
need first to verify each other then send the message.

• Verified check: Add a way of knowing if a user is already verified or
not because the Signal application does not have any way of knowing
at this time. If the application keeps the information about which
contact is verified by the user, then it can quickly show when one of
the contacts changes cryptographic keys and could ask the user to
verify each other again to regain the security properties.

• Passphrase/code: Add an option to enable passphrases or codes
before opening the application to strengthen the user’s account from
unauthorized people. If an adversary manages to get access to the
user’s phone, then the passphrase/code when accessing WhatApp
could defend from any adversary trying to get access to messages.

7.3 Wire

The Wire application had useful security and usability properties, but we
did find properties which were not implemented and could cause serious
security problems.

The users never get any information that participants change devices
or add new devices to the conversation. When a user can add new devices
to the account, and the conversations do not notify the other participants,
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could become a serious problem if someone has managed to gain access
to a users account. The impersonator joins the conversation and receives
every single message that is sent throughout the conversation.

7.3.1 Recommendations for Improvement

We found a handful of improvements for the Wire application which could
benefit the app as a whole.

• Tell the user about verification: Explain to the user that the applica-
tion does not automatically verify when initiating a conversation. Tell
them that the users should verify each other first before sending mes-
sages, to ensure that nobody is impersonating them. If users within a
conversation do not verify each other, then the possibility of having
an impersonator is quite high because none of them have checked if
they are talking to the right person.

• Option for blocking messages: Add an option for the user to enable
blocking messages before the users within a conversation verify
each other. If Wire adds an option to block messages before two
participants verify each other, then the possibility of sending private
messages to an impersonator drops significantly, because they would
need first to verify each other then send the message.

• Notification about key changes: Add an option to get notifications
when a user adds new devices because Wire allows multiple devices.
When a user adds a new device to the conversation by installing the
application on the second device, then the other participant should
get a warning that another device has been added to the conversation
they should verify that particular device before sending any more
messages.

• Re-encrypt and send lost messages: If a message is lost, give the user
an option to re-encrypt and resend the lost message to the receiver.
This usability property would be useful to have for both of the users
because then the conversation could continue without any hiccups
because lost messages may confuse the users.

• Verification options: Add different ways of verifying each other
within a conversation, because calling a person every time may
become cumbersome for users. A QR-code or sharing keys with a
3rd party application could be some examples of improvements

• Two-step verification: Add a new security option to enable two-
step verification for when a user changes devices or reinstalls the
application. This could prevent users losing control of their accounts
since hackers would need to know the second password after a
verification to get access to the account.
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• Passphrase/code: Add an option to enable passphrases or codes
before opening the application to strengthen the user’s account from
unauthorized people. If an adversary manages to get access to the
user’s phone, then the passphrase/code when accessing Wire could
defend from any adversary trying to get access to messages.

• Screen Security: Add an option in the settings page to enable screen
security which does not allow screenshots within the application
or any conversation. The reason to have screen security is that
the conversations become more secure and private between then
participants, but a screen security is as good as both the participants
enabling it. If the screen security is not enabled, then it has no
effect because one of the users has total access to screenshot any
conversation.

7.4 Viber

The Viber application has some good choices in usability and security
properties but falls short in some areas which should be a priority when
adding end-to-end encryption.

There are enough bad implementations in Viber that it should be
sufficient to warrant people not to use the application if they care about
privacy and security. When cryptographic keys change, none of the users
get any information about it, and it is not possible to get information if the
users have not verified each other first, before changing keys. If messages
are lost in between reinstalls, we found out that the sender cannot see if the
message is sent or received if they send multiple messages before looking
at the status of the message

7.4.1 Recommendations for Improvement

Viber has many flaws which we mean are trivial to fix and drastically
improve the application.

• Details about sent messages: Add information to each message if
the message has been sent, delivered or read because at the time of
this test there is no way of knowing if old messages are read by or
delivered to the receiver, only the last message has the information. If
one user sends two messages, then the first message does not have
any information if it has been read by the receiver, because Viber
does only show information about the last message. This could
be confusing for the sender because they never receive information
about the status.

• Tell the user about verification: Explain to the user that the applica-
tion does not automatically verify when initiating a conversation. Tell
them that the users should verify each other first before sending mes-
sages, to ensure that nobody is impersonating them. If users within a
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conversation do not verify each other, then the possibility of having
an impersonator is quite high because none of them have checked if
they are talking to the right person.

• Option for blocking messages: Add an option for the user to enable
blocking messages before the users within a conversation verify
each other. If Viber adds an option to block messages before two
participants verify each other, then the possibility of sending private
messages to an impersonator drops significantly, because they would
need first to verify each other then send the message.

• Notification about key changes: Add an option to get notifications
when a user gets new cryptographic keys because then they would
need to re-trust each other.

• Re-encrypt and send lost messages: If a message is lost, give the user
an option to re-encrypt and resend the lost message to the receiver.
This usability property would be useful to have for both of the users
because then the conversation could continue without any hiccups
because lost messages may confuse the users.

• Verification options: Add different ways of verifying each other
within a conversation, because calling a person every time may
become cumbersome for users. A QR-code or sharing keys with a
3rd party application could be some examples of improvements

• Two-step verification: Add a new security option to enable two-
step verification for when a user changes devices or reinstalls the
application. This could prevent users losing control of their accounts
since hackers would need to know the second password after a
verification to get access to the account.

• Passphrase/code: Add an option to enable passphrases or codes
before opening the application to strengthen the user’s account from
unauthorized people. If an adversary manages to get access to the
user’s phone, then the passphrase/code when accessing Wire could
defend from any adversary trying to get access to messages.

• Screen Security: Add an option in the settings page to enable screen
security which does not allow screenshots within the application
or any conversation. The reason to have screen security is that
the conversations become more secure and private between then
participants, but a screen security is as good as both the participants
enabling it. If the screen security is not enabled, then it has no
effect because one of the users has total access to screenshot any
conversation.
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7.5 Riot

The Riot application is still in beta, which is the reason for some of the
choices they made when developing the application. There are some good
usability and security properties, but there are also a few bad properties as
well.

When cryptographic keys change during a conversation, then the
previous messages are locked for the user when reinstalling the application,
but the sender has an easy option to resend messages if necessary. After a
reinstall, the users need to verify each other again because the keys have
changed and the application does notify the users about changes.

There are some bad choices here, and these are that end-to-end
encrypted is not on by default but this changes when the application is
out of beta. The same with the verification process, there is not an easy
way of verifying users, but Riot has stated they are working on changing
the method.

7.5.1 Recommendations for Improvement

We came up with a few improvements for the Riot application which could
benefit the app as a whole.

• Verification options: Add different ways of verifying each other
within a conversation, because calling a person every time may
become cumbersome for users. A QR-code or sharing keys with a
3rd party application could be some examples of improvements

• Two-step verification: Add a new security option to enable two-
step verification for when a user changes devices or reinstalls the
application. This could prevent users losing control of their accounts
since hackers would need to know the second password after a
verification to get access to the account.

• Passphrase/code: Add an option to enable passphrases or codes
before opening the application to strengthen the user’s account from
unauthorized people. If an adversary manages to get access to the
user’s phone, then the passphrase/code when accessing Wire could
defend from any adversary trying to get access to messages.

• Screen Security: Add an option in the settings page to enable screen
security which does not allow screenshots within the application
or any conversation. The reason to have screen security is that
the conversations become more secure and private between then
participants, but a screen security is as good as both the participants
enabling it. If the screen security is not enabled, then it has no
effect because one of the users has total access to screenshot any
conversation.
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7.6 Telegram

Telegram has some useful security properties, but the usability features are
a bit lacking and confusing for people who are not tech savvy.

The biggest flaw for a secure messaging application is that the end-
to-end encryption is not on by default. We think that this should
become a norm these days for an application that advertises encrypted
conversations.

If a message is sent to the receiver after cryptographic keys change,
then no message will arrive because secret chats are locked to one set of
keys, and when a user generates new keys, they would need to start an
entirely new secret chat. This is good for security, but the problem arises
when a user does not get the information about key changes because the
application never tells them.

7.6.1 Recommendations for Improvement

We do not have that many recommendations for improvement because
Telegram does not have end-to-end encryption on by default which means
an explicit secret chat needs to be initiated every time users want to
communicate.

• Verification options: Add different ways of verifying each other
within a conversation because only showing the QR-code in person
is not a good way of doing it. There should be more options such as
calling and sharing keys through 3rd party applications.

• Verified check: Add a way of knowing if a user is already verified
or not because Telegram does not have any way of knowing at this
time. If the application keeps the information about which contact
is verified by the user, then it can quickly show when one of the
contacts changes cryptographic keys and could ask the user to verify
each other again to regain the security properties.

• Notify about key changes: Telegram should notify the user when
the other participant has deleted the application, and they would
need to initiate a new conversation. Telegram does not give any
information as it is implemented today, which would lead to lost
messages because the sender never gets the information that the
receiver has deleted or changed devices.

7.7 Research Improvements

We found throughout the testing of the applications that this does not give
us real life results because they are tested by only one person instead of in
a group by multiple participants. The best way of going through this test
case would be with a group of participants where the knowledge about
secure messaging applications ranges from none at all to participants with
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knowledge about these kinds of applications. We only had one person
testing the applications which make the generalization of the problems
difficult, because they become biased instead of coming to a conclusion
from many different perspectives of other users.

To receive better results from this type of research, the use of parti-
cipants can gather different results from each person, which means that the
results could be different than what we found during our single research.

The applications were chosen because we had used them before
personally. What should have been done to get a better grasp of what
types of applications people use, was to set up a questionnaire for different
applications to choose from and then we could find out which app to
research.

7.8 Summary

This chapter discussed the results of each application as a whole and
found that there are multiple improvements for each application. The
applications were not perfect, but with the recommended improvements,
the applications could ensure a more secure application and at the same
time make a good user experience.

The research was also discussed in how it could be improved by using
multiple participants instead of doing it at a test lab because there is a risk
of biased studies in the results.
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Chapter 8

Conclusion

This thesis has shown how secure messaging applications have an
impact on us when usability overshadow the security properties. The
prioritization of usability could have a negative effect on the security of
the applications instead of prioritizing them equally.

The results show that the main caveat of the secure messaging
applications is the way changes in cryptographic keys are handled between
parties within a conversation. In multiple applications, the participants are
never given any information about changes, which weakens the security of
the conversation.

This thesis conducted two analyses about secure messaging protocols
and applications which implement these types of protocols. The first
analysis (following the recent article by Unger et al. [53]) described old
and new secure messaging protocols that offer end-to-end encryption and
identified types of security and privacy properties they provide. The Signal
and Matrix protocols are both secure messaging protocols that manage
end-to-end encryption well, but none of them could offer every security
property. The analysis concluded that none of the secure messaging
protocols could provide every security property and that it was room for
improvement if developers work together and discuss how they can help
each other in implementing the rest of the properties that are missing. The
Signal protocol does not fully support multiple devices, while the Matrix
protocol does provide it. On the other hand, the Matrix protocol does not
fully provide forward and future secrecy in the protocol, because it is up to
the implementation to support it.

The second analysis conducted in this thesis was the research exper-
iment of applications which support these secure messaging protocols
within their conversations. The applications offer useful usability together
with security, but there are multiple applications which still benefit from
improvements. The types of improvements recommended could harden
the security around the user’s account, and at the same time keep the use-
ful usability properties. Chapter 5 went through what types of usability
properties we want the applications to offer on the test scenarios, and then
showed steps to reproduce the scenarios on each application. Chapter 6
concluded that the applications offered useful usability and security prop-
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erties. However, multiple applications were missing important usability
properties which could jeopardize the security of the users because they
would never know if there was an attack on the conversation. Recommend-
ations have been given in Chapter 7 for each application to harden their
security around the user’s account, but at the same time keep the useful
usability properties. The given recommendations are not tested to confirm
that it is the best choice for the applications, and it is up to the developers
to prioritize if they benefit their applications and users.

When discussing the shortcomings of our research in section 7.7, we
conclude that the research could be redone with multiple participations to
ensure a more generalized result of the test cases. Usability and security
of secure messaging applications should be done in a case study where
the range of secure messaging applications between multiple participants
ranges from no knowledge at all to participants with security knowledge.
The results that are given in this thesis may be seen as biased because of one
opinion on secure messaging applications, instead of multiple opinions.

On April 20th, a related blog article about usability and security
of applications came to our attention [40]. The article examined the
same types of scenarios of apps as this thesis did, but not with the
same depth and research behind the protocols and applications, and
no recommendations were given to the developers to improve their
applications.

It is solely up to the user which secure messaging application they
want to use, but hopefully, by reading this master thesis, they can come
to a conclusion they find appealing for them and start using a messenger
which gives the user enough security and privacy to stand against the
government surveillance.

8.1 Future Work

The evaluation tests that we did could be redone with multiple parti-
cipants. By using multiple participants, it could be easier to identify how
a particular device/app is used and if it is easier for impersonators and at-
tackers to lure users into giving private information. As we mentioned in
section 1.5 about related work, Schroder et al. [51] did a user study with
participants, but only on the Signal application, while we could do it with
each application that we described in this thesis.

Another interesting research avenue is the automated formal verifica-
tion that Blanchet et al. [31] has done for Signal protocol, and Cohn-Gordon
et al. [10] with their formal manual verification of the same protocol. One
could look at a similar verification with ProVerif1 and the Matrix protocol
to verify that Matrix respects authenticity, confidentiality, forward secrecy
and other important security properties.

Formal verification of the code of the different mobile applications
studied in this thesis is also useful. Baier et al. [3] presents principles
of model checking, which is a prominent formal verification technique

1http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
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for assessing functional properties of information and communication
systems. The book also talks about a model checker called SPIN which
is made by Gerard Holzmann [28] and is a tool which is used for formal
verification of systems and applications. By combining the different
techniques and principles from the Principles of Model Checking and the
model checker SPIN, we could do a verification of the different applications
that we went through in this thesis.
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