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Resultants

Eliminate, eliminate, eliminate

Eliminate the eliminators of elimination theory.
S. S. Abhyankar (1970)

Question: For which aq,...,a,, and bg,...,b, do
f(x) :amxm+"‘+a’0 andg(a:) :bnxn++b0

have a common root?
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James Joseph Sylvester (1814-1897)

b |
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The Sylvester matrix is the
(m +n) X (m + n)-matrix

m  Am—1 Am—2
0 Qm Um—1 Om-—2

The resultant is the
determinant of this matrix.




A student of Sylvester: Florence Nightingale (1820-1910)

DBIAGRAM or rix EAUSES or MORTALITY i
APRIL 1655 10 MARCH 1836 IN THE ARMY i THE EAST. APRIL 1854 20 MARCH 1855,

o Vie datho o all. Ve causss dring the i,
I Ot 1855, & il 855 e Hack arese <ol wnth e red
indamcary & Rbrary 1855 the W o wil tho Ve

Hacktines anclosing them.

Figure: Diagram of the Causes of
Mortality in the Army in the East
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Arthur Cayley (1821-1895)
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Set

h(z,y) :== f(z) + yg(z).

If « is a common root of f and
g, then

is a common zero of h, hy, hy.




The Cayley trick

Consider

h(.%'l,.. '7xk‘7y17"'7yk) =
fo(zi, ... zn) + o filze, .. zn) + yrfe(zn, ..o 2k).

The discriminant A(h) of h is obtained by eliminating the x;’s
and y;’s from the 2k + 1 equations

h = 0,0h/al‘l = 0,8h/6yz = fl =0.

Hence A(h) ~ Res(fo,. .., fr)-
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Convex lattice polytopes
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Cayley polytopes

Let Py,..., P, C R"* be convex lattice polytopes, and
€o, . .., ep are the vertices of A, C RF.

The polytope
P = Conv{eg x Py,...,ex X P} C RF x R % — R",
is called a Cayley polytope.
We write
P = PO koo k Pk

A Cayley polytope is “hollow™ it has no interior lattice points.
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An example

lattice
1stance
one
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The codegree and degree of a polytope
codeg(P) = min{m | mP has interior lattice points}.
deg(P) =n + 1 — codeg(P)

Example (1)

n+1
2 I

codeg(A,) =n+ 1 and codeg(2A,) = |

Example (2)

P = Py* - P implies codeg(P) >k + 1.
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The Cayley polytope conjecture

Question (Batyrev—Nill): Is there an integer N(d) such that any
polytope P of degree d and dim P > N(d) is a Cayley polytope?

Answer (Haase Nill-Payne): Yes, and N(d) < (d? + 19d — 4)/2

Question: Is N(d) linear in d?

Answer (Dickenstein-Di Rocco—P.): Yes, N(d) = 2d + 1
(if P is smooth and Q-normal).

Note that n > 2d + 1 is equivalent to codeg(P) > 243,
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Theorem (Dickenstein, Di Rocco, P., Nill)
Let P be a smooth lattice polytope of dimension n. The following
are equivalent
3
(1) codeg(P) > "2
(2) P=Py*---* Py is a smooth Cayley polytope with
k+1 = codeg(P) and k > 3.
(3) P is defective, with defect 2k —n > 0.
The proof is essentially algebro-geometric (adjoints and

nef-value maps & la Beltrametti-Sommese, toric fibrations & la
Reid).
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Lattice polytopes and toric embeddings

The polytope Fy:

corresponds to the toric embedding C* — P? given by
x> (1:2:2%); its closure Xp, is a conic.

The polytope Pi:

corresponds to the toric embedding C* — P3 given by
x> (1:z:2?:23); its closure Xp, is a twisted cubic curve.
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The Cayley sum
The polytope P = Fy x P;:

/

[ ]
corresponds to the embedding

(C*)? — P°

given by
(z,y) = (L:z: 2 y:ay: 2Py 23y);

its closure Xp is a rational normal scroll of type (2, 3).
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Hyperplane sections and discriminants

P =Py%---* Py, gives Xp C PV,
A hyperplane section of Xp:
h(xla'--azvn—kvyl?"'vyk) = f0+y1f1 + +ykfk =0,

(fi = 0 is a hyperplane section of Xp,) is singular if
h = 8h/8:cl = 8h/8y] = 0.

Generalize the Cayley trick:

Res(fo(z1, - s Tn—k)y- -, fu(x1, . oy k) ~ A(h).
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Discriminants and dual varieties

If Kk <n—k, then A(h) is a polynomial in the coefficients of h,
and defines a hypersurface: the dual variety X}, C (PV)Y of Xp.

If £ > n — k, the system fo=--- = f; = 0 has more equations
than variables. Hence “the discriminant” of h is of more than
one polynomial, and the dual variety is not a hypersurface.

A variety X is called defective if its dual variety XV is not a
hypersurface. A polytope P is defective if Xp is defective.

The defect of a defective variety X is the positive integer
codim XV — 1.

We conclude: If k£ > n — k, then the Cayley polytope
P = Pyx---x Py is defective.
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The degree of the dual variety
Gelfand—Kapranov—Zelevinski: If Xp is smooth,

deg X = Y (—1)°M™F(dim F + 1)Volz (F).
FCP

The degree of the dual variety Xp is a polynomial in the Chern
classes of Xp and the line bundle Lp giving the toric
embedding.

The Chern classes of Xp and Lp can be expressed
combinatorially. For example

en(Tx,) = # vertices of P

c(Lp)" = VolZ(P)

¢i(Txp)er(Lp)" ™" = X codim Fy—i Volz(£5).
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kth order dual varieties

XW® = {H € P"V | H is tangent to X to the order k}

={HeP" |HD ']I")“(’x for some = € Xgmnooth }-

T’;{,J) = kth osculating space to X at .
dimT% , < ("7%) =1, n = dim X.

XM = XV and X*-1 > x*)

Ezpected dimension of X®) =n 4+ m — (”Zk)

X is k-defective if dim X*) < n+m — (nzk)
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Toric threefolds

Theorem (Dickenstein-Di Rocco—P.)

(X, P) = (Xp,Lp) smooth, 2-reqular toric threefold embedding

is 2-defective if and only if (X, L) = (P3,0(2)). Moreover:

(1) deg X =120 if (X, L) = (P3, Ops(3))

(2) deg X@ =6(8(a+b+c)—7) if
(X,L) = (P(Op1(a) ® Op1(b) ® Opi(c)),2£), where &
denotes the tautological line bundle,

(3) In all other cases,
deg X@) = 62V — 57F + 28F — 8v + 58V} + 51F, + 20E},
where V., F, E (resp. Vi, F1, E1) denote the (lattice)

volume, area of facets, length of edges of P (resp. the
adjoint polytope Conv(intP)), and v = # {vertices of P }.
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Example

If P is a cube with edge lengths 2, then
(Xp,Lp) = (P* x P! x P}, 0(2,2,2)).

V=318=48 F=6-2-4=48 F=12-2=24, v =28,
Vi =F = E; =0 (int(P) = {(1,1,1)} is a point)

deg X® = 62V — 57F + 28E — 8v = 848.
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k-selfdual toric varieties (joint with A. Dickenstein)

A ={ap,...,any} CZ" a lattice point configuration, and
X 4 C PN the corresponding toric embedding.

Form the matrix A by adding a row of 1’s to the matrix
(ag|---|an). Denote by vo = (1,...,1), vi,..., vy € ZNTL the
row vectors of A.

For any o € N**1_ denote by v, € ZV*! the vector obtained as
the coordinatewise product of ag times the row vector v times
... times «,, times the row vector v,,.

For any k, we define the matrix A®) as follows. Order the
vectors {v, @ |a] <k} (for instance, by degree and then by

lexicographic order with 0 > 1 > --- > n), and let A®) be the
n+k
("%

) x (N +1) integer matrix with these rows.
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Rational normal curve
Take A ={0,...,d}. Then

1111
A_<0123

and
1 11 1
01 2 3
(3) —
4 014 9
0 1 8 27
Note that
1 11 1
01 2 3
(3)
A 0 01 3
00 01
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The case k = 2

Denote by v; xv; € Z™*1 the vector given by the coordinatewise
product of these vectors. Define the (”;2) X (m 4+ 1)-matrix

Vo
Vn

Vi *Vyp
Vi * Vg

A?) —

Vp—1%*Vp
Vi % Vp

vi*v;, 1 <i<j <n. Then, P(Rowspan(A®)) = T%A’l
describes the second osculating space of X 4 at the point 1.
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Non-pyramidal configurations

The configuration A is non-pyramidal (nap) if the configuration
of columns in A is not a pyramid (i.e., no basis vector e; of
RN+ lies in the rowspan of the matrix).

The configuration A is knap if the configuration of columns in

A®) is not a pyramid.

Example
A is a pyramid:

O =
(G2 B NI
S W =
O = =
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Characterization of k-self dual configurations
X4 is k-selfdual if $(X 4) = .(f) for some ¢: PV = (PV)V,
Theorem (Dickenstein—P.)

(1) X 4 is k-selfdual if and only if dim X 4 = dim Xff) and A is
knap.
(2) If A is knap and dim KerA®) =1, then X4 is k-selfdual.

(3) If A is knap and k-selfdual, and dim KerA®) = r > 1, then
A is r-Cayley.

The proof generalizes [Bourel-Dickenstein—Rittatore| (k = 1).
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A surface in P3

A= {(070)7 (17 0)7 (17 1)7 (07 2)}
gives

Xa:(zy)— 1z ay:y?)
and

XN X (z,y) (=% 2071y =227y 0 1),

with
AV =1{(0,2),(~1,2),(-1,1),(0,0)}.

This surface is self dual.
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The corresponding polytopes

(o] [ ] (¢]
(¢] O\.
(¢] [ ] [ ]

A
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Example

This square is an example of a 4-selfdual smooth surface which
is not centrally symmetric.

[ ] [ ] o} [ ] [ ]
[ ] [ ] e} (¢} [ ]
(¢] (¢] L] (¢} (¢]
[ ] [ ] o} [ ] [ ]
[ ] [ ] e} [ ] [ ]
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Connections with number theory

Any non-trivial linear relation between the rows of A*)
corresponds to a polynomial of degree k that vanish on A.

Example
Consider three quadrics Q1,Q2, Q3 € Z[x1, x2, x3] with

Q1NQ2NQs = {ap,...,a7} CZ* CR®.

Then A = {ag...,ar} gives a 2-selfdual threefold:

The rank of A® is 10 — 3 = 7, which is one less than the
maximal rank.

Such constructions give an interesting connection to diophantine
theory: polynomials with many integer solutions.
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