Algebraic geometry
 for geometric modeling

Ragni Piene

SIAM AG17
Atlanta, Georgia, USA
August 1, 2017

Applied algebraic geometry in the old days:

UiO : University of Oslo

EU Training networks

- GAIA - Application of approximate algebraic geometry in industrial computer aided geometry
- GAIA II - Intersection algorithms for geometry based IT-applications using approximate algebraic methods
- SAGA - ShApes, Geometry, and Algebra
and Centre of Mathematics for Applications (University of Oslo)

UiO: University of Oslo

Algebraic geometry for geometric modeling?

His concern is that geometric modeling is interested in metric properties of curves and surfaces, whereas algebraic geometry is concerned with affine and projective invariants.

Algebraic geometry can provide constructive tools for computation. Geometric modeling needs effective numerical methods.

UiO : University of Oslo

Classical projective geometry

Classical geometry was real and Euclidean. To get solutions to polynomial equations, imaginary numbers were introduced, and projective geometry in order to have stability of intersections.

Complex projective geometry is much easier to work with than affine real geometry.
For computers: the field \mathbb{Q}, for pictures the field \mathbb{R}, for proving theorems the field \mathbb{C}.

UiO : University of Oslo

Projective invariants

Let $X \subset \mathbb{P}^{n}$ be a nonsingular projective algebraic variety. The Chern classes of X are topological invariants.
The Euler-Poincaré characteristic $\chi\left(\mathcal{O}_{X}\right)$ is a birational invariant.

Example

If X is a surface, with Chern classes $c_{1}(X)$ and $c_{2}(X)$, then Noether's formula holds:

$$
\chi\left(\mathcal{O}_{X}\right)=\frac{1}{12}\left(c_{1}(X)^{2}+c_{2}(X)\right)
$$

If $X^{\prime} \rightarrow X$ is the blowing up of a point, then $c_{1}\left(X^{\prime}\right)^{2}=c_{1}(X)^{2}-1$ and $c_{2}\left(X^{\prime}\right)=c_{2}(X)+1$, so $\chi\left(\mathcal{O}_{X^{\prime}}\right)=\chi\left(\mathcal{O}_{X}\right)$.

UiO: University of Oslo

Polar varieties and Chern classes

Let $L \subset \mathbb{P}^{n}$ be a linear subspace of codimension $m-k+2$, where $m=\operatorname{dim} X$.

The k th polar variety of of $X \subset \mathbb{P}^{n}$ with respect to L is

$$
M_{k}(L):=\left\{P \in X \mid \operatorname{dim}\left(T_{P} X \cap L\right) \geq k-1\right\}
$$

Its class is $\left[M_{k}\right]=c_{k}\left(\mathcal{P}_{X}^{1}(1)\right) \cap[X]$, hence we get the Todd-Eger relation

$$
\begin{equation*}
\left[M_{k}\right]=\sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} h^{k-i} c_{i}(X) \cap[X] \tag{1}
\end{equation*}
$$

where $c_{i}(X)$ are the Chern classes of the tangent bundle of X and $h=c_{1}\left(\mathcal{O}_{X}(1)\right)$ is the class of a hyperplane.

UiO : University of Oslo

Singular varieties

Conversely, the Chern classes are expressed in terms of the polar varieties:

$$
c_{k}(X) \cap[X]=\sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} h^{k-i} \cap\left[M_{i}\right] .
$$

This works also for singular varieties: replace M_{k} by the closure of $\left.M_{k}\right|_{X_{n s}}$ to get the Chern-Mather classes $c_{k}^{M}(X)$.
Let $\pi: X \rightarrow X^{\prime} \subset \mathbb{P}^{n^{\prime}}$ be a (suitably generic) linear projection:

$$
c_{k}^{M}\left(X^{\prime}\right)=\pi_{*}\left(c_{k}^{M}(X)\right)
$$

The Chern-Mather classes and the polar classes are projective invariants (the Chern-Schwartz-MacPherson classes are topological invariants).

UiO : University of Oslo

Geometric interpretation: the contour curve

Let $X=Z(F) \subset \mathbb{P}^{3}$ be a surface, $P=\left(p_{0}: \cdots: p_{3}\right) \in \mathbb{P}^{3}$. The first polar variety of X wrt P is the intersection of X with its first polar:

$$
M_{1}(P)=X \cap Z\left(\sum p_{i} F_{i}\right)=Z\left(F, \sum p_{i} F_{i}\right)
$$

and $M_{1}(P) \subset X$ is the contour curve on X under the projection $X \rightarrow \mathbb{P}^{2}$ from P.

If X is smooth, of degree d, and P is general, then $\operatorname{deg} M_{1}=d(d-1)$, and the projection of M_{1} has $d(d-1)(d-2)$ cusps.
cf. MS Algebraic Vision yesterday!

UiO : University of Oslo

Affine space as Euclidean space

Coxeter: "Kepler's invention of points at infinity made it possible to regard the projective plane
as the affine plane plus the line at infinity. A converse relationship was suggested by Poncelet (1822) and von Staudt (1847): regard the affine plane as the projective plane
minus an arbitrary line ℓ, and then regard the
Euclidean plane as the affine plane with a special rule for associating pairs of points on ℓ (in "perpendicular directions")."

Affine space + notion of perpendicularity $=$ "Euclidean space"

UiO: University of Oslo

Euclidean normal bundle

Let $X \subset \mathbb{P}^{n}$ be a variety of dimension m. Define the Euclidean normal bundle \mathcal{E} with respect to a non-degenerate quadric Q in the hyperplane H_{∞}.

Use the polarity in $H_{\infty} \cong \mathbb{P}^{n-1}$ induced by Q to define Euclidean normal spaces at each smooth point $P \in X \backslash H_{\infty}$:

$$
N_{P} X=\left\langle P,\left(T_{P} X \cap H_{\infty}\right)^{\perp}\right\rangle
$$

Then $\mathcal{E}=\mathcal{N}_{X}(1)^{\vee} \oplus \mathcal{O}_{X}(1)$, where \mathcal{N}_{X} is the conormal bundle (or the "Mather-Nash conormal", if the variety is singular).

UiO: University of Oslo

Reciprocal polar varieties

Define reciprocal polar varieties

$$
M_{k}(L)^{\perp}:=\left\{P \in X \mid N_{P} X \cap L \neq \emptyset\right\}
$$

for L linear space of codimension $n-m+k$. Then

$$
\left[M_{k}^{\perp}\right]=s_{k}(\mathcal{E}) \cap[X]=\sum_{j=0}^{k} c_{j}\left(\mathcal{P}_{X}^{1}(1)\right) c_{1}\left(\mathcal{O}_{X}(1)\right)^{k-j} \cap[X]
$$

In particular,

$$
\operatorname{deg}\left[M_{m}^{\perp}\right]=\sum_{j=0}^{m} \operatorname{deg}\left[M_{j}\right]
$$

This is the degree of the end point map and also the Euclidean distance degree.

MS Euclidean distance degree - Thursday!

UiO: University of Oslo

Building blocks for modeling

Making pots before the wheel was invented?

Piecewise linear

Natural quadrics

Parameterized surfaces

Most algebraic surfaces used in geometric modeling are rational, meaning that they can be obtained as the image of a map

$$
(s, t) \mapsto\left(p_{1}(s, t), p_{2}(s, t), p_{3}(s, t)\right) \in \mathbb{R}^{3}
$$

for (s, t) in some plane domain $D \subset \mathbb{R}^{2}$, where the p_{i} are polynomials or rational functions with coefficients in \mathbb{Q}.

Typically D is either the triangle with vertices $(0,0),(1,0),(0,1)$ or the square with vertices $(0,0),(1,0),(0,1),(1,1)$.

UiO: University of Oslo

Projective "triangular" surfaces

Let $M_{d}=\left\{m_{0}, \ldots, m_{N}\right\}$ be the set of all monomials of degree d in three variables.
The image of the map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{N}$ given by

$$
(s: t: u) \mapsto\left(m_{0}(s, t, u): \cdots: m_{N}(s, t, u)\right)
$$

is the Veronese surface of degree d^{2}.
Any triangular parameterized surface in \mathbb{P}^{3} is a linear projection of this surface from a center $L \subset \mathbb{P}^{N}$. Algebraic geometry gives insight into the properties of such projections.

UiO: University of Oslo

The Steiner surface $(d=2)$

There are 6 different real Steiner surfaces.
A. $x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}-x y z=0$
B. $x^{2} y^{2}-y^{2} z^{2}+z^{2} x^{2}-x y z=0$
C. $x y z^{2}+x y-x^{2}-z^{4}-2 z^{2}-1=0$
D. $x z^{2}-y^{2}+z^{4}=0$
E. $x^{4}+y^{2}+z^{2}-2 x^{2} y-2 x^{2} z+2 y z-4 y z=0$
F. $y^{2}+2 y z^{2}+z^{4}-x=0$

A: Steiner's Roman surface. Three real double lines meeting in a triple point. Each line has two real pinchpoints $(d=4, \epsilon=3$, $\left.t=1, \nu_{2}=6\right)$.
B: Three real double lines meeting in a triple point. One line has two real pinch points $\left(d=4, \epsilon=3, t=1, \nu_{2}=2\right)$.
C : One real double line. The line has one real pinch point $\left(d=4, \epsilon=1, \nu_{2}=1\right)$.
D: One simple and one double double lines meeting in a triple point. The simple line has two real pinch points $(d=4, \epsilon=2$, $t=1, \nu_{2}=2$).
E: Somewhat similar to D.
F: One threefold double line containing a triple point.

UiO: University of Oslo

UiO : University of Oslo

Projective "tensor" surfaces

Let $M_{a, b}=\left\{m_{0}, \ldots, m_{N^{\prime}}\right\}$ be the set of all monomials in four variables, of bidegree (a, b). Then the image of the map $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{N^{\prime}}$ given by

$$
(s: t) \times(u: v) \mapsto\left(m_{0}(s: t ; u: v): \cdots: m_{N}(s: t ; u: v)\right)
$$

is the Segre surface of degree $2 a b$.
Any "tensor" surface in \mathbb{P}^{3} is the linear projection of a Segre surface from some center L.

For computability, a and b should be small!

UiO: University of Oslo

Example: $a=1, b=2$

A tensor surface of bidegree $(1,2)$ in 3 -space is the projection of the rational balanced normal scroll $X \subset \mathbb{P}^{5}$ of type $(2,2)$ and degree 4 from a line L.

A classification is obtained by the position of L with respect to X, its tangent spaces, its osculating spaces, etc.

A general projection has a twisted cubic as its double curve, with 4 pinch points and no triple points.

UiO: University of Oslo

Application: modeling corn leaves (Thi Ha Lê)

Use Bézier surface tensor patches $[0,1]^{2} \rightarrow \mathbb{R}^{3}$:

$$
B\left(t_{1}, t_{2}\right)=\frac{\sum_{(i, j)} w_{(i, j)} p_{(i, j)} F_{(i, j)}\left(t_{1}, t_{2}\right)}{\sum_{(i, j)} w_{(i, j)} F_{(i, j)}\left(t_{1}, t_{2}\right)}
$$

where $F_{(i, j)}\left(t_{1}, t_{2}\right)=\binom{2}{i} t_{1}^{i}\left(2-t_{1}\right)^{2-i}\binom{1}{j} t_{2}^{j}\left(1-t_{2}\right)^{1-j}$.

General and special projections - singularities

Generic projections of the d-uple Veronese surface has

- a double curve of degree $\epsilon=\binom{d}{2}\left(d^{2}+d-3\right)$
- $\nu_{2}=6(d-1)^{2}$ pinch points
- $t=\frac{1}{6}\left(d^{6}+9 d^{3}+44 d^{2}\right)-2 d^{4}-12 d+5$ triple points

Generic projections of the bidegree (a, b) Segre surface has

- a double curve of degree $\epsilon=2 a b(a b-2)+a+b$
- $\nu_{2}=4(3 a b-2(a+b)+1)$ pinch points
- $t=\frac{1}{3} 4 a b\left(a^{2} b^{2}+11\right)-8 a^{2} b^{2}+2 a b(a+b)-8(a+b)+4$ triple points

Insight: these numbers are upper bounds in the real case.

UiO : University of Oslo

Toric surfaces

Let $\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{2}$ be a lattice point configuration, $\mathbb{K}^{* 2} \rightarrow \mathbb{P}_{\mathbb{K}}^{N}$ the corresponding toric embedding, and $X_{\mathcal{A}}$ the closure of the image.

Let \mathcal{A}^{\prime} be a lattice point configuration obtained from \mathcal{A} by removing $N-3$ points. Then the toric embedding $X_{\mathcal{A}^{\prime}} \subset \mathbb{P}^{3}$ is the (toric) linear projection of $X_{\mathcal{A}}$ with center equal to the linear span of the "removed points".

Any toric surface in 3-space is a (special) linear projection of a Veronese or Segre surface.

UiO: University of Oslo

Example

Take $m, n \in \mathbb{N}$, with $\operatorname{gcd}(m, n)=1, m \geq 3, m \geq n \geq 2$,and $\mathcal{A}=\{(0,0),(m, 0),(1,1),(0, n)\}$. Then
$(u, v) \mapsto\left(1: u^{m}: u v: v^{n}\right)$ gives the surface

$$
X_{\mathcal{A}}=Z\left(x^{n} z^{m} w^{m n-m-n}-y^{m n}\right) \subset \mathbb{P}^{3} .
$$

The surface has three singular lines: $Z(x, y), Z(y, z), Z(y, w)$.

UiO : University of Oslo

Real picture for $m=5, n=2$

In the affine space $z=1$:
In the affine space $x=1$:

UiO : University of Oslo

Toric patches (R. Krasauskas)

A toric surface patch associated with a lattice polygon $\Delta \subset \mathbb{R}^{2}$ is a piece of an algebraic surface parameterized by the rational $\operatorname{map} B_{\Delta}: \Delta \rightarrow \mathbb{R}^{3}$ given by

$$
B_{\Delta}\left(t_{1}, t_{2}\right)=\frac{\sum_{a \in \widehat{\Delta}} w_{a} p_{a} F_{a}\left(t_{1}, t_{2}\right)}{\sum_{a \in \widehat{\Delta}} w_{a} F_{a}\left(t_{1}, t_{2}\right)}
$$

where $\widehat{\Delta}=\Delta \cap \mathbb{Z}^{2}, p_{a} \in \mathbb{R}^{3}$ are control points, $w_{a}>0$ are weights, and $F_{a}\left(t_{1}, t_{2}\right)=c_{a} h_{1}\left(t_{1}, t_{2}\right)^{h_{1}(a)} \cdots h_{r}\left(t_{1}, t_{2}\right)^{h_{r}(a)}$, where h_{i} are linear forms defining the r edges of Δ.

UiO: University of Oslo

Monoid surfaces

A monoid surface in \mathbb{P}^{3} of degree d is a surface with a singular point of multiplicity $d-1$.

Let $Z\left(f_{d-1}\right), Z\left(f_{d}\right) \subset \mathbb{P}^{2}$ be plane curves, with no common components and no common singular points.

The monoid surface $Z\left(f_{d-1} x_{0}+f_{d}\right) \subset \mathbb{P}^{3}$ has a rational parameterization $\mathbb{P}^{2} \rightarrow \mathbb{P}^{3}$

$$
\left(a_{1}: a_{1}: a_{3}\right) \mapsto\left(f_{d}(a): f_{d-1}(a) a_{1}: f_{d-1}(a) a_{2}: f_{d-1}(a) a_{3}\right)
$$

The point $O:=(1: 0: 0: 0)$ has multiplicity $d-1$. All other singular points are contained in lines on the surface through O, corresponding to the base points $Z\left(f_{d-1}\right) \cap Z\left(f_{d}\right)$ of the parameterization.

UiO: University of Oslo

Applications

Polynomials defining a monoid of a given degree are "sparse" compared to all polynomials of that degree. Therefore they have been used in approximate implicitization problems.

UiO : University of Oslo

Real quartic monoid surfaces

Classify by the form of the projective tangent cone $Z\left(f_{3}\right)$ at O. There are nine cases, giving nine strata in the space of all quartic monoids, which have been described.

$Z\left(x^{3}+y^{3}+5 x y z-z^{3}(x+y)\right)$

$$
Z\left(x^{3}+y^{3}+5 x y z-z^{3}(x-y)\right)
$$

UiO : University of Oslo

Algebraic splines

A draftsman's spline:

UiO : University of Oslo

Algebraic spline rings

Let $\Delta \subset \mathbb{R}^{d}$ be a (pure) d-dimensional simplicial complex.
Let $C^{r}(\Delta)$ denote the set of piecewise polynomial functions (algebraic splines) on Δ of smoothness r.
$C^{r}(\Delta)$ is a ring under the usual pointwise addition and multiplication.

The (global) polynomial functions $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ are r-smooth for any r, so

$$
C^{\infty}(\Delta):=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right] \subset C^{r}(\Delta)
$$

for any r.

UiO: University of Oslo

The vector spaces $C_{k}^{r}(\Delta)$

Let $C_{k}^{r}(\Delta) \subset C^{r}(\Delta)$ consist of splines of degree $\leq k$.
These subsets are vector spaces over \mathbb{R}.
Standard problems, that many people have worked on, are

- to determine (upper and lower bounds for) $\operatorname{dim}_{\mathbb{R}} C_{k}^{r}(\Delta)$,
- to construct a basis for $C_{k}^{r}(\Delta)$.

But also: to determine the structure of the rings $C^{r}(\Delta)$ and their geometric interpretation.

UiO: University of Oslo

Classical Stanley-Reisner rings

Let $\Delta \subset \mathbb{R}^{d}$ be a simplicial complex, with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$.
The Stanley-Reisner ring, or face ring, of Δ is the ring

$$
A_{\Delta}:=\mathbb{R}\left[Y_{1}, \ldots, Y_{n}\right] / I_{\Delta}
$$

where I_{Δ} is the monomial ideal generated by the products $Y_{i_{1}} \cdots Y_{i_{j}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{j}}\right\}$ is not a face of Δ.

It is known [Bruns-Gubeladze] that if two simplicial complexes have isomorphic Stanley-Reisner rings, then they are themselves isomorphic.

UiO: University of Oslo

Identify Y_{i} with the Courant function $Y_{i}\left(v_{j}\right)=\delta_{i j}$ extended by linearity. Then

$$
\sum_{i} Y_{i}=1
$$

and

$$
A_{\Delta} /\left(\sum_{i} Y_{i}-1\right)=C^{0}(\Delta)
$$

is the ring of (continuous) splines on Δ.
Call this ring the affine Stanley-Reisner ring of Δ. Then

$$
\operatorname{Spec}\left(C^{0}(\Delta)\right)=\operatorname{Spec}\left(A_{\Delta}\right) \cap Z\left(\sum_{i} Y_{i}-1\right) \subset \mathbb{A}_{\mathbb{R}}^{n}=\mathbb{R}^{n}
$$

and the points that have non-negative coordinates, give a model of Δ.

UiO: University of Oslo

Example 1: $d=1$

Let Δ be a one-dimensional simplicial complex with three vertices $v_{1}, v_{2}, v_{3} \in \mathbb{R}$, and assume $v_{1}<v_{2}<v_{3}$.

We have

$$
C^{0}(\Delta)=A_{\Delta} /\left(\sum_{i=1}^{3} Y_{i}-1\right)=\mathbb{R}\left[Y_{1}, Y_{2}, Y_{3}\right] /\left(Y_{1} Y_{3}, Y_{1}+Y_{2}+Y_{3}-1\right)
$$

$$
\operatorname{Spec}\left(C^{0}(\Delta)\right)=Z\left(Y_{1}, Y_{2}+Y_{3}-1\right) \cup Z\left(Y_{3}, Y_{1}+Y_{2}-1\right) \subset \mathbb{R}^{3}
$$

The segments of these two lines contained in the positive octant mimic the two 1 -faces of Δ, and they intersect transversally.

UiO : University of Oslo

Trivial splines

Let v_{1}, \ldots, v_{n} be the vertices of $\Delta \subset \mathbb{R}^{d}$.
Write $v_{i}=\left(v_{i 1}, \ldots, v_{i d}\right) \in \mathbb{R}^{d}$.
Set

$$
H_{j}:=v_{1 j} Y_{1}+\ldots+v_{n j} Y_{n}
$$

Then H_{j} is equal to the j th coordinate function on $\Delta \subset \mathbb{R}^{d}$. So

$$
\mathbb{R}\left[H_{1}, \ldots, H_{d}\right] \subset C^{r}(\Delta)
$$

is the subring of trivial splines.

UiO : University of Oslo

Example 1: $d=1$

Now

$$
H:=v_{1} Y_{1}+v_{2} Y_{2}+v_{3} Y_{3}
$$

is the trivial spline: $H(x)=x$ for any point $x \in|\Delta|$, and $\mathbb{R}[H] \subseteq C^{r}(\Delta)$, for any $r \geq 0$.
Computations show that that H and Y_{1}^{r+1} generate the subring $C^{r}(\Delta)$ of $C^{0}(\Delta)$.
Define
$\varphi: \mathbb{R}\left[y_{1}, y_{2}, y_{3}\right] \rightarrow \mathbb{R}\left[Y_{1}, Y_{2}, Y_{3}\right] /\left(Y_{1} Y_{3}, Y_{1}+Y_{2}+Y_{3}-1\right)$
$\varphi\left(y_{1}\right)=\left(v_{1}-v_{2}\right)^{r+1} Y_{1}^{r+1}$,
$\varphi\left(y_{2}\right)=1-\left(H-v_{2}\right)=1-\left(v_{1}-v_{2}\right) Y_{1}-\left(v_{3}-v_{2}\right) Y_{3}$,
$\varphi\left(y_{3}\right)=\left(v_{3}-v_{2}\right)^{r+1} Y_{3}^{r+1}$.

UiO: University of Oslo

Then

$$
\varphi\left(\mathbb{R}\left[y_{1}, y_{2}, y_{3}\right]\right)=C^{r}(\Delta)
$$

and

$$
\operatorname{Ker} \varphi=\left(y_{1} y_{3}, y_{1}+y_{3}-\left(1-y_{2}\right)^{r+1}\right)
$$

Hence

$$
C^{r}(\Delta) \cong \mathbb{R}\left[y_{1}, y_{2}, y_{3}\right] /\left(y_{1} y_{3}, y_{1}+y_{3}-\left(1-y_{2}\right)^{r+1}\right)
$$

and
$\operatorname{Spec}\left(C^{r}(\Delta)\right)=Z\left(y_{1}, y_{3}-\left(1-y_{2}\right)^{r+1}\right) \cup Z\left(y_{3}, y_{1}-\left(1-y_{2}\right)^{r+1}\right)$.

UiO : University of Oslo

For $r \geq 1$, both curves have the y_{2}-axis as tangent at their point of intersection (the origin), and the tangent intersects each curve with multiplicity $r+1$.

Figure: $\operatorname{Spec}\left(C^{r}(\Delta)\right)$ for $r=0,1,2$ in Example 1.

UiO : University of Oslo

Example 2: $d=2$

Consider a two-dimensional simplicial complex Δ, with four vertices $v_{1}, \ldots, v_{4} \in \mathbb{R}^{2}$ (no three on a line), $v_{i}=\left(v_{i 1}, v_{i 2}\right)$, and $\left\{v_{1}, v_{3}\right\}$ as the only non-face.

Then

$$
C^{0}(\Delta)=\mathbb{R}\left[Y_{1}, Y_{2}, Y_{3}, Y_{4}\right] /\left(Y_{1} Y_{3}, Y_{1}+Y_{2}+Y_{3}+Y_{4}-1\right)
$$

where the Y_{i} are the Courant functions and

$$
H_{j}:=v_{1 j} Y_{1}+v_{2 j} Y_{2}+v_{3 j} Y_{3}+v_{4 j} Y_{4}, \text { for } j=1,2
$$

are the trivial splines.
Observe that $Y_{1}^{r+1}, Y_{3}^{r+1} \in C^{r}(\Delta)$.
We can deduce the following linear relation

$$
\begin{aligned}
& \frac{H_{1}-v_{21}}{v_{41}-v_{21}}-\frac{H_{2}-v_{22}}{v_{42}-v_{22}}= \\
& \quad\left(\frac{v_{11}-v_{21}}{v_{41}-v_{21}}-\frac{v_{12}-v_{22}}{v_{42}-v_{22}}\right) Y_{1}+\left(\frac{v_{31}-v_{21}}{v_{41}-v_{21}}-\frac{v_{32}-v_{22}}{v_{42}-v_{22}}\right) Y_{3}
\end{aligned}
$$

UiO : University of Oslo

$$
C^{r}(\Delta)=\varphi_{r}\left(\mathbb{R}\left[y_{1}, y_{2}, y_{3}, y_{4}\right]\right)
$$

where

$$
\begin{aligned}
\varphi_{r} & : \mathbb{R}\left[y_{1}, y_{2}, y_{3}, y_{4}\right] \rightarrow \mathbb{R}\left[Y_{1}, Y_{2}, Y_{3}, Y_{4}\right] /\left(Y_{1} Y_{3}, \sum_{i} Y_{i}-1\right) \\
\varphi_{r}\left(y_{1}\right) & =\left(\frac{v_{11}-v_{21}}{v_{41}-v_{21}}-\frac{v_{12}-v_{22}}{v_{42}-v_{22}}\right)^{r+1} Y_{1}^{r+1} \\
\varphi_{r}\left(y_{2}\right) & =\frac{H_{1}-v_{21}}{v_{41}-v_{21}} \\
\varphi_{r}\left(y_{3}\right) & =\left(\frac{v_{31}-v_{21}}{v_{41}-v_{21}}-\frac{v_{32}-v_{22}}{v_{42}-v_{22}}\right)^{r+1} Y_{3}^{r+1} \\
\varphi_{r}\left(y_{4}\right) & =\frac{H_{2}-v_{22}}{v_{42}-v_{22}}
\end{aligned}
$$

$\operatorname{Ker} \varphi_{r}=\left(y_{1} y_{3}, y_{1}+y_{3}-\left(y_{2}-y_{4}\right)^{r+1}\right)$, so

$$
C^{r}(\Delta) \cong \mathbb{R}\left[y_{1}, y_{2}, y_{3}, y_{4}\right] /\left(y_{1} y_{3}, y_{1}+y_{3}-\left(y_{2}-y_{4}\right)^{r+1}\right)
$$

Hence

$$
\begin{aligned}
& \operatorname{Spec}\left(C^{r}(\Delta)\right)= \\
& \quad Z\left(y_{1}, y_{3}-\left(y_{2}-y_{4}\right)^{r+1}\right) \cup Z\left(y_{3}, y_{1}-\left(y_{2}-y_{4}\right)^{r+1}\right) .
\end{aligned}
$$

The intersection of these surfaces is the line $Z\left(y_{1}, y_{3}, y_{2}-y_{4}\right)$. The plane $Z\left(y_{1}, y_{3}\right)$ is the tangent plane to both surfaces at all points of their line of intersection. The intersection of this tangent plane and each surface is the line, with multiplicity $r+1$.

UiO : University of Oslo

The local spline ring conjecture

Let Δ be a (general) d-dimensional simplicial complex consisting of two d-simplices intersecting in a $(d-1)$-simplex. Then we can realize $\operatorname{Spec}\left(C^{r}(\Delta)\right) \subset \mathbb{R}^{d+2}$ as the union of two smooth d-dimensional varieties V_{1} and V_{2} intersecting along a linear $(d-1)$-dimensional space L, such that V_{1} and V_{2} have the same d-dimensional linear space T as tangent space at each point of L and such that V_{i} and T have order of contact $r+1$ at each point of L.

For a proof, and generalizations:
Nelly Villamizar's talk tomorrow
MS Multivariate Splines and Algebraic Geometry

UiO : University of Oslo

References

UiO: University of Oslo

Thanks to my CMA, GAIA, and SAGA students!

UiO: University of Oslo

