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Resultants and discriminants

Il faut éliminer la théorie de l’élimination.
J. Dieudonné (1969)

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.

S. S. Abhyankar (1970)

Résultant, discriminant
M. Demazure (2011) – à J.-P. Serre pour son 85-ième anniversaire

Question: For which a0, . . . , am and b0, . . . , bn do

f(x) = amx
m + · · ·+ a0 and g(x) = bnx

n + · · ·+ b0

have a common root?



James Joseph Sylvester (1814–1897)

The Sylvester matrix is the
(m+ n)× (m+ n)-matrix

am am−1 am−2 . . . . . .
0 am am−1 am−2 . . .
...

...
bn bn−1 bn−2 . . . . . .
0 bn bn−1 bn−2 . . .
...

...


The resultant Res(f, g) is the
determinant of this matrix.



A student of Sylvester: Florence Nightingale (1820-1910)

Figure: Diagram of the Causes of
Mortality in the Army in the East



Arthur Cayley (1821–1895)

Set

h(x, y) := f(x) + yg(x).

If α is a common root of f and
g, then

(α,−fx(α)

gx(α)
)

is a common zero of h, hx, hy.



The Cayley trick

Consider

h(x1, . . . , xk, y1, . . . , yk) :=

f0(x1, . . . , xk) + y1f1(x1, . . . , xk) + ykfk(x1, . . . , xk).

The discriminant ∆(h) of h is obtained by eliminating the xi’s
and yi’s from the 2k + 1 equations

h = 0, ∂h/∂xi = 0, ∂h/∂yj = fj = 0.

Hence ∆(h) ∼ Res(f0, . . . , fk).



Convex lattice polytopes

 



Cayley polytopes

Let P0, . . . , Pk ⊂ Rn−k be convex lattice polytopes, and
e0, . . . , ek are the vertices of ∆k ⊂ Rk.

The polytope

P = Conv{e0 × P0, . . . , ek × Pk} ⊂ Rk × Rn−k = Rn,

is called a Cayley polytope.

We write
P = P0 ? · · · ? Pk

A Cayley polytope is “hollow”: it has no interior lattice points.



An example

distancelattice
one

P

P2

P1



The codegree and degree of a polytope

codeg(P ) = min{m |mP has interior lattice points}.

deg(P ) = n+ 1− codeg(P )

Example (1)

codeg(∆n) = n+ 1 and codeg(2∆n) = dn+ 1

2
e.

Example (2)

P = P0 ? · · · ? Pk implies codeg(P ) ≥ k + 1.



P2
P3P1

codeg(P1) = 3 codeg(P2) = 2 codeg(P3) = 1



The Cayley polytope conjecture

Question (Batyrev–Nill): Is there an integer N(d) such that any
polytope P of degree d and dimP ≥ N(d) is a Cayley polytope?

Answer (Haase–Nill–Payne): Yes, and N(d) ≤ (d2 + 19d− 4)/2

Question: Is N(d) linear in d?

Answer (Dickenstein–Di Rocco–P.): Yes, N(d) = 2d+ 1
(if P is smooth and Q-normal).

Note that n ≥ 2d+ 1 is equivalent to codeg(P ) ≥ n+3
2 .



Theorem (Dickenstein, Di Rocco, P., Nill)
Let P be a smooth lattice polytope of dimension n. The following
are equivalent
(1) codeg(P ) ≥ n+3

2

(2) P = P0 ? · · · ? Pk is a smooth Cayley polytope with
k + 1 = codeg(P ) and k > n

2 .
(3) P is defective, with defect 2k − n > 0.

The proof is algebro-geometric (adjoints and nef-value maps à la
Beltrametti–Sommese, toric fibrations à la Reid).



Lattice polytopes and toric embeddings

The polytope P0:

• • •

corresponds to the toric embedding C∗ → P2 given by
x 7→ (1 : x : x2); its closure XP0 is a conic.

The polytope P1:

• • • •

corresponds to the toric embedding C∗ → P3 given by
x 7→ (1 : x : x2 : x3); its closure XP1 is a twisted cubic curve.



The Cayley sum
The polytope P = P0 ? P1:

• • • •

• • •
corresponds to the embedding

(C∗)2 → P6

given by
(x, y) 7→ (1 : x : x2 : y : xy : x2y : x3y);

its closure XP is a rational normal scroll of type (2, 3).



Hyperplane sections and discriminants

P = P0 ? · · · ? Pk gives XP ⊆ PN .

A hyperplane section of XP :

h(x1, . . . , xn−k, y1, . . . , yk) := f0 + y1f1 + · · ·+ ykfk = 0,

(fi = 0 is a hyperplane section of XPi) is singular if
h = ∂h/∂xi = ∂h/∂yj = 0.

Generalize the Cayley trick:

Res(f0(x1, . . . , xn−k), . . . , fk(x1, . . . , xn−k)) ∼ ∆(h).



A Cayley poytope with k = 2 > n− k = 3− 2 = 1

P = P0 ? P1 ? P2

Pj ⊂ R

h(x, y, z) = f0(x) + y1f1(x) + y2f2(x)

∆(h): eliminate x from f0 = f1 = f2 = 0

The ideal ∆(h) has three generators:

Res(f0, f1), Res(f0, f2), Res(f1, f2)

XP is a 3-dimensional rational normal scroll. The set of
hyperplanes tangent to XP is not a hypersurface.



Discriminants and dual varieties
If k ≤ n− k, then ∆(h) is a polynomial in the coefficients of h,
and defines a hypersurface: the dual variety X∨P ⊆ (PN )∨ of XP .

If k > n− k, the system f0 = · · · = fk = 0 has too many
equations. Hence the discriminant ideal of h is not principal,
and the dual variety is not a hypersurface.

A variety X is called defective if its dual variety X∨ is not a
hypersurface. A polytope P is defective if XP is defective.

The defect of a defective variety X is the positive integer
codimX∨ − 1.

Hence: The Cayley polytope P = P0 ? · · · ? Pk is defective if
k > n− k.



The degree of the dual variety
Theorem (Gelfand–Kapranov–Zelevinski)
If XP is smooth,

degX∨P =
∑
F⊆P

(−1)codimF (dimF + 1)VolZ(F ).

Proof. degX∨P = cn(P1(LP )) is a polynomial in the Chern
classes of XP and the hyperplane bundle LP .

c1(LP )n = VolZ(P ) = degXP

ci(TXP
)c1(LP )n−i =

∑
codimFi=i

VolZ(Fi).

cn(TXP
) = # vertices of P



kth order dual varieties

X(k) = {H ∈ Pm∨ |H is tangent to X to the order k}

= {H ∈ Pm∨ |H ⊇ TkX,x for some x ∈ Xsmooth},

TkX,x = kth osculating space to X at x.

dimTkX,x ≤
(
n+k
k

)
− 1, n = dimX.

X(1) = X∨ and X(k−1) ⊇ X(k)

Expected dimension of X(k) = n+m−
(
n+k
k

)
.

X is k-defective if dimX(k) < n+m−
(
n+k
k

)
.



Toric threefolds
Theorem (Dickenstein–Di Rocco–P.)
(X,P ) = (XP , LP ) smooth, 2-regular toric threefold embedding
is 2-defective if and only if (X,L) = (P3,OP3(2)). Moreover:
(1) degX(2) = 120 if (X,L) = (P3,OP3(3))

(2) degX(2) = 6(8(a+ b+ c)− 7) if
(X,L) = (P(OP1(a)⊕OP1(b)⊕OP1(c)), 2ξ), where ξ
denotes the tautological line bundle,

(3) In all other cases,
degX(2) = 62V − 57F + 28E − 8v + 58V1 + 51F1 + 20E1,
where V , F , E (resp. V1, F1, E1) denote the (lattice)
volume, area of facets, length of edges of P (resp. the
adjoint polytope Conv(intP )), and v = #{vertices of P}.



Example
If P is a cube with edge lengths 2, then
(XP , LP ) = (P1 × P1 × P1,O(2, 2, 2)).

V = 3!8 = 48, F = 6 · 2 · 4 = 48, E = 12 · 2 = 24, v = 8.

V1 = F1 = E1 = 0 (int(P ) = {(1, 1, 1)} is a point)

degX(2) = 62V − 57F + 28E − 8v = 848.

 



k-selfdual toric varieties (joint with A. Dickenstein)

A = {a0, . . . , aN} ⊂ Zn a lattice point configuration, and
XA ⊂ PN the corresponding toric embedding.

Form the matrix A by adding a row of 1’s to the matrix
(a0| · · · |aN ). Denote by v0 = (1, . . . , 1), v1, . . . ,vn ∈ ZN+1 the
row vectors of A.

For any α ∈ Nn+1, denote by vα ∈ ZN+1 the vector obtained as
the coordinatewise product of α0 times the row vector v0 times
. . . times αn times the row vector vn.

Order the vectors {vα : |α| ≤ k}. Let A(k) be the(
n+k
k

)
× (N + 1) integer matrix with these rows.



Rational normal curve
Take A = {0, . . . , d}. Then

A =

(
1 1 1 1 · · · 1
0 1 2 3 · · · d

)
,

and

A(3) =


1 1 1 1 · · · 1
0 1 2 3 · · · d
0 1 4 9 · · · d2

0 1 8 27 · · · d3

 .

Note that

A(3) ∼=


1 1 1 1 · · · 1
0 1 2 3 · · · d

0 0 1 3 · · ·
(
d
2

)
0 0 0 1 · · ·

(
d
3

)
 .



The case k = 2
Denote by vi ∗vj ∈ Zm+1 the vector given by the coordinatewise
product of these vectors. Define the

(
n+2
2

)
× (m+ 1)-matrix

A(2) =



v0

...
vn

v1 ∗ v1

v1 ∗ v2

...
vn−1 ∗ vn

vn ∗ vn


,

vi ∗ vj , 1 ≤ i ≤ j ≤ n. Then, P(Rowspan(A(2))) = T2
XA,1

describes the second osculating space of XA at the point 1.



Non-pyramidal configurations
The configuration A is non-pyramidal (nap) if the configuration
of columns in A is not a pyramid (i.e., no basis vector ei of
RN+1 lies in the rowspan of the matrix).

The configuration A is knap if the configuration of columns in
A(k) is not a pyramid.

Example
A is a pyramid:

A =

 1 1 1 1 1
0 1 2 3 4
0 0 5 0 0





Characterization of k-self dual configurations

XA is k-selfdual if φ(XA) = X
(k)
A for some φ : PN ∼= (PN )∨.

Theorem (Dickenstein–P.)

(1) XA is k-selfdual if and only if dimXA = dimX
(k)
A and A is

knap.
(2) If A is knap and dim KerA(k) = 1, then XA is k-selfdual.
(3) If A is knap and k-selfdual, and dim KerA(k) = r > 1, then
A = e0 ×A0 ∪ . . . ∪ er−1 ×Ar−1 is r-Cayley.

The proof generalizes [Bourel–Dickenstein–Rittatore] (k = 1).



A surface in P3

A = {(0, 0), (1, 0), (1, 1), (0, 2)}

gives
XA : (x, y) 7→ (1 : x : xy : y2)

and

X∨A
∼= XA∨ : (x, y) 7→ (−y2 : 2x−1y2 : −2x−1y : 1),

with
A∨ = {(0, 2), (−1, 2), (−1, 1), (0, 0)}.

This surface is self dual.



The corresponding polytopes

◦ • ◦

◦ ◦ •

◦ • •

A

• • ◦

• ◦ ◦

◦ • ◦

A∨



Example
This square is an example of a 4-selfdual smooth surface which
is not centrally symmetric.
• • ◦ • •

• • ◦ ◦ •

◦ ◦ • ◦ ◦

• • ◦ • •

• • ◦ • •



Connections with number theory
Non-trivial linear relations between the rows of A(k) correspond
to polynomials of degree ≤ k vanishing on A (D. Perkinson).

Example
Three quadrics Q1, Q2, Q3 ∈ Z[x1, x2, x3] with

Q1 ∩Q2 ∩Q3 = {a0, . . . , a7} = A ⊂ Z3 ⊂ R3.

Then XA is a 2-selfdual threefold:

The rank of A(2) is 10− 3 = 7, which is one less than the
maximal rank.

Such constructions give an interesting connection to diophantine
theory: polynomials with many integer solutions.



Togliatti’s surface
Togliatti’s surface: XA ⊂ P5, with

A = {(0, 0), (1, 0), (0, 1), (2, 1), (1, 2), (2, 2)},

(omitting the interior lattice point (1, 1) of the hexagon).

All 2nd order osculating spaces have dimension 4 (instead of 5).

Then A is 2nap and dim KerA(2) = 1, so XA is 2-selfdual.

The unique quadric through A′ := A \ {(2, 2)} also go through
the points (4, 3) and (4, 2). Thus,

A′ ∪ {(4, 3)} and A′ ∪ {(4, 2)}

give (non-smooth, non centrally symmetric) 2-selfdual surfaces.



Thank you for your attention!
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