

Obstructive Sleep Apnea Detection with Consumer Electronics?

Vera Goebel & Thomas Plagemann
Department of Informatics
University of Oslo

Outlook:

- Motivation & goals of the CESAR Project
 - what is OSA
 - how is OSA diagnosed
 - how CESAR aims to contribute
- 1st step towards non-intrusive OSA event detection
 - signal types
 - data mining techniques
 - data sets and data preparation
 - results
- Discussion

Disclaimer:

- no fancy ppt show today
- missing references to the origin of the pictures used
- -no new data mining just the application of vanilla configurations in Mat Lab (we are still learning.....)

What is OSA?

Obstructive Sleep Apnea

Upper airway anatomy

Sites of obstruction during sleep apnea

The Consequences of

Obstructive Sleep Apnea

Obstructive sleep apnea afflicts 1 in every 5 Americans What other problems arise for OSA patients?

90%

STROKE

- Men with moderate to severe OSA were nearly 3x more likely to have a stroke.
- OSA is often found in patients following a stroke.
- Risk of stroke rises with severity of the disease.

STRESS ON THE HEART

77%

HYPERTENSION

- Sleep apnea is an identifiable cause of high blood pressure.
- OSA is the leading cause of secondary hypertension.

25%

CORONARY ARTERY DISEASE

58%

CARDIAC ARRHYTHMIAS

4x as likely to have atrial fibrillation

6%

CONGESTIVE HEART FAILURE

- Moderate OSA have increased mortality rates.
- New patients are screened for OSA.

38%

HEART DISEASE

30%

SUDDEN DEATH

OSA sufferers have a 30% higher risk of heart attack or premature death

MEDICAL COSTS

- Untreated sleep apnea costs Americans an extra 4.3 billion per year.
- Treated sleep apnea can halve a patient's healthcare costs

Sources: Mediscape. Pubmed.gov, BioMed

WWW.AVESHA.COM

More than 50% of sudden deaths from OSA occur between 10 pm and 6 am.

Change in annual health care costs per patient after treating OSA

\$200,000

POOR SLEEP*

87%

MOOD DISTURBANCE

- Depression
- Anxiety
- Loss of motivation
- Shortened attention span
- Moodiness and bad temper
- Poorer judgment

DAYTIME SLEEPINESS

- 6-fold increased risk of car accidents
- Impaired. concentration and memory loss
- Reduced workefficiency
- Reduced alertness
- Slower reaction time

LOUD SNORING

Relationship discord Morning headaches

caused by oxygen deprivation

DIABETES TYPE II

- Lack of insulin control and poorly controlled blood augars
- 58% have OSA

OBESITY

- As sleep shortens or diminishes in quality, appetite for high-calorie food increases.
- Obesity is the best documented risk factor for OSA. It is estimated that 90% of obese males and 50% of obese females have OSA.
- The prevalence of OSA increases with body mass index (BMI).
- Approximately 80% of OSA patients weigh 130% or more of their ideal body weight.

60%

61%

GASTROESOPHAGEAL REFLUX DISEASE (GERD)

80% of middle-aged men

48%

SEXUAL DYSFUNCTION

- Loss of libido.
 - Impotence

NOCTURIA

Frequent urination at

* Many patients may not be aware of their poor sleep quality.

How is OSA diagnosed?

Polysomnography (PSG) the gold standard

How is OSA diagnosed? (cont.)

Mobile PS& From Nox medical Nox T3 Price > 7000 E

How is OSA diagnosed? (cont.)

Normal Polysomnograph

Obstructive Sleep Apnea

M. Levilsky "Using the pathophysiology of OSA to tead

How is OSA diagnosed? (cont.)

Obstructive Sleep Apnea

- trained personall in spects the
- · identifies aprea events (breathing pause & reduce d'oxygen saturation of 10s and more)
- · Aprila Hypopnea Index (AHI) definer severify of OSA (# aprila events per hour), t > 10 seconds

Normal: AHI<5

Mild sleep apnea: 5≤AHI<15

Moderate sleep apnea: 15≤AHI<30

Severe sleep apnea: AHI≥30

CESAR: Using Complex Event Processing for Low-threshold and Non-intrusive Sleep Apnea Monitoring at Home

Vera Goebel, Sigurd Aarrestad, Harriet Akre, Mohan Kankanhalli, Stein Kristiansen, Thomas Plagemann

Smart phones & sensors for physiological Signals are available & "cheap" Examples: BiTalino, Cooking Hachs Shimmer

Funded by the Norwegian Research Council in the Fri Pro program

How for can we go With these cheap sensor sets to support OSA diagnosis? performance reliabilités -> HW signal processing datamining 2192 U Sers placement of son sor s

Let's envision:

- we could develop an extensible app
- that can with one easy to use Sensor get some data that could indicate whether OSA might be an issue
 - => the user could bug additional sensors to get more data for OSA event detection
 - => the user/patient could show the MD the clafa
 - => the MD has now a good Set of data to decide whether a PS Ge should be done

Building Blocks of Possible MSc Theses in CESAR

- Machine learning for OSA detection
- Real-time data quality analysis:
 - Complex Event Processing
 - Machine learning
 - Other means
- Tools for data collection and import of data from external sources
- Building a data set ->
- Building an extensible App ->

Building a Data Set

Different

- Signal types
- Sensor brands
- Breathing patterns
- Sleeping positions
- Placement on body
- Other environmental factors

Building an extensible APP

What are the immediate ves earch questions to be answed? - which signal types are needled · easy to use · com fortable for the user ·cheap · "good" for OSA event defection can data be used to automatically defect OS A events · which is best ANN, KNN, SVM,

> · What are the compatational COSTS (can it be used on Smart phones) 2