Biological factors regulate the uptake of airborne POPs into "plants" and the deposition of POPs to remote terrestrial ecosystems

Henrik Kylin^{a,b}, Henk Bouwman^b

^aDept. Thematic Stud. – Environ. Change, Linköping Univ., Sweden ^bEnviron. Sci. & Develop., North-West Univ., Potchefstroom, South Africa

PCA is **NOT** a good proxy for PCP

"Plants" useful to map the distribution of POPs in remote areas

But how do we interpret the data?

 Measurement ←> model differences most obvious for gas phase POPs

What's a "Plant" anyway?

- The "Plant Kingdom" as defined by Linnaeus 1735 vs. modern classification?
- Phylogenetic proximity vs. physiological adaptations?
 - Mosses and vascular plants are plants, lichens are not
 - Homeohydric physiology, hydrophobic surface –
 most vascular plants
 Poikilohydric physiology, hydrophilic surface mosses
 and lichens
- We <u>SHOULD NOT</u> use data from vascular plants, mosses, and lichens interchangeably!
- Using different species of vascular plants <u>must be</u> <u>done with caution</u>!

Example of misinterpretation due to ignorance of plant ecophysiology

 Simonich & Hites 1995. Global Distribution of Persistent Organochlorine Compounds. Science, vol. 269, 1851-1854

Using "tree bark" without specifying species

 The data presented reflects the biogeography of Gymnosperms (conifers) vs. Angiosperms (flowering plants)

Conifers dominating high latitudes are "more lipophilic" than angiosperms

α-HCH concentration in the moss *Hylocomium* splendens at constant air concentration

- 1) Hydrated
- 2) Hydrated at start,
- 3) Desiccated at start,
- 4) Desiccated

Hydration state governs the uptake of airborne HCHs

Lipid content DOES NOT explain the difference!

Volume and sorption site exposure?

Lichens behave similarlyboth are poikilohydric

Kylin & Bouwman (2012) ES&T 46:10982-10989

"Lipid content" – a meaningless entity in plants

 Determination of lipid content usually done as for animal samples

HOWEVER

- Both foliage and bark contains "polymeric lipids" (10-80% of "total lipids") that will not be extracted
- VOCs will be lost during "lipid determination"
- The VOCs affect the properties of both wax and "polymeric lipids" making them "stickier" and increasing diffusion

α-HCH in air and Scots pine needles during 33-months

α-HCH in air and Scots pine needles

γ -HCH in air and Scots pine needles

Models vs. Reality: The importance of long time-series

The Spring Dip – α -HCH in pine needles, starch compensated

Annual variation of endogenous VOCs in Scots pine needles

Kylin et al. (2002) Bull. Environ. Toxicol. Contam. 68:155-160

Cuticle structure and POP accumulation

- High VOC concentrations in summer will cause swelling of wax and cutin
- → POPs will diffuse rapidly deep into the three-dimensional structure of the "leaf" during summer and then be "trapped" due to lower diffusion during winter
- → Net annual accumulation

High VOC content High starch content Senescence

sampling month Nov Jan Mar Sep May Jul Sep Nov Jan Mar Jul Sep Nov Jan Mar May 5 ng/g d.m. (needle) -1992 1993 -- ♦ -- 1994 100 200 300 400 500 600 1000 1200 700 800 900 1100 Needle age (days after July 10, year of emergence)

Accumulation: a general process in vascular plants

Accumulation: a general process in vascular plants

- No evidence of saturation
- Accumulation occurs in all year-classes until senescence
 - ➤ In >12 year-classes in angiosperms (*Cassiope quandrangulata*) in >20 year-classes in conifers (*Pinus aristata*, *P. balfouriana*)
- Differences between year-classes may be more than one order of magnitude
 - ➤ Which year-class should be sampled for environmental monitoring or as basis for determining the air-plant partitioning coefficient?
- No evidence of "grass-hopping" in boreal areas overall flux from air to plant
- 100 Lakes Project: The length of the vegetation season determines POP deposition to both terrestrial and limnic ecosystems in boreal and probably in nemoral regions

