Polytopes, discriminants and toric geometry

Ragni Piene

British Mathematical Colloquium Sheffield
March 25, 2013

Resultants and discriminants

Il faut éliminer la théorie de l'élimination.

> J. Dieudonné (1969)

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.
S. S. Abhyankar (1970)

Résultant, discriminant
M. Demazure (2011) - à J.-P. Serre pour son 85 -ième anniversaire

Question: For which a_{0}, \ldots, a_{m} and b_{0}, \ldots, b_{n} do

$$
f(x)=a_{m} x^{m}+\cdots+a_{0} \text { and } g(x)=b_{n} x^{n}+\cdots+b_{0}
$$

have a common root?

UiO : University of Oslo

James Joseph Sylvester (1814-1897)

The Sylvester matrix is the $(m+n) \times(m+n)$-matrix

$$
\left(\begin{array}{ccccc}
a_{m} & a_{m-1} & a_{m-2} & \ldots & \ldots \\
0 & a_{m} & a_{m-1} & a_{m-2} & \ldots \\
\vdots & & & \vdots & \\
b_{n} & b_{n-1} & b_{n-2} & \ldots & \ldots \\
0 & b_{n} & b_{n-1} & b_{n-2} & \cdots
\end{array}\right)
$$

The resultant $\operatorname{Res}(f, g)$ is the determinant of this matrix.

A student of Sylvester: Florence Nightingale (1820-1910)

DLAERAM or pme EAUSES ar MORRATITTY
in The ARMY in the EAST
APRIL 1854 roMARCH 1855

The Arase of the Hue red whach wedges arye each meanured frow the cerive as the commen mothes
The blue modyes measurad frwm the contre of the ainle negrownt arver
 rad modges meerured from the centre the death, frow- wownds, the black unedger measured from the contre the danthe from all dhe canuee
 or the death fruw all dher counso durving the movith

he entire arear may be compared by following the bhue the ral \& the
Wrock line ouderng them

Figure: Diagram of the Causes of Mortality in the Army in the East

UiO: University of Oslo

Arthur Cayley (1821-1895)

Set

$$
h(x, y):=f(x)+y g(x) .
$$

If α is a common root of f and g, then

$$
\left(\alpha,-\frac{f_{x}(\alpha)}{g_{x}(\alpha)}\right)
$$

is a common zero of h, h_{x}, h_{y}.

The Cayley trick

Consider

$$
\begin{aligned}
& h\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right):= \\
& \quad f_{0}\left(x_{1}, \ldots, x_{k}\right)+y_{1} f_{1}\left(x_{1}, \ldots, x_{k}\right)+y_{k} f_{k}\left(x_{1}, \ldots, x_{k}\right) .
\end{aligned}
$$

The discriminant $\Delta(h)$ of h is obtained by eliminating the x_{i} 's and y_{i} 's from the $2 k+1$ equations

$$
h=0, \partial h / \partial x_{i}=0, \partial h / \partial y_{j}=f_{j}=0
$$

Hence $\Delta(h) \sim \operatorname{Res}\left(f_{0}, \ldots, f_{k}\right)$.

Convex lattice polytopes

Cayley polytopes

Let $P_{0}, \ldots, P_{k} \subset \mathbb{R}^{n-k}$ be convex lattice polytopes, and e_{0}, \ldots, e_{k} are the vertices of $\Delta_{k} \subset \mathbb{R}^{k}$.

The polytope

$$
P=\operatorname{Conv}\left\{e_{0} \times P_{0}, \ldots, e_{k} \times P_{k}\right\} \subset \mathbb{R}^{k} \times \mathbb{R}^{n-k}=\mathbb{R}^{n}
$$

is called a Cayley polytope.
We write

$$
P=P_{0} \star \cdots \star P_{k}
$$

A Cayley polytope is "hollow": it has no interior lattice points.

UiO: University of Oslo

An example

lattice distance one

UiO : University of Oslo

The codegree and degree of a polytope

$$
\operatorname{codeg}(P)=\min \{m \mid m P \text { has interior lattice points }\}
$$

$$
\operatorname{deg}(P)=n+1-\operatorname{codeg}(P)
$$

Example (1)

$$
\operatorname{codeg}\left(\Delta_{n}\right)=n+1 \text { and } \operatorname{codeg}\left(2 \Delta_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil
$$

Example (2)

$$
P=P_{0} \star \cdots \star P_{k} \text { implies } \operatorname{codeg}(P) \geq k+1
$$

UiO: University of Oslo

$\operatorname{codeg}\left(P_{1}\right)=3 \quad \operatorname{codeg}\left(P_{2}\right)=2$
$\operatorname{codeg}\left(P_{3}\right)=1$

UiO: University of Oslo

The Cayley polytope conjecture

Question (Batyrev-Nill): Is there an integer $N(d)$ such that any polytope P of degree d and $\operatorname{dim} P \geq N(d)$ is a Cayley polytope?

Answer (Haase-Nill-Payne): Yes, and $N(d) \leq\left(d^{2}+19 d-4\right) / 2$
Question: Is $N(d)$ linear in d ?
Answer (Dickenstein-Di Rocco-P.): Yes, $N(d)=2 d+1$ (if P is smooth and \mathbb{Q}-normal).

Note that $n \geq 2 d+1$ is equivalent to $\operatorname{codeg}(P) \geq \frac{n+3}{2}$.

UiO: University of Oslo

Theorem (Dickenstein, Di Rocco, P., Nill)

Let P be a smooth lattice polytope of dimension n. The following are equivalent
(1) $\operatorname{codeg}(P) \geq \frac{n+3}{2}$
(2) $P=P_{0} \star \cdots \star P_{k}$ is a smooth Cayley polytope with
$k+1=\operatorname{codeg}(P)$ and $k>\frac{n}{2}$.
(3) P is defective, with defect $2 k-n>0$.

The proof is algebro-geometric (adjoints and nef-value maps à la Beltrametti-Sommese, toric fibrations à la Reid).

UiO: University of Oslo

Lattice polytopes and toric embeddings

The polytope P_{0} :

corresponds to the toric embedding $\mathbb{C}^{*} \rightarrow \mathbb{P}^{2}$ given by $x \mapsto\left(1: x: x^{2}\right)$; its closure $X_{P_{0}}$ is a conic.

The polytope P_{1} :
corresponds to the toric embedding $\mathbb{C}^{*} \rightarrow \mathbb{P}^{3}$ given by $x \mapsto\left(1: x: x^{2}: x^{3}\right)$; its closure $X_{P_{1}}$ is a twisted cubic curve.

UiO : University of Oslo

The Cayley sum

The polytope $P=P_{0} \star P_{1}$:

corresponds to the embedding

$$
\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{P}^{6}
$$

given by

$$
(x, y) \mapsto\left(1: x: x^{2}: y: x y: x^{2} y: x^{3} y\right)
$$

its closure X_{P} is a rational normal scroll of type $(2,3)$.

UiO : University of Oslo

Hyperplane sections and discriminants

$P=P_{0} \star \cdots \star P_{k}$ gives $X_{P} \subseteq \mathbb{P}^{N}$.
A hyperplane section of X_{P} :

$$
h\left(x_{1}, \ldots, x_{n-k}, y_{1}, \ldots, y_{k}\right):=f_{0}+y_{1} f_{1}+\cdots+y_{k} f_{k}=0
$$

($f_{i}=0$ is a hyperplane section of $X_{P_{i}}$) is singular if $h=\partial h / \partial x_{i}=\partial h / \partial y_{j}=0$.
Generalize the Cayley trick:

$$
\operatorname{Res}\left(f_{0}\left(x_{1}, \ldots, x_{n-k}\right), \ldots, f_{k}\left(x_{1}, \ldots, x_{n-k}\right)\right) \sim \Delta(h)
$$

A Cayley poytope with $k=2>n-k=3-2=1$

$P=P_{0} \star P_{1} \star P_{2}$
$P_{j} \subset \mathbb{R}$
$h(x, y, z)=f_{0}(x)+y_{1} f_{1}(x)+y_{2} f_{2}(x)$
$\Delta(h)$: eliminate x from $f_{0}=f_{1}=f_{2}=0$
The ideal $\Delta(h)$ has three generators:
$\operatorname{Res}\left(f_{0}, f_{1}\right), \operatorname{Res}\left(f_{0}, f_{2}\right), \operatorname{Res}\left(f_{1}, f_{2}\right)$
X_{P} is a 3-dimensional rational normal scroll. The set of hyperplanes tangent to X_{P} is not a hypersurface.

UiO : University of Oslo

Discriminants and dual varieties

If $k \leq n-k$, then $\Delta(h)$ is a polynomial in the coefficients of h, and defines a hypersurface: the dual variety $X_{P}^{\vee} \subseteq\left(\mathbb{P}^{N}\right)^{\vee}$ of X_{P}.

If $k>n-k$, the system $f_{0}=\cdots=f_{k}=0$ has too many equations. Hence the discriminant ideal of h is not principal, and the dual variety is not a hypersurface.

A variety X is called defective if its dual variety X^{\vee} is not a hypersurface. A polytope P is defective if X_{P} is defective.

The defect of a defective variety X is the positive integer $\operatorname{codim} X^{\vee}-1$.

Hence: The Cayley polytope $P=P_{0} \star \cdots \star P_{k}$ is defective if $k>n-k$.

UiO : University of Oslo

The degree of the dual variety

Theorem (Gelfand-Kapranov-Zelevinski) If X_{P} is smooth,

$$
\operatorname{deg} X_{P}^{\vee}=\sum_{F \subseteq P}(-1)^{\operatorname{codim} F}(\operatorname{dim} F+1) \operatorname{Vol}_{\mathbb{Z}}(F)
$$

Proof. $\operatorname{deg} X_{P}^{\vee}=c_{n}\left(\mathcal{P}^{1}\left(L_{P}\right)\right)$ is a polynomial in the Chern classes of X_{P} and the hyperplane bundle L_{P}.
$c_{1}\left(L_{P}\right)^{n}=\operatorname{Vol}_{\mathbb{Z}}(P)=\operatorname{deg} X_{P}$
$c_{i}\left(T_{X_{P}}\right) c_{1}\left(L_{P}\right)^{n-i}=\sum_{\text {codim } F_{i}=i} \operatorname{Vol}_{\mathbb{Z}}\left(F_{i}\right)$.
$c_{n}\left(T_{X_{P}}\right)=\#$ vertices of P

UiO: University of Oslo

k th order dual varieties

$$
\begin{aligned}
X^{(k)}=\overline{\{H} \in & \left.\in \mathbb{P}^{m \vee} \mid H \text { is tangent to } X \text { to the order } k\right\} \\
& =\overline{\left\{H \in \mathbb{P}^{m \vee} \mid H \supseteq \mathbb{T}_{X, x}^{k} \text { for some } x \in X_{\text {smooth }}\right\}}
\end{aligned}
$$

$\mathbb{T}_{X, x}^{k}=k$ th osculating space to X at x.
$\operatorname{dim} \mathbb{T}_{X, x}^{k} \leq\binom{ n+k}{k}-1, n=\operatorname{dim} X$.
$X^{(1)}=X^{\vee}$ and $X^{(k-1)} \supseteq X^{(k)}$
Expected dimension of $X^{(k)}=n+m-\binom{n+k}{k}$.
X is k-defective if $\operatorname{dim} X^{(k)}<n+m-\binom{n+k}{k}$.

UiO : University of Oslo

Toric threefolds

Theorem (Dickenstein-Di Rocco-P.)

$(X, P)=\left(X_{P}, L_{P}\right)$ smooth, 2-regular toric threefold embedding is 2-defective if and only if $(X, L)=\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(2)\right)$. Moreover:
(1) $\operatorname{deg} X^{(2)}=120$ if $(X, L)=\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)\right)$
(2) $\operatorname{deg} X^{(2)}=6(8(a+b+c)-7)$ if
$(X, L)=\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b) \oplus \mathcal{O}_{\mathbb{P}^{1}}(c)\right), 2 \xi\right)$, where ξ denotes the tautological line bundle,
(3) In all other cases, $\operatorname{deg} X^{(2)}=62 V-57 F+28 E-8 v+58 V_{1}+51 F_{1}+20 E_{1}$, where V, F, E (resp. V_{1}, F_{1}, E_{1}) denote the (lattice) volume, area of facets, length of edges of P (resp. the adjoint polytope $\operatorname{Conv}(\operatorname{int} P)$), and $v=\#\{$ vertices of $P\}$.

UiO : University of Oslo

Example

If P is a cube with edge lengths 2 , then
$\left(X_{P}, L_{P}\right)=\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(2,2,2)\right)$.
$V=3!8=48, F=6 \cdot 2 \cdot 4=48, E=12 \cdot 2=24, v=8$.
$V_{1}=F_{1}=E_{1}=0(\operatorname{int}(P)=\{(1,1,1)\}$ is a point $)$

$$
\operatorname{deg} X^{(2)}=62 V-57 F+28 E-8 v=848
$$

UiO: University of Oslo

k-selfdual toric varieties (joint with A. Dickenstein)

$\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n}$ a lattice point configuration, and $X_{\mathcal{A}} \subset \mathbb{P}^{N}$ the corresponding toric embedding.

Form the matrix A by adding a row of 1's to the matrix $\left(a_{0}|\cdots| a_{N}\right)$. Denote by $\mathbf{v}_{0}=(1, \ldots, 1), \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{Z}^{N+1}$ the row vectors of A.
For any $\alpha \in \mathbb{N}^{n+1}$, denote by $\mathbf{v}_{\alpha} \in \mathbb{Z}^{N+1}$ the vector obtained as the coordinatewise product of α_{0} times the row vector \mathbf{v}_{0} times
\ldots times α_{n} times the row vector \mathbf{v}_{n}.
Order the vectors $\left\{\mathbf{v}_{\alpha}:|\alpha| \leq k\right\}$. Let $A^{(k)}$ be the $\binom{n+k}{k} \times(N+1)$ integer matrix with these rows.

Rational normal curve

Take $\mathcal{A}=\{0, \ldots, d\}$. Then

$$
A=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d
\end{array}\right)
$$

and

$$
A^{(3)}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d \\
0 & 1 & 4 & 9 & \cdots & d^{2} \\
0 & 1 & 8 & 27 & \cdots & d^{3}
\end{array}\right)
$$

Note that

$$
A^{(3)} \cong\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d \\
0 & 0 & 1 & 3 & \cdots & \left(\begin{array}{c}
d \\
2 \\
2
\end{array}\right) ~ . ~ \\
0 & 0 & 0 & 1 & \cdots & \binom{d}{3}
\end{array}\right)
$$

UiO : University of Oslo

The case $k=2$

Denote by $\mathbf{v}_{i} * \mathbf{v}_{j} \in \mathbb{Z}^{m+1}$ the vector given by the coordinatewise product of these vectors. Define the $\binom{n+2}{2} \times(m+1)$-matrix

$$
A^{(2)}=\left(\begin{array}{c}
\mathbf{v}_{0} \\
\vdots \\
\mathbf{v}_{n} \\
\mathbf{v}_{1} * \mathbf{v}_{1} \\
\mathbf{v}_{1} * \mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{n-1} * \mathbf{v}_{n} \\
\mathbf{v}_{n} * \mathbf{v}_{n}
\end{array}\right)
$$

$\mathbf{v}_{i} * \mathbf{v}_{j}, 1 \leq i \leq j \leq n$. Then, $\mathbb{P}\left(\right.$ Rowspan $\left.\left(A^{(2)}\right)\right)=\mathbb{T}_{X_{\mathcal{A}}, \mathbf{1}}^{2}$ describes the second osculating space of $X_{\mathcal{A}}$ at the point 1 .

UiO : University of Oslo

Non-pyramidal configurations

The configuration \mathcal{A} is non-pyramidal (nap) if the configuration of columns in A is not a pyramid (i.e., no basis vector e_{i} of \mathbb{R}^{N+1} lies in the rowspan of the matrix).

The configuration \mathcal{A} is k nap if the configuration of columns in $A^{(k)}$ is not a pyramid.

Example
A is a pyramid:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 5 & 0 & 0
\end{array}\right)
$$

UiO : University of Oslo

Characterization of k-self dual configurations

$X_{\mathcal{A}}$ is k-selfdual if $\phi\left(X_{\mathcal{A}}\right)=X_{\mathcal{A}}^{(k)}$ for some $\phi: \mathbb{P}^{N} \cong\left(\mathbb{P}^{N}\right)^{\vee}$.
Theorem (Dickenstein-P.)
(1) $X_{\mathcal{A}}$ is k-selfdual if and only if $\operatorname{dim} X_{\mathcal{A}}=\operatorname{dim} X_{\mathcal{A}}^{(k)}$ and \mathcal{A} is knap.
(2) If \mathcal{A} is $k n a p$ and $\operatorname{dim} \operatorname{Ker} A^{(k)}=1$, then $X_{\mathcal{A}}$ is k-selfdual.
(3) If \mathcal{A} is knap and k-selfdual, and $\operatorname{dim} \operatorname{Ker} A^{(k)}=r>1$, then $\mathcal{A}=e_{0} \times \mathcal{A}_{0} \cup \ldots \cup e_{r-1} \times \mathcal{A}_{r-1}$ is r-Cayley.

The proof generalizes [Bourel-Dickenstein-Rittatore] $(k=1)$.

UiO : University of Oslo

A surface in \mathbb{P}^{3}

$$
\mathcal{A}=\{(0,0),(1,0),(1,1),(0,2)\}
$$

gives

$$
X_{\mathcal{A}}:(x, y) \mapsto\left(1: x: x y: y^{2}\right)
$$

and

$$
X_{\mathcal{A}}^{\vee} \cong X_{\mathcal{A} \vee}:(x, y) \mapsto\left(-y^{2}: 2 x^{-1} y^{2}:-2 x^{-1} y: 1\right)
$$

with

$$
\mathcal{A}^{\vee}=\{(0,2),(-1,2),(-1,1),(0,0)\}
$$

This surface is self dual.

UiO : University of Oslo

The corresponding polytopes

Example

This square is an example of a 4 -selfdual smooth surface which is not centrally symmetric.

UiO : University of Oslo

Connections with number theory

Non-trivial linear relations between the rows of $A^{(k)}$ correspond to polynomials of degree $\leq k$ vanishing on \mathcal{A} (D. Perkinson).

Example
Three quadrics $Q_{1}, Q_{2}, Q_{3} \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$ with

$$
Q_{1} \cap Q_{2} \cap Q_{3}=\left\{a_{0}, \ldots, a_{7}\right\}=\mathcal{A} \subset \mathbb{Z}^{3} \subset \mathbb{R}^{3}
$$

Then $X_{\mathcal{A}}$ is a 2-selfdual threefold:
The rank of $A^{(2)}$ is $10-3=7$, which is one less than the maximal rank.

Such constructions give an interesting connection to diophantine theory: polynomials with many integer solutions.

UiO: University of Oslo

Togliatti's surface

Togliatti's surface: $X_{\mathcal{A}} \subset \mathbb{P}^{5}$, with

$$
\mathcal{A}=\{(0,0),(1,0),(0,1),(2,1),(1,2),(2,2)\},
$$

(omitting the interior lattice point $(1,1)$ of the hexagon).
All 2 nd order osculating spaces have dimension 4 (instead of 5).
Then \mathcal{A} is 2 nap and $\operatorname{dim} \operatorname{Ker} A^{(2)}=1$, so $X_{\mathcal{A}}$ is 2 -selfdual.
The unique quadric through $\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{(2,2)\}$ also go through the points $(4,3)$ and $(4,2)$. Thus,

$$
\mathcal{A}^{\prime} \cup\{(4,3)\} \text { and } \mathcal{A}^{\prime} \cup\{(4,2)\}
$$

give (non-smooth, non centrally symmetric) 2 -selfdual surfaces.

UiO: University of Oslo

Thank you for your attention!

