## Visiting address

Ullevål StadionSognsveien 77B

0855 OSLO

Norway

Time and place:
Apr. 8, 2015 2:15 PM - 3:00 PM,
NHA B735

Erik Bédos will give a talk with title: On the Fourier-Stieltjes algebra of a C*-dynamical system

Abstract: When G is a discrete group, its Fourier-Stieltjes algebra B(G) may be described as the set of coefficient functions associated with unitary representations of G on Hilbert spaces. In a similar way, if Sigma=(A, G, alpha, sigma) is a unital discrete twisted C*-dynamical system, one may let the Fourier-Stieltjes algebra B(Sigma) consist of the functions from G x A into A that arise as coefficient functions of equivariant representations of Sigma on Hilbert A-modules. We will explain how B(Sigma) may be organized as an algebra with conjugation, and show that it may be represented as completely bounded multipliers on the full crossed product C*(Sigma). (This is also known to be true for the reduced crossed product). This is part of an ongoing project with Roberto Conti (Rome).

Time and place:
Mar. 11, 2015 2:15 PM - 4:00 PM,
NHA B71

Franz Luef (NTNU) will give a talk with title "Sigma-models solitons on noncommutative spaces"

Abstract: Results from time-frequency analysis and Gabor analysis allow the construction of new classes of sigma-model solitons over the Moyal plane and over noncommutative tori, taken as source spaces, with a target space made of two points. A natural action functional leads to self-duality equations for projections in the source algebra. Solutions, having non-trivial topological content, are constructed via suitable Morita duality bimodules. This is joint work with L. Dabrowski and G. Landi.

Time and place:
Mar. 4, 2015 2:15 PM - 4:00 PM,
NHA B735

Bartosz K. Kwaśniewski (University of Southern Denmark, Odense) will talk on: Topological aperiodicity for product systems of C*-correspondences

Abstract:We introduce a semigroup of multivalued maps dual to a product system of $C^*$-correspondences over an Ore semigroup. Under a certain aperiodicity condition on the dual semigroup we obtain a uniqueness theorem and a simplicity criterion for the associated Cuntz-Pimsner algebra. These results generalize similar statements for crossed products by groups (R. J. Archbold, J. S. Spielberg) and Exel’s crossed products (R. Exel, A. Vershik). They also give interesting conditions for topological higher rank graphs, and apply to the new Cuntz $C^*$-algebra $\mathcal{Q}_\mathbb{N}$ arising from the `$ax+b$'-semigroup over natural numbers. (Based on joint work with Wojciech Szymański.)

Time and place:
Feb. 25, 2015 2:15 PM - 4:00 PM,
NHA B71

Adam P.W. Sørensen will talk on Nuclear dimension of UCT Kirchberg algebras

Abstract: Nuclear Dimension is a regularity property for C*-algebras that is based on the type of properties currently being taught in Topics in Operator Algebras. We will go over the definition and motivation and discuss known results.

Time and place:
Feb. 18, 2015 2:15 PM - 3:15 PM,
NHA B735

Time and place:
Feb. 11, 2015 2:15 PM - 4:00 PM,
NHA B735

Makoto Yamashita, Ochanomizu University, will give a talk with title: Drinfeld center and representation theory for monoidal categories

Abstract: Motivated by the recently found relation between central completely positive multipliers and the spherical unitary representations of the Drinfeld double for discrete quantum groups, we construct and analyze the representations of fusion algebra of rigid C*-tensor category from the unitary half-braidings. Through the correspondence of Drinfeld center and the generalized Longo-Rehren construction in subfactor theory, these representations are also related to Popa’s theory of correspondences and subfactors. This talk is based on joint work with Sergey Neshveyev.

Time and place:
Dec. 4, 2014 2:15 PM - 4:00 PM,
NHA B637

Christian Voigt (Glasgow) will give a talk with title: The structure of quantum permutation groups

Abstract: Quantum permutation groups, introduced by Wang, are a quantum analogue of permutation groups. These quantum groups have a surprisingly rich structure, and they appear naturally in a variety of contexts, including combinatorics, operator algebras, and free probability. In this talk I will give an introduction to these quantum groups, and review some results on their structure. I will then present a computation of the K-groups of the C*-algebras associated with quantum permutation groups, relying on methods from the Baum-Connes conjecture.

Time and place:
Dec. 3, 2014 2:00 PM - 4:00 PM,
NHA B71

Alfons van Daele, University of Leuven (Belgium), will give a talk with title: Separability idempotents and quantum groupoids

Time and place:
Nov. 19, 2014 2:15 PM - 4:00 PM,
NHA B71

Martijn Caspers (Münster) will give a talk with title: The Haagerup property for arbitrary von Neumann algebras

Abstract: The Haagerup property is an approximation property for both groups and operator algebras that has important applications in for example the Baum-Connes conjecture or von Neumann algebra theory. In this talk we show that the Haagerup property is an intrinsic invariant of an arbitrary von Neumann algebra. We also discuss stability properties of the Haagerup property under constructions as free products, graph products and crossed products. Finally we discuss alternative characterizations in terms of the existence of suitable quadratic forms.

Time and place:
Nov. 5, 2014 2:15 PM - 4:00 PM,
NHA B71

Marco Matassa (UiO) will give a talk with title: Dirac Operators on Quantum Flag Manifolds

Abstract: I will review the paper "Dirac Operators on Quantum Flag Manifolds" by Ulrich Krähmer. The aim is to define Dirac operators on quantized irreducible flag manifolds. These will yield Hilbert space realizations of some distinguished covariant first-order differential calculi.

Time and place:
Oct. 15, 2014 2:15 PM - 4:00 PM,
NHA Hus, B71

Adam Sørensen (UiO) will give a talk with title: Almost commuting matrices

Abstract: Two matrices A,B are said to almost commute if AB is close to BA (in a suitable norm). A question of Halmos, answered by Lin, asks if two almost commuting self-adjoint matrices are always close to two exactly commuting self-adjoint matrices. We will survey what is known about this and similar questions, and report on recent work with Loring concerning how the questions change if we look at real rather than complex matrices.

Time:
Sep. 17, 2014 2:00 PM - 4:00 PM

Abstract: We show that the discrete duals of the so called free orthogonal quantum groups have the completely contractive approximation property, analogous to the free groups. The proof relies on the structure of representation categories of these quantum groups, on the C*-algebraic structure of SUq(2), and on the free product techniques of Ricard and Xu. This talk is based on joint work with Kenny De Commer and Amaury Freslon.

Time and place:
Sep. 10, 2014 3:15 PM - 4:15 PM,
B71, NHA

Abstract: Independence has been introduced as a regularity property for pairs of commuting injective group endomorphisms of a discrete abelian group with finite cokernel by Joachim Cuntz and Anatoly Vershik. We discuss various characterisations of this regularity property and show how the statements need to be adjusted when removing the restrictions that the group has to be abelian and that the cokernels have to be finite. Somewhat surprisingly, this leads to the concept of *-commutativity. This property is defined for pairs of commuting self-maps of an arbitrary set. As an examples of *-commutativity, we explain a construction related to the Ledrappier shift and indicate how one obtains examples for independent group endomorphisms from this construction. If time permits, we will point out instances where the two notions have been readily used to obtain C*-algebraic results. Roughly speaking, both notions are designed to give rise to pairs of doubly commuting isometries, which significantly simplifies the analysis of the constructed C*-algebras. This is particularly useful when one tries to generalise results from the case of a single transformation to an action generated by finitely many transformations.

Time and place:
June 4, 2014 1:00 PM - 3:00 PM,
NHA Hus, B71

Abstract: We talk about independent resolutions for dynamical systems on totally disconnected spaces. Building on earlier work by Cuntz, Echterhoff and Li that allows one to compute the K-theory of totally disconnected systems that admit a so called independent invariant regular basis, we show how any totally disconnected dynamical system admits a resolution of such systems, which in some cases allows for K-theory computations. Based on work by me and X. Li.

Time and place:
June 3, 2014 1:15 PM - 3:00 PM,
NHA B71

Marco Matassa (UiO) will give a talk with title: On dimension and integration for spectral triples associated to quantum groups

Abstract: Abstract: I will discuss some aspects of the notions of spectral dimension and non-commutative integral in the context of modular spectral triples. I will focus on two examples: the modular spectral triple for SU_q(2) introduced by Kaad and Senior and the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski.

Time and place:
May 30, 2014 1:15 PM - 3:00 PM,
NHA Hus, B71

Jens Kaad (Trieste), will give a talk with title "Joint torsion line bundles of commuting operators"

Abstract:

In this talk I’ll associate a holomorphic line bundle to any commuting tuple of bounded operators on a Hilbert space. The transition functions for this bundle are given by the joint torsion which compares determinants of Fredholm complexes. The joint torsion is an invariant of the second algebraic K-group of the Calkin algebra (bounded operators modulo trace class operators). The main step is to prove that the transition functions for the joint torsion line bundle are indeed holomorphic. This is carried out by studying the Quillen-Freed holomorphic determinant line bundle over the space of Fredholm complexes. In particular I will construct a holomorphic section of a certain pull-back of this bundle. The talk is based on joint work with Ryszard Nest.

Time and place:
May 28, 2014 11:15 AM - 12:00 PM,
NHA Hus, B1036

Magnus D. Norling will give a talk with title "Universal coefficient theorem in KK-theory". This presentation is part of the final act of the course on "The Baum-Connes conjecture and KK-theory".

Time and place:
May 28, 2014 10:15 AM - 11:00 AM,
NHA Hus, B1036

Bas Jordans will give a talk with title "Higson's characterization of KK-theory". This presentation is part of the final act of the course on "The Baum-Connes conjecture and Kasparov's KK-theory".

Time and place:
May 6, 2014 2:15 PM - 3:15 PM,
NHA Hus, B71

Roberto Conti (Sapienza Università di Roma) will give a talk with title: Asymptotic morphisms in local quantum physics and study of some models

Abstract:

We discuss a notion of asymptotic morphisms that is suitable for a description of superselection sectors of a scaling limit theory. In some models, this leads to interesting questions about the explicit form of certain modular operators. (This talk is based on joint work with D. Guido and G. Morsella).

Time and place:
Feb. 25, 2014 2:00 PM - 4:00 PM,
NHA B63

Magnus Landstad will give a talk with title: Quantum groups from almost matched pairs of groups - the groupoid approach

Abstract: If G is a locally compact group with two closed subgroups H,K s.t. G=HK, then (H,K) is called a matched pair of subgroups. The construction of a quantum group from such a pair goes back a long time. We shall look at the more general case where the subgroups are almost matched (the complement of HK in G has measure 0), then a groupoid approach to the construction is very useful and many formulas are obtained for free.

I shall start with explaining the concepts needed (quantum groups, groupoids, etc) and then how the groupoid is constructed. Finally we shall look at the special case where G has a compact open subgroup.

This is joint work with A. Van Daele.

Time and place:
Feb. 11, 2014 2:15 PM - 4:00 PM,
NHA hus, B63

Antoine Julien (NTNU) will give a talk with title: Tiling spaces, groupoids and K-theory

Abstract:

In this talk, I will describe how spaces, groupoids and C*-algebras can be associated with aperiodic tilings. In some cases, it is possible to describe the structure of the groupoid combinatorially in terms of augmented Bratteli diagrams. (joint work with Jean Savinien) Time permitting, I will expose a strategy for computing the K-theory of the tiling algebra in terms of the K-theory of AF-algebras (work in progress).

Time and place:
Jan. 28, 2014 2:15 PM - 4:00 PM,
NHA B70

Takuya Takeishi, University of Tokyo, will give a talk with title: Bost-Connes system for local fields of characteristic zero

Abstract: The Bost-Connes system, which describes the relation between quantum statistical mechanics and class field theory, was first constructed by Bost and Connes for the rational field, and generalized for arbitrary number fields by the contribution of many researchers. In this talk, we will introduce a generalization of the Bost-Connes sysmtem for local fields of characteristic zero, and introduce some properties.

Time and place:
Nov. 22, 2013 11:00 AM - 12:00 PM,
NH Abels hus B71

Judith Packer, University of Colorado (Boulder), will give a talk with title "Noncommutative solenoids and their projective modules"

Abstract: ``Noncommutative solenoids" are certain twisted group $C^*$-algebras, where the groups in question are countably infinitely generated; these algebras can also be generated as direct limits of rotation algebras. From examining the range of the trace of the $K_0$-groups of the noncommutative solenoids, their finitely generated projective modules can be constructed. We also discuss a way to construct Morita equivalence bimodules between noncommutative solenoids that goes back to work of M. Rieffel, with the new wrinkle of $p$-adic analysis appearing. This work is joint with F. Latr\'emoli\'ere.

Time and place:
Oct. 9, 2013 12:15 PM - 2:00 PM,
NHA, seminarrom B71

Bas Jordans (UiO) will give a talk with title: Real dimensional spaces in noncommutative geometry

Abstract:

In noncommutative geometry geometric spaces are given by spectral triples. In this talk we consider a generalisation of these spectral triples to semifinite spectral triples. In analogy to the classical case it is possible to construct the product of two semifinite spectral triples. We will construct this product and derive properties thereof. Also we will describe for each z\in(0,\infty) a semifinite spectral triple which can be considered as having dimension z. As an application these "z-dimensional" semifinite triples will be used for two regularisation methods in physics.

Time and place:
Aug. 14, 2013 2:15 PM - 4:00 PM,
NHA, seminarrom B71

Yusuke Isono from the University of Tokyo will give a talk with title: Strong solidity of II_1 factors of free quantum groups

Abstract:

We generalize Ozawa's bi-exactness to discrete quantum groups and give a new sufficient condition for strong solidity, which implies the absence of Cartan subalgebras. As a corollary, we prove that II_1 factors of free quantum groups are strongly solid. We also consider similar conditions on non-Kac type quantum groups, namely, non finite von Neumann algebras.