Discriminants, polytopes and toric geometry

Ragni Piene

ASSMS Lahore, Pakistan March 8, 2013

Resultants

Eliminate, eliminate, eliminate Eliminate the eliminators of elimination theory. S. S. Abhyankar (1970)

Question: For which a_0, \ldots, a_m and b_0, \ldots, b_n do

$$f(x) = a_m x^m + \dots + a_0$$
 and $g(x) = b_n x^n + \dots + b_0$

have a common root?

James Joseph Sylvester (1814–1897)

The Sylvester matrix is the $(m+n) \times (m+n)$ -matrix

$$\begin{pmatrix} a_m & a_{m-1} & a_{m-2} & \dots & \dots \\ 0 & a_m & a_{m-1} & a_{m-2} & \dots \\ \vdots & & & \vdots & & \vdots \\ b_n & b_{n-1} & b_{n-2} & \dots & \dots \\ 0 & b_n & b_{n-1} & b_{n-2} & \dots \\ \vdots & & & \vdots & & \vdots \end{pmatrix}$$

The resultant is the determinant of this matrix.

A student of Sylvester: Florence Nightingale (1820-1910)

Figure: Diagram of the Causes of Mortality in the Army in the East

Arthur Cayley (1821–1895)

Set

$$h(x,y) := f(x) + yg(x).$$

If α is a common root of f and g, then

$$(\alpha, -\frac{f_x(\alpha)}{g_x(\alpha)})$$

is a common zero of h, h_x , h_y .

The Cayley trick

Consider

$$h(x_1, \dots, x_k, y_1, \dots, y_k) := f_0(x_1, \dots, x_k) + y_1 f_1(x_1, \dots, x_k) + y_k f_k(x_1, \dots, x_k).$$

The discriminant $\Delta(h)$ of h is obtained by eliminating the x_i 's and y_i 's from the 2k+1 equations

$$h = 0, \partial h/\partial x_i = 0, \partial h/\partial y_i = f_i = 0.$$

Hence $\Delta(h) \sim \text{Res}(f_0, \dots, f_k)$.

Convex lattice polytopes

Cayley polytopes

Let $P_0, \ldots, P_k \subset \mathbb{R}^{n-k}$ be convex lattice polytopes, and e_0, \ldots, e_k are the vertices of $\Delta_k \subset \mathbb{R}^k$.

The polytope

$$P = \text{Conv}\{e_0 \times P_0, \dots, e_k \times P_k\} \subset \mathbb{R}^k \times \mathbb{R}^{n-k} = \mathbb{R}^n,$$

is called a Cayley polytope.

We write

$$P = P_0 \star \cdots \star P_k$$

A Cayley polytope is "hollow": it has no interior lattice points.

An example

The codegree and degree of a polytope

 $codeg(P) = min\{m \mid mP \text{ has interior lattice points}\}.$

$$\deg(P) = n + 1 - \operatorname{codeg}(P)$$

Example (1)

$$\operatorname{codeg}(\Delta_n) = n + 1 \text{ and } \operatorname{codeg}(2\Delta_n) = \lceil \frac{n+1}{2} \rceil.$$

Example (2)

$$P = P_0 \star \cdots \star P_k \text{ implies } \operatorname{codeg}(P) \geq k + 1.$$

$$\operatorname{codeg}(P_1) = 3$$
 $\operatorname{codeg}(P_2) = 2$ $\operatorname{codeg}(P_3) = 1$

The Cayley polytope conjecture

Question (Batyrev–Nill): Is there an integer N(d) such that any polytope P of degree d and dim $P \ge N(d)$ is a Cayley polytope?

Answer (Haase–Nill–Payne): Yes, and $N(d) \le (d^2 + 19d - 4)/2$

Question: Is N(d) linear in d?

Answer (Dickenstein–Di Rocco–P.): Yes, N(d) = 2d + 1 (if P is smooth and \mathbb{Q} -normal).

Note that $n \ge 2d + 1$ is equivalent to $codeg(P) \ge \frac{n+3}{2}$.

Theorem (Dickenstein, Di Rocco, P., Nill)

Let P be a smooth lattice polytope of dimension n. The following are equivalent

- (1) $\operatorname{codeg}(P) \ge \frac{n+3}{2}$
- (2) $P = P_0 \star \cdots \star P_k$ is a smooth Cayley polytope with $k+1 = \operatorname{codeg}(P)$ and $k > \frac{n}{2}$.
- (3) P is defective, with defect 2k n > 0.

The proof is essentially algebro-geometric (adjoints and nef-value maps à la Beltrametti–Sommese, toric fibrations à la Reid).

Lattice polytopes and toric embeddings

The polytope P_0 :

corresponds to the toric embedding $\mathbb{C}^* \to \mathbb{P}^2$ given by $x \mapsto (1:x:x^2)$; its closure X_{P_0} is a conic.

The polytope P_1 :

corresponds to the toric embedding $\mathbb{C}^* \to \mathbb{P}^3$ given by $x \mapsto (1:x:x^2:x^3)$; its closure X_{P_1} is a twisted cubic curve.

The Cayley sum

The polytope $P = P_0 \star P_1$:

corresponds to the embedding

$$(\mathbb{C}^*)^2 \to \mathbb{P}^6$$

given by

$$(x,y)\mapsto (1:x:x^2:y:xy:x^2y:x^3y);$$

its closure X_P is a rational normal scroll of type (2,3).

Hyperplane sections and discriminants

$$P = P_0 \star \cdots \star P_k$$
 gives $X_P \subseteq \mathbb{P}^N$.

A hyperplane section of X_P :

$$h(x_1, \dots, x_{n-k}, y_1, \dots, y_k) := f_0 + y_1 f_1 + \dots + y_k f_k = 0,$$

$$(f_i = 0 \text{ is a hyperplane section of } X_{P_i})$$
 is singular if $h = \partial h/\partial x_i = \partial h/\partial y_j = 0$.

Generalize the Cayley trick:

$$Res(f_0(x_1,...,x_{n-k}),...,f_k(x_1,...,x_{n-k})) \sim \Delta(h).$$

Discriminants and dual varieties

If $k \leq n - k$, then $\Delta(h)$ is a polynomial in the coefficients of h, and defines a hypersurface: the dual variety $X_P^{\vee} \subseteq (\mathbb{P}^N)^{\vee}$ of X_P .

If k > n - k, the system $f_0 = \cdots = f_k = 0$ has more equations than variables. Hence "the discriminant" of h is of more than one polynomial, and the dual variety is not a hypersurface.

A variety X is called *defective* if its dual variety X^{\vee} is not a hypersurface. A polytope P is defective if X_P is defective.

The defect of a defective variety X is the positive integer $\operatorname{codim} X^{\vee} - 1$.

We conclude: If k > n - k, then the Cayley polytope $P = P_0 \star \cdots \star P_k$ is defective.

The degree of the dual variety

Gelfand–Kapranov–Zelevinski: If X_P is smooth,

$$\deg X_P^{\vee} = \sum_{F \subseteq P} (-1)^{\operatorname{codim} F} (\dim F + 1) \operatorname{Vol}_{\mathbb{Z}}(F).$$

The degree of the dual variety X_P is a polynomial in the Chern classes of X_P and the line bundle L_P giving the toric embedding.

The Chern classes of X_P and L_P can be expressed combinatorially. For example

$$c_n(T_{X_P}) = \# \text{ vertices of } P$$

 $c_1(L_P)^n = \operatorname{Vol}_{\mathbb{Z}}(P)$
 $c_i(T_{X_P})c_1(L_P)^{n-i} = \sum_{\operatorname{codim} F_i = i} \operatorname{Vol}_{\mathbb{Z}}(F_i).$

kth order dual varieties

$$\begin{split} X^{(k)} &= \overline{\{H \in \mathbb{P}^{m^{\vee}} \mid H \text{ is tangent to } X \text{ to the order } k\}} \\ &= \overline{\{H \in \mathbb{P}^{m^{\vee}} \mid H \supseteq \mathbb{T}^k_{X,x} \text{ for some } x \in X_{\text{smooth}}\}}. \end{split}$$

 $\mathbb{T}^k_{X,x} = k$ th osculating space to X at x.

$$\dim \mathbb{T}_{X,x}^k \le \binom{n+k}{k} - 1, \ n = \dim X.$$

$$X^{(1)} = X^{\vee}$$
 and $X^{(k-1)} \supseteq X^{(k)}$

Expected dimension of
$$X^{(k)} = n + m - \binom{n+k}{k}$$
.

X is k-defective if dim
$$X^{(k)} < n + m - \binom{n+k}{k}$$
.

Toric threefolds

Theorem (Dickenstein-Di Rocco-P.)

- $(X, P) = (X_P, L_P)$ smooth, 2-regular toric threefold embedding is 2-defective if and only if $(X, L) = (\mathbb{P}^3, \mathcal{O}(2))$. Moreover:
- (1) $\deg X^{(2)} = 120 \text{ if } (X, L) = (\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(3))$
- (2) $\deg X^{(2)} = 6(8(a+b+c)-7)$ if $(X,L) = (\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b) \oplus \mathcal{O}_{\mathbb{P}^1}(c)), 2\xi)$, where ξ denotes the tautological line bundle,
- (3) In all other cases, deg X⁽²⁾ = 62V - 57F + 28E - 8v + 58V₁ + 51F₁ + 20E₁, where V, F, E (resp. V₁, F₁, E₁) denote the (lattice) volume, area of facets, length of edges of P (resp. the adjoint polytope Conv(intP)), and v = #{vertices of P}.
- UiO: University of Oslo

Example

If P is a cube with edge lengths 2, then $(X_P, L_P) = (\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(2, 2, 2)).$

$$V = 3!8 = 48, F = 6 \cdot 2 \cdot 4 = 48, E = 12 \cdot 2 = 24, v = 8.$$

$$V_1 = F_1 = E_1 = 0$$
 (int(P) = {(1, 1, 1)} is a point)

$$\deg X^{(2)} = 62V - 57F + 28E - 8v = 848.$$

k-selfdual toric varieties (joint with A. Dickenstein)

 $\mathcal{A} = \{a_0, \dots, a_N\} \subset \mathbb{Z}^n$ a lattice point configuration, and $X_{\mathcal{A}} \subset \mathbb{P}^N$ the corresponding toric embedding.

Form the matrix A by adding a row of 1's to the matrix $(a_0|\cdots|a_N)$. Denote by $\mathbf{v}_0=(1,\ldots,1), \mathbf{v}_1,\ldots,\mathbf{v}_n\in\mathbb{Z}^{N+1}$ the row vectors of A.

For any $\alpha \in \mathbb{N}^{n+1}$, denote by $\mathbf{v}_{\alpha} \in \mathbb{Z}^{N+1}$ the vector obtained as the coordinatewise product of α_0 times the row vector \mathbf{v}_0 times ... times α_n times the row vector \mathbf{v}_n .

For any k, we define the matrix $A^{(k)}$ as follows. Order the vectors $\{\mathbf{v}_{\alpha} : |\alpha| \leq k\}$ (for instance, by degree and then by lexicographic order with $0 > 1 > \cdots > n$), and let $A^{(k)}$ be the $\binom{n+k}{k} \times (N+1)$ integer matrix with these rows.

Rational normal curve

Take $\mathcal{A} = \{0, \dots, d\}$. Then

$$A = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & d \end{array}\right),$$

and

$$A^{(3)} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & d \\ 0 & 1 & 4 & 9 & \cdots & d^2 \\ 0 & 1 & 8 & 27 & \cdots & d^3 \end{pmatrix}.$$

Note that

$$A^{(3)} \cong \left(\begin{array}{ccccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & d \\ 0 & 0 & 1 & 3 & \cdots & {d \choose 2} \\ 0 & 0 & 0 & 1 & \cdots & {d \choose 2} \end{array}\right).$$

The case k=2

Denote by $\mathbf{v}_i * \mathbf{v}_j \in \mathbb{Z}^{m+1}$ the vector given by the coordinatewise product of these vectors. Define the $\binom{n+2}{2} \times (m+1)$ -matrix

$$A^{(2)} = \left(egin{array}{ccc} \mathbf{v}_0 & & & & \\ & \vdots & & & \\ & \mathbf{v}_n & & & \\ & \mathbf{v}_1 * \mathbf{v}_1 & & & \\ & \mathbf{v}_1 * \mathbf{v}_2 & & & \\ & \vdots & & & \\ & \mathbf{v}_{n-1} * \mathbf{v}_n & & & \\ & \mathbf{v}_n * \mathbf{v}_n & & \end{array}
ight),$$

 $\mathbf{v}_i * \mathbf{v}_j$, $1 \le i \le j \le n$. Then, $\mathbb{P}(\text{Rowspan}(A^{(2)})) = \mathbb{T}^2_{X_A, \mathbf{1}}$ describes the second osculating space of X_A at the point $\mathbf{1}$.

Non-pyramidal configurations

The configuration \mathcal{A} is non-pyramidal (nap) if the configuration of columns in A is not a pyramid (i.e., no basis vector e_i of \mathbb{R}^{N+1} lies in the rowspan of the matrix).

The configuration \mathcal{A} is knap if the configuration of columns in $A^{(k)}$ is not a pyramid.

Example

A is a pyramid:

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 5 & 0 & 0 \end{array}\right)$$

Characterization of k-self dual configurations

 $X_{\mathcal{A}}$ is k-selfdual if $\phi(X_{\mathcal{A}}) = X_{\mathcal{A}}^{(k)}$ for some $\phi \colon \mathbb{P}^N \cong (\mathbb{P}^N)^{\vee}$.

Theorem (Dickenstein-P.)

- (1) $X_{\mathcal{A}}$ is k-selfdual if and only if dim $X_{\mathcal{A}} = \dim X_{\mathcal{A}}^{(k)}$ and \mathcal{A} is knap.
- (2) If A is knap and dim Ker $A^{(k)} = 1$, then X_A is k-selfdual.
- (3) If A is knap and k-selfdual, and dim $Ker A^{(k)} = r > 1$, then A is r-Cayley.

The proof generalizes [Bourel–Dickenstein–Rittatore] (k = 1).

A surface in \mathbb{P}^3

$$\mathcal{A} = \{(0,0), (1,0), (1,1), (0,2)\}$$

gives

$$X_{\mathcal{A}}:(x,y)\mapsto (1:x:xy:y^2)$$

and

$$X_{\mathcal{A}}^{\vee} \cong X_{\mathcal{A}^{\vee}} : (x, y) \mapsto (-y^2 : 2x^{-1}y^2 : -2x^{-1}y : 1),$$

with

$$\mathcal{A}^{\vee} = \{(0,2), (-1,2), (-1,1), (0,0)\}.$$

This surface is self dual.

The corresponding polytopes

Example

This square is an example of a 4-selfdual smooth surface which is not centrally symmetric.

Connections with number theory

Any non-trivial linear relation between the rows of $A^{(k)}$ corresponds to a polynomial of degree k that vanish on \mathcal{A} .

Example

Consider three quadrics $Q_1, Q_2, Q_3 \in \mathbb{Z}[x_1, x_2, x_3]$ with

$$Q_1 \cap Q_2 \cap Q_3 = \{a_0, \dots, a_7\} \subset \mathbb{Z}^3 \subset \mathbb{R}^3.$$

Then $\mathcal{A} = \{a_0 \dots, a_7\}$ gives a 2-selfdual threefold:

The rank of $A^{(2)}$ is 10-3=7, which is one less than the maximal rank.

Such constructions give an interesting connection to diophantine theory: polynomials with many integer solutions.

THANK YOU FOR YOUR ATTENTION!

TRAVEL GRANTS FOR 1,000 MATHEMATICIANS FROM DEVELOPING COUNTRIES

