Kaibo Hu

Image of Kaibo Hu
Norwegian version of this page
Visiting address Ullevål stadion Sognsveien 77 B 0855 OSLO
Postal address Postboks 1053 Blindern 0316 OSLO

My CV can be found here.

Academic interests

  • Structure-preserving discretization, finite element exterior calculus
  • multilevel preconditioning 
  • applications in multiphysics problems (plasma, MHD), continuum mechanics and relativity


My current research is focused on the structure-preserving discretizations and multilevel preconditioning for partial differential equations, particularly on the finite element exterior calculus (construction of finite elements, high order methods etc.).

I work on problems raised in coupled multiphysics systems (plasma and magnetohydrodynamcis), continuum mechanics and relativity. Nonlinearity and complex differential structures are usually present in these problems.

Besides discretizations of PDEs, I also have an interest in discrete theories of physical and geometric/topological structures, and the relation between them.



  • Ph.D student, Sep. 2012 - Jul. 2017       

      Beijing International Center for Mathematical Research
      Peking University, Beijing, China.
      Advisor: Prof. Jinchao Xu
      Thesis: Finite Element Exterior Calculus for Multiphysics Problems

  • B.S. in Computational Mathematics, 2008-2012      

      Nankai University, Tianjin, China.     
      Thesis: Implementation of Nine Discontinuous Galerkin Methods
                   for Convection-Dominated Convection-Diffusion Equations

Extended Visits

  • July, 2017.  The State Key Laboratory of Scientific and Engineering Computing (LSEC), Chinese Academy of Sciences, China. 
  • February - May, 2017.  Department of Mathematics, University of Oslo, Norway. 
  • January, 2017.  Department of Mathematics, Pennsylvania State University, USA.  
  • March, 2016.  Department of Mathematics, Pennsylvania State University, USA. 
  • September 2015 - November 2016. Department of Mathematics, University of Oslo, Norway.  


Tags: differential equations, Computational Mathematics



  1. Stable Finite Element Methods Preserving ∇ · B = 0 Exactly for MHD Models; Kaibo Hu, Yicong Ma and Jinchao Xu;  Numerische Mathematik, 2016,  DOI  10.1007/s00211-016-0803-4. link
  2. Robust Preconditioners for Incompressible MHD Models; Yicong Ma, Kaibo Hu, Xiaozhe Hu and Jinchao Xu;  Journal of Computational Physics, 2016; Volume 316, 1 July 2016, Pages 721–746. link
  3. Stable Magnetic field-Current Finite Element Schemes for Magnetohydrodynamics Systems; Kaibo Hu and Jinchao Xu; in Chinese; Science China Mathematics, 7 (2016): 006. link
  4. Nodal Finite Element de Rham Complexes; Snorre H. Christiansen, Jun Hu and Kaibo Hu;  Numerische Mathematik; Accepted, 2017.  link
  5. Structure-preserving Finite Element Methods for Stationary MHD Models; Kaibo Hu and Jinchao Xu; Mathematics of Computation; Accepted, 2017. link


  1. Well-conditioned frames for finite element methods, Kaibo Hu and Ragnar Winther; Available online as arXiv: 1705.07113
  2. Generalized Finite Element Systems for smooth differential forms and Stokes problem; Snorre H. Christiansen and Kaibo Hu;  Available online as arXiv:1605.08657.
  3. Magnetic-Electric Formulations for Stationary Magnetohydrodynamics Models; Kaibo Hu, Weifeng Qiu, Ke Shi and Jinchao Xu; Available online as arXiv:1711.11330.
  4. Poincaré Path Integrals for Elasticity; Snorre H. Christiansen, Kaibo Hu and Espen Sande; Available online as arXiv:1801.07058.
  • Hu, Kaibo & Winther, Ragnar (2017). Well-Conditioned Frames for Finite Element Methods.
Published Sep. 20, 2017 2:08 PM - Last modified Feb. 20, 2018 1:06 PM