1. Dan-Virgil Voiculescu (ed.); Nicolai Stammeier (ed.); Moritz Weber (ed.); Free Probability and Operator Algebras. Münster Lectures in Mathematics. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-165-1/pbk; 978-3-03719-665-6/ebook). x, 148 p. (2016), DOI 10.4171/165.


  1. N. Stammeier, On C*-algebras of irreversible algebraic dynamical systems, J. Funct. Anal., 10.1016/j.jfa.2015.02.005, 2015 (44 pages).
  2. N. Brownlowe and N. Stammeier, The boundary quotient for algebraic dynamical systems, J. Math. Anal. Appl., 10.1016/j.jmaa.2016.02.015, 2016 (18 pages).
  3. N. Brownlowe, N.S. Larsen, and N.Stammeier, On C*-algebras associated to right LCM semigroups, Trans. Amer. Math. Soc., 10.1090/tran/6638, 2016 (38 pages).
  4. S. Barlak, T. Omland, and N. Stammeier, On the K-theory for C*-algebras arising from integral dynamics, Ergodic Theory Dyn. Syst., 10.1017/etds.2016.63, 2016 (31 pages).
  5. N. Stammeier, A boundary quotient diagram for right LCM semigroups, Semigroup Forum, 10.1007/s00233-017-9850-0, 2017 (16 pages).
  6. Z. Afsar, N. Brownlowe, N.S. Larsen, and N.Stammeier, Equilibrium states on right LCM semigroup C*-algebras, Int. Math. Res. Not., 10.1093/imrn/rnx162, advance article, 2017 (57 pages).
  7. N. Stammeier, Graph products and the absence of property (AR), J. Austral. Math. Soc., 10.1017/S1446788717000192, first view, 2017 (15 pages).
  8. N. Brownlowe, N.S. Larsen, and N.Stammeier, C*-Algebras of algebraic dynamical systems and right LCM semigroups, Indiana Univ. Math. J., to appear, IUMJ/7527 (28 pages).


  • V. Aiello, R. Conti, S. Rossi, and N. Stammeier, The inner structure of boundary quotients of right LCM semigroupsarXiv:1709.08839 (29 pages).
  • N. Stammeier, Topological freeness for *-commuting covering maps, arXiv:1311.0793 (42 pages).

in preparation

  • S. Barlak, T. Omland, N. Stammeier, On the K-theory of C*-algebras arising from rational dynamics.


  • C*-algebras associated to irreversible semigroup dynamical systems, doctoral thesis, Münster, 2014 (local copy).

  • Cuntz-Krieger-Algebren 2. Ordnung zur Fürstenberg-Vermutung, Diplomarbeit, Münster, 2011 (local copy).