Discriminants, polytopes and toric geometry

Ragni Piene

ASSMS
Lahore, Pakistan
March 8, 2013

Resultants

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.
S. S. Abhyankar (1970)

Question: For which a_{0}, \ldots, a_{m} and b_{0}, \ldots, b_{n} do

$$
f(x)=a_{m} x^{m}+\cdots+a_{0} \text { and } g(x)=b_{n} x^{n}+\cdots+b_{0}
$$

have a common root?

James Joseph Sylvester (1814-1897)

The Sylvester matrix is the $(m+n) \times(m+n)$-matrix

$$
\left(\begin{array}{ccccc}
a_{m} & a_{m-1} & a_{m-2} & \cdots & \cdots \\
0 & a_{m} & a_{m-1} & a_{m-2} & \cdots \\
\vdots & & & \vdots & \\
b_{n} & b_{n-1} & b_{n-2} & \cdots & \cdots \\
0 & b_{n} & b_{n-1} & b_{n-2} & \cdots \\
\vdots & & & \vdots &
\end{array}\right)
$$

The resultant is the determinant of this matrix.

A student of Sylvester: Florence Nightingale (1820-1910)

 Weck line ouclengy thom

Figure: Diagram of the Causes of Mortality in the Army in the East

UiO: University of Oslo

Arthur Cayley (1821-1895)

Set

$$
h(x, y):=f(x)+y g(x) .
$$

If α is a common root of f and g, then

$$
\left(\alpha,-\frac{f_{x}(\alpha)}{g_{x}(\alpha)}\right)
$$

is a common zero of h, h_{x}, h_{y}.

The Cayley trick

Consider

$$
\begin{aligned}
& h\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right):= \\
& \quad f_{0}\left(x_{1}, \ldots, x_{k}\right)+y_{1} f_{1}\left(x_{1}, \ldots, x_{k}\right)+y_{k} f_{k}\left(x_{1}, \ldots, x_{k}\right) .
\end{aligned}
$$

The discriminant $\Delta(h)$ of h is obtained by eliminating the x_{i} 's and y_{i} 's from the $2 k+1$ equations

$$
h=0, \partial h / \partial x_{i}=0, \partial h / \partial y_{i}=f_{i}=0
$$

Hence $\Delta(h) \sim \operatorname{Res}\left(f_{0}, \ldots, f_{k}\right)$.

Convex lattice polytopes

Cayley polytopes

Let $P_{0}, \ldots, P_{k} \subset \mathbb{R}^{n-k}$ be convex lattice polytopes, and e_{0}, \ldots, e_{k} are the vertices of $\Delta_{k} \subset \mathbb{R}^{k}$.

The polytope

$$
P=\operatorname{Conv}\left\{e_{0} \times P_{0}, \ldots, e_{k} \times P_{k}\right\} \subset \mathbb{R}^{k} \times \mathbb{R}^{n-k}=\mathbb{R}^{n}
$$

is called a Cayley polytope.
We write

$$
P=P_{0} \star \cdots \star P_{k}
$$

A Cayley polytope is "hollow": it has no interior lattice points.

An example

The codegree and degree of a polytope

$$
\operatorname{codeg}(P)=\min \{m \mid m P \text { has interior lattice points }\}
$$

$$
\operatorname{deg}(P)=n+1-\operatorname{codeg}(P)
$$

Example (1)

$$
\operatorname{codeg}\left(\Delta_{n}\right)=n+1 \text { and } \operatorname{codeg}\left(2 \Delta_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil
$$

Example (2)

$$
P=P_{0} \star \cdots \star P_{k} \text { implies } \operatorname{codeg}(P) \geq k+1
$$

$\mathrm{UiO}:$ University of Oslo

$$
\operatorname{codeg}\left(P_{1}\right)=3 \quad \operatorname{codeg}\left(P_{2}\right)=2
$$

$$
\operatorname{codeg}\left(P_{3}\right)=1
$$

The Cayley polytope conjecture

Question (Batyrev-Nill): Is there an integer $N(d)$ such that any polytope P of degree d and $\operatorname{dim} P \geq N(d)$ is a Cayley polytope?

Answer (Haase-Nill-Payne): Yes, and $N(d) \leq\left(d^{2}+19 d-4\right) / 2$
Question: Is $N(d)$ linear in d ?
Answer (Dickenstein-Di Rocco-P.): Yes, $N(d)=2 d+1$ (if P is smooth and \mathbb{Q}-normal).

Note that $n \geq 2 d+1$ is equivalent to $\operatorname{codeg}(P) \geq \frac{n+3}{2}$.

Theorem (Dickenstein, Di Rocco, P., Nill)

Let P be a smooth lattice polytope of dimension n. The following are equivalent
(1) $\operatorname{codeg}(P) \geq \frac{n+3}{2}$
(2) $P=P_{0} \star \cdots \star P_{k}$ is a smooth Cayley polytope with
$k+1=\operatorname{codeg}(P)$ and $k>\frac{n}{2}$.
(3) P is defective, with defect $2 k-n>0$.

The proof is essentially algebro-geometric (adjoints and nef-value maps à la Beltrametti-Sommese, toric fibrations à la Reid).

UiO : University of Oslo

Lattice polytopes and toric embeddings

The polytope P_{0} :
corresponds to the toric embedding $\mathbb{C}^{*} \rightarrow \mathbb{P}^{2}$ given by $x \mapsto\left(1: x: x^{2}\right)$; its closure $X_{P_{0}}$ is a conic.

The polytope P_{1} :

corresponds to the toric embedding $\mathbb{C}^{*} \rightarrow \mathbb{P}^{3}$ given by $x \mapsto\left(1: x: x^{2}: x^{3}\right)$; its closure $X_{P_{1}}$ is a twisted cubic curve.

The Cayley sum

The polytope $P=P_{0} \star P_{1}$:

corresponds to the embedding

$$
\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{P}^{6}
$$

given by

$$
(x, y) \mapsto\left(1: x: x^{2}: y: x y: x^{2} y: x^{3} y\right)
$$

its closure X_{P} is a rational normal scroll of type $(2,3)$.

Hyperplane sections and discriminants

$P=P_{0} \star \cdots \star P_{k}$ gives $X_{P} \subseteq \mathbb{P}^{N}$.
A hyperplane section of X_{P} :

$$
h\left(x_{1}, \ldots, x_{n-k}, y_{1}, \ldots, y_{k}\right):=f_{0}+y_{1} f_{1}+\cdots+y_{k} f_{k}=0
$$

($f_{i}=0$ is a hyperplane section of $X_{P_{i}}$) is singular if
$h=\partial h / \partial x_{i}=\partial h / \partial y_{j}=0$.
Generalize the Cayley trick:

$$
\operatorname{Res}\left(f_{0}\left(x_{1}, \ldots, x_{n-k}\right), \ldots, f_{k}\left(x_{1}, \ldots, x_{n-k}\right)\right) \sim \Delta(h)
$$

Discriminants and dual varieties

If $k \leq n-k$, then $\Delta(h)$ is a polynomial in the coefficients of h, and defines a hypersurface: the dual variety $X_{P}^{\vee} \subseteq\left(\mathbb{P}^{N}\right)^{\vee}$ of X_{P}.

If $k>n-k$, the system $f_{0}=\cdots=f_{k}=0$ has more equations than variables. Hence "the discriminant" of h is of more than one polynomial, and the dual variety is not a hypersurface. A variety X is called defective if its dual variety X^{\vee} is not a hypersurface. A polytope P is defective if X_{P} is defective. The defect of a defective variety X is the positive integer $\operatorname{codim} X^{\vee}-1$.

We conclude: If $k>n-k$, then the Cayley polytope
$P=P_{0} \star \cdots \star P_{k}$ is defective.

The degree of the dual variety

Gelfand-Kapranov-Zelevinski: If X_{P} is smooth,

$$
\operatorname{deg} X_{P}^{\vee}=\sum_{F \subseteq P}(-1)^{\operatorname{codim} F}(\operatorname{dim} F+1) \operatorname{Vol}_{\mathbb{Z}}(F)
$$

The degree of the dual variety X_{P} is a polynomial in the Chern classes of X_{P} and the line bundle L_{P} giving the toric embedding.

The Chern classes of X_{P} and L_{P} can be expressed combinatorially. For example
$c_{n}\left(T_{X_{P}}\right)=\#$ vertices of P
$c_{1}\left(L_{P}\right)^{n}=\operatorname{Vol}_{\mathbb{Z}}(P)$
$c_{i}\left(T_{X_{P}}\right) c_{1}\left(L_{P}\right)^{n-i}=\sum_{\text {codim } F_{i}=i} \operatorname{Vol}_{\mathbb{Z}}\left(F_{i}\right)$.

k th order dual varieties

$$
\begin{aligned}
X^{(k)}=\overline{\{H} & \left.\in \mathbb{P}^{m \vee} \mid H \text { is tangent to } X \text { to the order } k\right\} \\
& =\overline{\left\{H \in \mathbb{P}^{m}{ }^{\vee} \mid H \supseteq \mathbb{T}_{X, x}^{k} \text { for some } x \in X_{\text {smooth }}\right\}}
\end{aligned}
$$

$\mathbb{T}_{X, x}^{k}=k$ th osculating space to X at x.
$\operatorname{dim} \mathbb{T}_{X, x}^{k} \leq\binom{ n+k}{k}-1, n=\operatorname{dim} X$.
$X^{(1)}=X^{\vee}$ and $X^{(k-1)} \supseteq X^{(k)}$
Expected dimension of $X^{(k)}=n+m-\binom{n+k}{k}$.
X is k-defective if $\operatorname{dim} X^{(k)}<n+m-\binom{n+k}{k}$.

UiO : University of Oslo

Toric threefolds

Theorem (Dickenstein-Di Rocco-P.)

$(X, P)=\left(X_{P}, L_{P}\right)$ smooth, 2-regular toric threefold embedding is 2-defective if and only if $(X, L)=\left(\mathbb{P}^{3}, \mathcal{O}(2)\right)$. Moreover:
(1) $\operatorname{deg} X^{(2)}=120$ if $(X, L)=\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)\right)$
(2) $\operatorname{deg} X^{(2)}=6(8(a+b+c)-7)$ if
$(X, L)=\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b) \oplus \mathcal{O}_{\mathbb{P}^{1}}(c)\right), 2 \xi\right)$, where ξ denotes the tautological line bundle,
(3) In all other cases, $\operatorname{deg} X^{(2)}=62 V-57 F+28 E-8 v+58 V_{1}+51 F_{1}+20 E_{1}$, where V, F, E (resp. V_{1}, F_{1}, E_{1}) denote the (lattice) volume, area of facets, length of edges of P (resp. the adjoint polytope $\operatorname{Conv}(\operatorname{int} P)$), and $v=\#\{$ vertices of $P\}$.

UiO: University of Oslo

Example

If P is a cube with edge lengths 2 , then
$\left(X_{P}, L_{P}\right)=\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(2,2,2)\right)$.
$V=3!8=48, F=6 \cdot 2 \cdot 4=48, E=12 \cdot 2=24, v=8$.
$V_{1}=F_{1}=E_{1}=0(\operatorname{int}(P)=\{(1,1,1)\}$ is a point $)$

$$
\operatorname{deg} X^{(2)}=62 V-57 F+28 E-8 v=848
$$

k-selfdual toric varieties (joint with A. Dickenstein)

$\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n}$ a lattice point configuration, and $X_{\mathcal{A}} \subset \mathbb{P}^{N}$ the corresponding toric embedding.
Form the matrix A by adding a row of 1's to the matrix $\left(a_{0}|\cdots| a_{N}\right)$. Denote by $\mathbf{v}_{0}=(1, \ldots, 1), \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{Z}^{N+1}$ the row vectors of A.

For any $\alpha \in \mathbb{N}^{n+1}$, denote by $\mathbf{v}_{\alpha} \in \mathbb{Z}^{N+1}$ the vector obtained as the coordinatewise product of α_{0} times the row vector \mathbf{v}_{0} times \ldots times α_{n} times the row vector \mathbf{v}_{n}.
For any k, we define the matrix $A^{(k)}$ as follows. Order the vectors $\left\{\mathbf{v}_{\alpha}:|\alpha| \leq k\right\}$ (for instance, by degree and then by lexicographic order with $0>1>\cdots>n$), and let $A^{(k)}$ be the $\binom{n+k}{k} \times(N+1)$ integer matrix with these rows.

UiO : University of Oslo

Rational normal curve

Take $\mathcal{A}=\{0, \ldots, d\}$. Then

$$
A=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d
\end{array}\right)
$$

and

$$
A^{(3)}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d \\
0 & 1 & 4 & 9 & \cdots & d^{2} \\
0 & 1 & 8 & 27 & \cdots & d^{3}
\end{array}\right)
$$

Note that

$$
A^{(3)} \cong\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d \\
0 & 0 & 1 & 3 & \cdots & \left(\begin{array}{c}
d \\
2 \\
2
\end{array}\right) \\
0 & 0 & 0 & 1 & \cdots & \binom{d}{3}
\end{array}\right) .
$$

UiO: University of Oslo

The case $k=2$

Denote by $\mathbf{v}_{i} * \mathbf{v}_{j} \in \mathbb{Z}^{m+1}$ the vector given by the coordinatewise product of these vectors. Define the $\binom{n+2}{2} \times(m+1)$-matrix

$$
A^{(2)}=\left(\begin{array}{c}
\mathbf{v}_{0} \\
\vdots \\
\mathbf{v}_{n} \\
\mathbf{v}_{1} * \mathbf{v}_{1} \\
\mathbf{v}_{1} * \mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{n-1} * \mathbf{v}_{n} \\
\mathbf{v}_{n} * \mathbf{v}_{n}
\end{array}\right),
$$

$\mathbf{v}_{i} * \mathbf{v}_{j}, 1 \leq i \leq j \leq n$. Then, $\mathbb{P}\left(\operatorname{Rowspan}\left(A^{(2)}\right)\right)=\mathbb{T}_{X_{\mathcal{A}}, \mathbf{1}}^{2}$ describes the second osculating space of $X_{\mathcal{A}}$ at the point 1 .

Non-pyramidal configurations

The configuration \mathcal{A} is non-pyramidal (nap) if the configuration of columns in A is not a pyramid (i.e., no basis vector e_{i} of \mathbb{R}^{N+1} lies in the rowspan of the matrix).
The configuration \mathcal{A} is k nap if the configuration of columns in $A^{(k)}$ is not a pyramid.

Example
A is a pyramid:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 5 & 0 & 0
\end{array}\right)
$$

Characterization of k-self dual configurations

$X_{\mathcal{A}}$ is k-selfdual if $\phi\left(X_{\mathcal{A}}\right)=X_{\mathcal{A}}^{(k)}$ for some $\phi: \mathbb{P}^{N} \cong\left(\mathbb{P}^{N}\right)^{\vee}$.
Theorem (Dickenstein-P.)
(1) $X_{\mathcal{A}}$ is k-selfdual if and only if $\operatorname{dim} X_{\mathcal{A}}=\operatorname{dim} X_{\mathcal{A}}^{(k)}$ and \mathcal{A} is knap.
(2) If \mathcal{A} is knap and $\operatorname{dim} \operatorname{Ker} A^{(k)}=1$, then $X_{\mathcal{A}}$ is k-selfdual.
(3) If \mathcal{A} is $k n a p$ and k-selfdual, and $\operatorname{dim} \operatorname{Ker} A^{(k)}=r>1$, then \mathcal{A} is r-Cayley.

The proof generalizes [Bourel-Dickenstein-Rittatore] $(k=1)$.

A surface in \mathbb{P}^{3}

$$
\mathcal{A}=\{(0,0),(1,0),(1,1),(0,2)\}
$$

gives

$$
X_{\mathcal{A}}:(x, y) \mapsto\left(1: x: x y: y^{2}\right)
$$

and

$$
X_{\mathcal{A}}^{\vee} \cong X_{\mathcal{A}^{\vee}}:(x, y) \mapsto\left(-y^{2}: 2 x^{-1} y^{2}:-2 x^{-1} y: 1\right)
$$

with

$$
\mathcal{A}^{\vee}=\{(0,2),(-1,2),(-1,1),(0,0)\} .
$$

This surface is self dual.

The corresponding polytopes

Example

This square is an example of a 4 -selfdual smooth surface which is not centrally symmetric.

UiO : University of Oslo

Connections with number theory

Any non-trivial linear relation between the rows of $A^{(k)}$ corresponds to a polynomial of degree k that vanish on \mathcal{A}.
Example
Consider three quadrics $Q_{1}, Q_{2}, Q_{3} \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$ with

$$
Q_{1} \cap Q_{2} \cap Q_{3}=\left\{a_{0}, \ldots, a_{7}\right\} \subset \mathbb{Z}^{3} \subset \mathbb{R}^{3}
$$

Then $\mathcal{A}=\left\{a_{0} \ldots, a_{7}\right\}$ gives a 2 -selfdual threefold:
The rank of $A^{(2)}$ is $10-3=7$, which is one less than the maximal rank.

Such constructions give an interesting connection to diophantine theory: polynomials with many integer solutions.

Thank you for your attention!

Travel grants For 1,000 mathematicians FROM DEVELOPING COUNTRIES

