Kaibo Hu

Image of Kaibo Hu
Norwegian version of this page
Username
Visiting address Ullevål stadion Sognsveien 77 B 0855 OSLO
Postal address Postboks 1053 Blindern 0316 OSLO

My CV can be found here.

Academic interests

  • Structure-preserving/compatible discretization, finite element exterior calculus
  • multilevel preconditioning 
  • applications in multiphysics problems (plasma, MHD), continuum mechanics and general relativity

 

My current research is focused on the structure-preserving discretization and multilevel preconditioning for partial differential equations, particularly on the finite element exterior calculus (construction of finite elements, high order methods etc.).

I work on problems in coupled multiphysics systems (plasma and magnetohydrodynamcis), continuum mechanics and relativity. Nonlinearity and complex differential structures are usually present in these problems.

I also have an interest in geometric mechanics, discrete physical and geometric/topological structures and the relation between discrete theories and discretizations of PDEs.

 

Background

  • Ph.D student, Sep. 2012 - Jul. 2017       

      Beijing International Center for Mathematical Research
      Peking University, Beijing, China.
      Advisor: Prof. Jinchao Xu
      Thesis: Finite Element Exterior Calculus for Multiphysics Problems

  • B.S. in Computational Mathematics, 2008-2012      

      Nankai University, Tianjin, China.     
      Thesis: Implementation of Nine Discontinuous Galerkin Methods
                   for Convection-Dominated Convection-Diffusion Equations

Extended Visits

  • July, 2017.  The State Key Laboratory of Scientific and Engineering Computing (LSEC), Chinese Academy of Sciences, China. 
  • February - May, 2017.  Department of Mathematics, University of Oslo, Norway. 
  • January, 2017.  Department of Mathematics, Pennsylvania State University, USA.  
  • March, 2016.  Department of Mathematics, Pennsylvania State University, USA. 
  • September 2015 - November 2016. Department of Mathematics, University of Oslo, Norway.  

 

Tags: differential equations, Computational Mathematics

Publications

Published/Accepted

  1. Stable finite element methods preserving ∇ · B = 0 exactly for MHD models; Kaibo Hu, Yicong Ma and Jinchao Xu;  Numerische Mathematik, 2016,  DOI  10.1007/s00211-016-0803-4. link
  2. Robust preconditioners for incompressible MHD models; Yicong Ma, Kaibo Hu, Xiaozhe Hu and Jinchao Xu;  Journal of Computational Physics, 2016; Volume 316, 1 July 2016, Pages 721–746. link
  3. Stable magnetic field-current finite element schemes for magnetohydrodynamics systems; Kaibo Hu and Jinchao Xu; in Chinese; Science China Mathematics, 7 (2016): 006. link
  4. Nodal finite element de Rham complexes; Snorre H. Christiansen, Jun Hu and Kaibo Hu;  Numerische Mathematik; Accepted, 2017.  link
  5. Structure-preserving finite element methods for stationary MHD models; Kaibo Hu and Jinchao Xu; Mathematics of Computation; Accepted, 2017. link
  6. Generalized Finite Element Systems for smooth differential forms and Stokes problem; Snorre H. Christiansen and Kaibo Hu; Numerische Mathematik; Accepted, 2018.  arXiv:1605.08657.

Preprints

  1. Well-conditioned frames for finite element methods, Kaibo Hu and Ragnar Winther;  arXiv: 1705.07113
  2. Magnetic-electric formulations for stationary magnetohydrodynamics models; Kaibo Hu, Weifeng Qiu, Ke Shi and Jinchao Xu;  arXiv:1711.11330.
  3. Poincaré path integrals for elasticity; Snorre H. Christiansen, Kaibo Hu and Espen Sande;  arXiv:1801.07058.
  4. Sobolev inequalities and discrete compactness for discrete differential forms; Juncai He, Kaibo Hu and Jinchao Xu;  arXiv:1804.03428.
  5. Nonstandard finite element de Rham complexes on cubical meshes; Andrew Gillette, Kaibo Hu and Shuo Zhang; arXiv:1804.04390.

View all works in Cristin

  • Hu, Kaibo & Winther, Ragnar (2017). Well-Conditioned Frames for Finite Element Methods.

View all works in Cristin

Published Sep. 20, 2017 2:08 PM - Last modified May 10, 2018 8:57 PM