University of Oslo, Norway

An overview of research

Robotics and Intelligent Systems (ROBIN)

Jim Tørresen Professor, Group leader

Mats Høvin Assoc. Prof.

Kyrre Glette Assoc. Prof.

Kai Olav Ellefsen Assoc. Prof.

Yngve Hafting Ass. Prof.

Vegard D Søyseth Principal Engineer

Ulysse Côté-Allard (INTROMAT)

Hoang Minh Pham (INTROMAT)

Diana Saplacan (VIROS)

PhD students (ROBIN main superv.):

Adel Baselizadeh **Benedikte Wallace (RITMO) Bjørn Ivar Teigen (DOMOS) Eivind Samuelsen**

Emma H Stensby Farzan M. Noori Julian Fuhrer (RITMO) **Katrine Nergård** Marieke van Otterdijk Mojtaba Karbasi (RITMO) Tom Frode Hansen (NGI)

Alexander Wold (assoc.prof.) Charles Martin (assoc.prof.) Ole Jakob Elle (Prof.) Roar Skogstrøm (lecturer) Ståle Skogstad (assoc.prof.) **Tønnes Nygaard (**lecturer)

Students: Bachelor ~200; Master: ~58 **Robotics and Intelligent Systems program**

Students hired on hourly basis: Magnus E. Seierstad

Visiting researchers

Robotics and Intelligent Systems group ROBIN

Creating systems for demanding runtime environments.

Hardware electronics
3D-printing prototyping

Robotics and Intelligent Systems

Applications

robotics

music

health

care

Biology

apply

principles

from nature

Artificial Neural Networks
Deep Learning
Evolutionary Computation
Swarm Intelligence

Motion Capture Facilities (ROBIN)

- Allows precise tracking of human and robot motion
- Camera-based and on-body motion capture

Rapid Prototyping Facilities (ROBIN)

- 3D printers and milling machines
- Large potential for developing innovative robot systems.

Rapid Prototyping Facilities 3D-printers (ROBIN)

Rapid Prototyping Facilities Milling Machines (ROBIN)

Robotics and Intelligent Systems (ROBIN) research group

Artificial Intelligence in smartphones

Adaptive and autonomous mental health treatment

ROBIN group: Al and Machine Learning Techniqes

- Feature Extraction (PCA variants, OpenPose, ++)
- Deep learning
 - Classification: CNN
 - Forecasting: RNN
- Deep reinforcement learning (robot control)
- Evolutionary computation (robot design and control, neuroevolution)
- Neuro-fuzzy systems (robot control)
- Transfer learning/user adaptive models
- Training with sparse data (oversampling)

ROBIN Research Projects and Centre Funded by the Research Council of Norway

- Prediction and Coordination for Robots and Interactive Music (EPEC, 2015-2019, FRIPRO)
- Multi-sensor Elderly Care Systems/Robots (MECS, 2015–2020, IKTPLUSS)
- INtroducing personalized TReatment Of Mental health problems using Adaptive Technology (INTROMAT, 2016-2021, LightHouse project)
- Vulnerability in the Robot Society (VIROS, 2019-2023, IKTPLUSS)
- Predictive and Intuitive Robot Companion (PIRC, 2020-2025, IKTPLUSS)
- Centre of Excellence for Interdisciplinary Studies in Rhythm, Time and Motion (RITMO, 2017-2027, CoE)

RITMO Centre of Excellence for Interdisciplinary Studies in Rhythm, Time and Motion grant 262762 (2017-2027)

- The center will study the perceptual, cognitive and acting mechanisms underlying our ability to experience rhythm and act rhythmically.
- Interdisciplinary collaboration between musicology, psychology, computer science and robotics.
- Machine learning and robotics to be applied

https://www.uio.no/ritmo/english

Four RITMO Clusters

Interaction and pleasure

 Understand why rhythms make us move, and how rhythm facilitates entrainment and interaction.

Structure and time

 What are the basic features of musical rhythm and how do rhythm influence our experience of musical time

Structure and cognition

– How are rhythm and our sense of time constructed in the human mind?

Interaction and robotics

 Investigate aspects of rhythm and motion through robotics and technology

Collaboration on Intelligent Machines Norway ←→ US, Brazil and Japan

Project manager: Jim Torresen

- Short term mobility stay for meetings
- Sharing and development of curriculum and teaching material for courses
- Long term mobility stay (students)
- Intensive course/student workshop
- Workshop/conference org. activities
- New collaborations/guest lectures (can be in Canada, China, ++)

Robot Design, Simulation, Assembly and Evaluation

- Work with real robots and simulations.
- Reduce gap between simulation and reality.
- Create novel methods for design (e.g., evolution) and dynamic body shapes (morphology).

Evolved Robot Design

- Robot bodies could be difficult to design by hand.
- We use evolutionary algorithm to evolve both body and control system simultaneously.

http://uk.reuters.com/video/2015/06/15/3d-printed-robotsadapt-themselves-to-th?videoId=364592612

EPEC: Prediction and Coordination for Robots and Interactive Music

Research Council of Norway grant 240862.

https://www.hf.uio.no/ritmo/english/projects/all/epec/

Goal: Design, implement and evaluate multi-sensor systems that are able to sense, learn and predict future actions and events.

Predictive Musical Interaction

Music and Research

We make new musical instruments, measure musical experiences, find new ways to express ourselves with technology.

Why?

- Expression and creativity is important.
- Music is everywhere; people care about it.
- Music is hard; realtime, high standards.

You don't have to be a professional musician to do a great musical project!

Dyret: A low-cost self-modifying quadruped

https://www.youtube.com/watch?v=fit4c3dMqQk

- Our most advanced legged robot to date
- Used for evolutionary experiments and research in self modelling and control

Evolutionary multi-objective optimization in hardware for stable and fast quadruped robotic locomotion

Results from evolutionary experiments

An experiment from the paper "Real-World Evolution Adapts Robot Morphology and Control to Hardware Limitations"

For more information, please see robotikk.net

Robot Surgery (National University Hospital) Ole Jakob Elle (ROBIN)

Interaction:

Robot-Robot

Human-Robot

Environment Aware Robotics System by PhD student Justas Miseikis (ROBIN, 2019)

INTROMAT: INtroducing personalized TReatment Of Mental health problems using Adaptive Technology (2016-2021)

Research Council of Norway grant 259293

Goal: Increase access to mental health services for common mental health problems by developing smartphone technology which can guide patients.

http://intromat.no

Project Manager:

Haukeland Univ. Hospital, Bergen

Funding: *IKTPLUSS Lighthouse, Research Council of Norway*

5 cases/disorders

- Relapse prevention for bipolar disorder
- Cognitive training in Attention Deficit Hyperactivity Disorder (ADHD)
- Job-focused treatment for depression in adults
- Early intervention and treatment for social anxiety disorder in adolescents
- Psycho-social support for women recovering from gynecological cancer.

Mental health monitoring and treatment (INTROMAT)

- Use of smartphones, wristwatches and virtual reality devices to monitor users' behavior.
- Analysis of sensor and behavioral data with machine learning.
- Context and mental states prediction for bipolar, anxiety and attention-deficit/hyperactivity disorders.
- Adapt clinical follow up and activate automatic treatments/training modules.

MECS: Multi-sensor Elderly Care Systems

Research Council of Norway grant 247697

Goal: Create and evaluate multimodal mobile human supportive systems that are able to sense, learn and predict future events.

Funding: FRINATEK
Research Council of Norway

United Nations (2015) World population ageing. United Nations, New York.

UiO * Department of Informatics

University of Oslo

Elderly Care with Robot Companion

- Move from permanent and fixed room surveillance to flexible and adaptive
 - Increased privacy
 - Increased accuracy
- Active testing involving real environments
- Detect and predict falls and other non-normal situations to notify caregiver.
 - In emergency situations, the robot rather than the elderly activates the safety alarm.

User Centered Design – Participatory Design

- involve real users in actual use contexts (home of elderly)
- focus on behavior and satisfying the needs and desires of the users
- achieve improvements through iterative testing and improvement

Oslo Municipality care facility: Kampen Omsorg +

Diana Saplacan Rebekka Soma Trenton Schulz

Jo Herstad (DESIGN superv.)

User needs and preferences

+ Master students

Apply sensors that provides non/less-intrusive sensing

Robot sensing

Robot control

Navigation without a map

Farzan M. Noori Md. Zia Uddin

We are working with Kampen Omsorg+ to figure out what the robot should do and the general design of the robot

Navigation without a Map

- Having a mobile robot with 3D camera and/or Lidar.
- Moving in a completely unknown environment.
- Using the sensory information to build the path and navigate.
- Employing several AI tools including Fuzzy Logic and Genetic Algorithm

Challenge:

- Finding computationally cheap solutions with high quality.

Real-time Tracking, Segmentation, and Modelling

- Deep Learning for body skeleton tracking in real-time.
- 3-d body modeling in real-time.

Real-time Face Tracking

- Face tracking in realtime using RGB camera on a robot.
- Works well when there is enough light.

- Face tracking in realtime using thermal camera on a robot.
- Works well even in the dark.

Ultra-Wide Band (UWB) radar sensor see through walls

Ethical Concerns

- 1. privacy
- 2. security
- 3. safety
- 4. potential lack of contact with other humans

Ethical Countermeasures

- A Review of Future and Ethical Perspectives of Robotics and All James 1997.

 A Review of Future and Ethical Perspectives of Robotics and All James 1997.

 A review of the perspectives of Robotics and All James 1997.

 A review of the perspectives of Robotics and All James 1997.

 A review of the perspectives of Robotics and All James 1997.

 A review of the perspectives of Robotics and All James 1997.

 A review of the perspectives of the perspect
- Designers need to be aware of possible ethical challenges that should be considered
 - e.g. select sensors protecting privacy and make the robot navigate in a safe way.
- The systems should themselves be able to do ethical decision making to reduce the risk of unwanted behavior
 - train the robot to decide when to contact care giver and allow for more in-depth sensing from a home.

Ethical Concerns: Privacy

- Challenge 1: Balance the privacy of the elderly against the needs for data collection for having an efficiently functioning elderly care systems.
- Challenge 2: Protection of sensitive data to avoid unwanted distribution and misuse of such data.
- Mitigation:
 - Sensor type: Use sensors collecting less privacy related information
 - Sensor data processing: Process data locally rather than sending sensor data over Internet

Ethical Concerns: Safety

- Challenge: Robots getting physically much closer to humans than what we are used to.
 => Can hit us unintentionally or hurt us through un-authorized access
- Trade-off between robot size, performance and safety
- Mitigation:
 - Equip robots with soft material
 - Provide a self-aware adaptable system that can learn about the user's daily activities and preferences

VIROS: Vulnerability in the Robot Society (2019-2023)

Research Council of Norway grant 288285

Dep. of Private Law +
Dep. of Informatics
and other
depts/partners

Goal:

- 1. **Develop knowledge about robot design and regulation**, to reduce digital vulnerabilities related to the increasing use of robots in our society. **Focus on privacy, security and safety**, particularly in healthcare contexts.
- 2. **Develop technology and** proposals for **regulatory measures** to reduce vulnerabilities regarding robotics.

Funding: IKTPLUSS, Research Council of Norway

Predictive and Intuitive Robot Companion (PIRC) (2020-2025)

Research Council of Norway grant 312333

TIAGo mobile robot assistant

Goal: Build models that forecast future events and respond dynamically by psychology-inspired computing:

- Apply recent models of human prediction to perceptionaction loops of future intelligent robot companions.
- Include mechanisms for adaptive response time from quick and intuitive to slower and well-reasoned
- Applications: Physical rehabilitation and home care robot support for older people.

Funding: *IKTPLUSS, Research Council of Norway*

Report – Al Research Ethics Considerations

Released 11 November 2019. First translation published in October 2020

- NENT The National Committee for Research Ethics in Science and Technology (Norway)
 - Jim Tørresen member 2018–2025
- An interdisciplinary Al working group has prepared a report:
 - Identify and describe the most pressing research ethics
 considerations that arise with artificial intelligence research today.
 - Contribute to increased awareness, guidance, and discussion of these issues.

Method – NENT AI report

- Input from relevant Norwegian academic/research institutions involved in artificial intelligence research
- Review of international and national reports and guidelines
- Address ethics related to:
 - Replacing and extending human intelligent decision-making and actions
 - Numerous applications
 - Use and generation of big data

Look at the report? Google for "statements AI NENT"

Questions?

Make contact: jimtoer@ifi.uio.no