Ivan PANIN (St. Petersburg): Framed motives of algebraic varieties

This is a work we had done jointly with Garkusha (after Voevodsky) arXiv:1409.4372. Using the machinery of framed sheaves developed by Voevodsky, a triangulated category of framed motives is introduced and studied. To any smooth algebraic variety X in Sm/k, the framed motive M_fr(X) is associated in that category . Also, for any smooth scheme X in Sm/k an explicit quasi-fibrant motivic replacement of its suspension P1-spectrum is given. Moreover, it is shown that the bispectrum (M_fr(X),M_fr(X)(1),M_fr(X)(2), ... ), each term of which is a twisted framed motive of X, has motivic homotopy type of the suspension bispectrum of X. We also construct a compactly generated triangulated category of framed bispectra SH_fr(k) and show that it reconstructs the Morel-Voevodsky category SH(k). As a topological application, it is proved that the framed motive M_fr(pt)(pt) of the point pt = Speck evaluated at pt is a quasi-fibrant model of the classical sphere spectrum whenever the base field k is algebraically closed of characteristic zero.   

Published Nov. 11, 2014 11:16 AM - Last modified Nov. 13, 2014 10:04 AM