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Pole and polars in the plane
Let Q be a conic section. Let P be a point in the plane. There
are two tangents to Q passing through P . The polar of P is
the line joining the two points of tangency. Conversely, if L is a
line, it intersects the conic in two points. The pole of L is the
intersection of the tangents to Q at these two points.



Polarity (reciprocation)

A quadric hypersurface Q in Pn given by a quadratic form q,
sets up a polarity between points and hyperplanes:

P = (b0 : · · · : bn) 7→ P⊥ = H :
∑
bi

∂q
∂Xi

= 0

The polar hyperplane P⊥ of P is the linear span of the points on
Q such that the tangent hyperplane at that point contains P .

If P ∈ Q, then P⊥ = TPQ.

If L ⊂ Pm is a linear space, then L⊥ = ∩P∈Q∩LTPQ.



If H is a hyperplane, its pole H⊥ is the intersection of the
tangent hyperplanes to Q at the points of intersection with H.

Example
If the quadric is q =

∑
X2

i , then the polar of P = (b0 : · · · : bm)
is the hyperplane P⊥ : b0X0 + . . .+ bnXn = 0.

The polar of the hyperplane H : b0X0 + . . .+ bnXn = 0 is the
point H⊥ = (b0 : · · · : bm).



Grassmann and Schubert varieties
Let k = R or C. Let G(m,n) denote the Grassmann variety of
(m+ 1)-spaces in kn+1, or equivalently, of m-dimensional linear
subspaces of Pn

k .

Let
L• : L0 ⊂ L1 ⊂ · · · ⊂ Lm ⊂ Pn

k

be a flag of linear subspaces, with dimLi = ai.

The Schubert variety Ω(L•) is defined by

Ω(L•) := {W ∈ G(m,n) | dimW ∩ Li ≥ i, 0 ≤ i ≤ m}.

The class of Ω(L•) depends only on the ai. Write

Ω(L•) = Ω(a0, . . . , am).



Example

I m = 1, n = 3: G(1, 3) = lines in P3.

Ω(1, 3) = lines meeting a given line

Ω(0, 3) = lines through a given point

Ω(1, 2) = lines in a given plane

Ω(0, 2) = lines in a plane through a point in the plane

I m = 2, n = 5: G(2, 5) = planes in P5.

Ω(1, 4, 5) = planes meeting a given line

Ω(2, 4, 5) = planes meeting a given plane



The Gauss map

I Projective variety X ⊂ Pn, dimX = m. The Gauss map is

γ : X 99K G(m,n) ;P 7→ TPX

TPX =the projective tangent space to X at P .

I Affine variety X ⊂ An, dimX = m. The Gauss map is

γ : X 99K G(m− 1, n− 1) ;P 7→ tPX

tPX = the affine tangent space to X at P (considered as a
subspace of kn).



Polar varieties
The polar varieties of X ⊂ Pn are the inverse images

P (L•) := γ−1Ω(L•)

of the Schubert varieties via the Gauss map.

Example

I X ⊂ P2 (resp. P3) is a curve (m=1). Then P (0, 2) (resp.
P (1, 3)) is the set of points P ∈ X such that TP meets a
given point (resp. line), i.e., the ramification points of the
projection map X → P1.

I X ⊂ P5 is a surface (m = 2). Then P (1, 4, 5) is the
ramification locus of the projection map X → P3 with
center a line L0.



Polar varieties and Chern classes
Let Lk ⊂ Pn be a linear subspace of codimension m− k + 2.

The kth polar variety of of X ⊂ Pn with respect to Lk is

Mk := {x ∈ X | dim(TX,x ∩ Lk) ≥ k − 1}.

Its class is [Mk] = ck(P1
X(1)) ∩ [X], hence we get the Todd–Eger

relation

[Mk] =

k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
hk−ici(TX) ∩ [X], (1)

where h = c1(OX(1)) is the class of a hyperplane.



Singular varieties and Nash transform

If X is singular, we take its Nash transform π : X → X and
replace Ω1

X by the Nash bundle Ω on X.

The Mather–Chern classes of X are

cMi (X) = π∗(ci(Ω
∨) ∩ [X]),

and we get for the polar varieties:

[Mk] =

k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
hk−i ∩ cMi (X). (2)



Affine space as Euclidean space
Coxeter:

“Kepler’s invention of points at infinity made it possible to
regard the projective plane as the affine plane plus the line at
infinity. A converse relationship was suggested by Poncelet
(1822) and von Staudt (1847): regard the affine plane as the
projective plane minus an arbitrary line `, and then regard the
Euclidean plane as the affine plane with a special rule for
associating pairs of points on ` (in “perpendicular directions”).”

This way we can consider affine space with an added notion of
orthogonality (or perpendicularity) as “Euclidean space” (no
distance function).



Euclidean normal spaces
Consider X ⊂ Pn = P(V ), fix a hyperplane H∞ ⊂ Pn at infinity
and a smooth quadric Q in H∞.

Use the polarity in H∞ ∼= Pn−1 = P(V ′) induced by Q to define
Euclidean normal spaces at each smooth point P ∈ X \H∞:

NPX = 〈P, (TPX ∩H∞)⊥〉

Consider 0→ V ′′ → V → V ′ → 0 and

0→ NX(1)→ VX → P1
X(1)→ 0.

Assume (transversality of tangent spaces and H∞) this induces

0→ V ′′ → P1
X(1)→ P → 0.



Then we get
0→ NX(1)→ V ′X → P → 0.

The polarity in H∞ given by Q, gives V ′∨ ∼= V ′, so we have

V ′X → NX(1)∨

corresponding to the spaces orthogonal to the spaces
TPX ∩H∞, and combining with VX → V ′X and VX → OX(1),
we get (assuming transversality of X and Q)

VX → N∨X(−1)⊕OX(1)

whose fibers correspond to the Euclidean normal spaces NPX.



Euclidean normal bundle (Catanese–Trifogli)

We call E := N∨X(−1)⊕OX(1) the Euclidean normal bundle of
X.

The normal spaces are the fibers of the projective bundle

P(E) ⊂ X × Pn → X.



Reciprocal polar varieties

There are several (essentially equivalent) ways of defining
reciprocal polar varieties of projective and affine varieties.

We can mimic the definition of classical polar varieties, by
exchanging the tangent spaces with the normal spaces.

Consider the normal map ν : X 99K G(n−m,n) given by
P 7→ NPX. The reciprocal polar varieties are

R(L•) := ν−1(Ω(L•)),

where Ω(L•) ⊂ G(n−m,n) is the Schubert variety
corresponding to the flag L•.



Applications

Polar and reciprocal polar varieties have been applied to study
I singularities
I the topology of real affine varieties
I real solutions of polynomial equations
I complexity questions
I foliations
I finding nonsingular points on every component of a real

affine plane curve (Banks et al. for smooth curves, Mork–P
for compact curves with ordinary multiple points,
counterexamples for curves with worse singularities).



Figure: A sextic and its polar.



Figure: A sextic curve with its polar with its reciprocal polar.



There exist compact singular real affine plane curves such that
no polar variety contains a point from each connected
component, e.g. this sextic with eight cusps:



The Euclidean endpoint map

Consider P(E) ⊂ X × Pn.

Let p : P(E)→ X and q : P(E)→ Pn denote the projections on
the first and second factor. The map q is called the endpoint
map.

Let A ∈ Pn \H∞. Then p(q−1(A)) is a reciprocal polar variety:

p(q−1(A)) = {P ∈ X |A ∈ 〈P, (TPX ∩H∞)⊥〉

so the degree of q is the degree of the reciprocal polar variety.



Euclidean distance degree1

The (general) Euclidean distance degree is the degree of the map
q : P(E)→ Pn . Hence

E degX = deg p∗c1(OP(E)(1))n ∩ [X] = deg sm(E),

where m = dimX. We can compute:

s(E) = s(N∨X/Pn(−1))s(OX(1)) = c(P1
X(1))c(OX(−1))−1

We conclude:
E degX =

∑m
k=0 µk,

where µk is the degree of the kth polar variety [Mk] of X.
1Draisma–Horobet–Ottaviani–Sturmfels–Thomas.



Hypersurfaces with isolated singularities

If X ⊂ Pn is a smooth hypersurface of degree µ0 = d, then
µk = d(d− 1)k.

If X has only isolated singularities, then only µn−1 is affected,
and we get (from Teissier’s formula and the Plücker formula for
hypersurfaces with isolated singularities (Teissier, Laumon))

ED degX =
d((d− 1)n − 1)

d− 2
−

∑
P∈Sing(X)

(µ
(n)
P + µ

(n−1)
P ),

where µ(n)P is the Milnor number and µ(n−1)P is the sectional
Milnor number of X at P .



Surface with ordinary singularities

Assume X ⊂ P3 is a generic projection of a smooth surface of
degree µ0 = d, so that X has ordinary singularities: a double
curve of degree ε, t triple points, and ν2 pinch points. Then
(using known formulas for µ1 and µ2)

ED degX = µ0 + µ1 + µ2 = d3 − d2 + d− (3d− 2)ε− 3t− 2ν2.



The focal locus

The focal locus ΣX is the branch locus of the map q.

It is the image of the subscheme RX given by the ideal
F 0(Ω1

P(E)/Pn), so its class is

[ΣX ] = q∗((c1(Ω
1
P(E))− q

∗c1(Ω
1
Pn)
)
∩ [P(E)]).



Example
X ⊂ P2 is a (general) plane curve of degree d. Then the focal
locus is the evolute (or caustic) of X. Its degree is the degree of
the class

q∗
((
c1(Ω

1
P(E))− q

∗c1(Ω
1
P2)
)
c1(OP(E)(1)) ∩ [P(E ]

)
hence is given by deg ΣX = 3d(d− 1).

In the case that X is a “Plücker curve” of degree d = µ0 and
having only δ nodes and κ ordinary cusps as singularities, and ι
ordinary inflection points, then we obtain the classical formula
due to Salmon

deg ΣX = 3d(d− 1)− 6δ − 8κ.



The focal locus of a hypersurface
Let X ⊂ Pn be a general hypersurface (m = n− 1) of degree µ0.
It is known that in this case RX → ΣX is birational. We
compute

deg ΣX = (n− 1)µn−1 + 2(µ0 − 1)

n−2∑
i=0

µi.

For a smooth hypersurface of degree d in Pn, we have
µi = d(d− 1)i. Hence

deg ΣX = (n−1)d(d−1)n−1 +2d(d−1)((d−1)n−1−1)(d−2)−1,

which checks with the formula found by Trifogli.



Happy birthday, Boris!


