# Réamonn Ó Buachalla (IMPAN): Noncommutative Kähler structures on quantum homogeneous spaces

Réamonn Ó Buachalla (IMPAN) will give a talk with title: Noncommutative Kähler structures on quantum homogeneous spaces

Abstract:

Building on the definition of a noncommutative complex structure for a general algebra A, I will introduce the notion of a noncommutative Kähler structure for A. In the special case where A is a quantum homogeneous space, I show that many of the fundamental results of classical Kähler geometry follow from the existence of such a structure: Hodge decomposition, Serre duality, the Hard Lefschetz theorem, the Kähler identities, and collapse of the Frölicher spectral sequence at the first page. We then apply these results to Heckenberger and Kolb's differential calculus for quantum projective space, and show that they have cohomology groups of at least classical dimension. Time permitting, I will also discuss the relationship of this work to Connes proposal to study positive Hochschild cocycles as a starting point for noncommutative complex geometry, and Fröchlich, Grandjean, and Recknagel's definition of a Kähler spectral tuple.