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Introduction

The theory of polars and polar varieties has played an important
role in the quest for understanding and classifying projective
varieties. Their use in the definition of projective invariants is
the very basis for the geometric approach to the theory of
characteristic classes, such as Todd classes and Chern classes.



Applications
Polar varieties have been applied to study

I singularities (Lê–Teissier, Merle, . . . )
I the topology of real affine varieties (Giusti, Heinz et al.,

Safey El Din–Schost)
I real solutions of polynomial equations (Giusti, Heinz, et al.)
I complexity questions (Bürgisser–Lotz)
I foliations (Soares, . . . )
I focal loci and caustics of reflection (Catanese, Trifogli,

Josse–Pène)
I Euclidean distance degree (Sturmfels et al.)



Today I will survey the classical theory of polar varieties and
the less classical of reciprocal polar varieties. I will take a look
at three applications:

I finding points on real components
I focal loci and caustics of reflection
I Euclidean distance degree

The work on polars and reciprocal polars of real projective and
affine algebraic varieties is joint work with Heidi Mork (“Real
algebraic curves and surfaces,” PhD Thesis 2011, University of
Oslo). The pictures are made by her, using Surf and Maple.



Pole and polars
Let Q be a conic section. Let P be a point in the plane. There
are two tangents to Q passing through P . The polar of P is
the line joining the two points of tangency. Conversely, if L is a
line, it intersects the conic in two points. The pole of L is the
intersection of the tangents to Q at these two points.



More generally, a quadric hypersurface Q in Pn given by a
quadratic form q, sets up a polarity between points and
hyperplanes:

P = (b0 : . . . : bn) 7→ H :
∑

bi
∂q

∂Xi
= 0

The polar hyperplane P⊥ of P is the linear span of the points on
Q such that the tangent hyperplane at that point contains P .

If H is a hyperplane, its pole H⊥ is the intersection of the
tangent hyperplanes to Q at the points of intersection with H.

If the quadric is q =
∑
X2

i , then the polar of

P = (b0 : . . . : bn)

is the hyperplane

P⊥ : b0X0 + . . .+ bnXn = 0.



Grassmann and Schubert varieties
Let k = R or C. Let G(m,n) denote the Grassmann variety of
(m+ 1)-spaces in kn+1, or equivalently, of m-dimensional linear
subspaces of Pn

k .

Let
L : L0 ⊂ L1 ⊂ · · · ⊂ Lm ⊂ Pn

k

be a flag of linear subspaces, with dimLi = ai.

The Schubert variety Ω(L) is defined by

Ω(L) := {W ∈ G(m,n) | dimW ∩ Li ≥ i, 0 ≤ i ≤ m}.

The class of Ω(L) depends only on the ai. Write

Ω(L) = Ω(a0, . . . , am).



Example

I m = 1, n = 3: G(1, 3) = lines in P3.

Ω(1, 3) = lines meeting a given line

Ω(0, 3) = lines through a given point

Ω(1, 2) = lines in a given plane

Ω(0, 2) = lines in a plane through a point in the plane

I m = 2, n = 5: G(2, 5) = planes in P5.

Ω(1, 4, 5) = planes meeting a given line

Ω(2, 4, 5) = planes meeting a given plane



The Gauss map
I Projective variety X ⊂ Pn, dimX = m. The Gauss map1 is

γ : X 99K G(m,n) ;P 7→ TP

TP =the projective tangent space to X at P .

The Gauss map is finite and birational (Zak, 1987).

I Affine variety X ⊂ An, dimX = m. The Gauss map is

γ : X 99K G(m− 1, n− 1) ;P 7→ tP

tP = the affine tangent space to X at P (considered as a
subspace of kn).

1The most ingenious thing Gauss did, according to W. Hsiang.



Example (The double pillow)

Figure: Picture in xyw-space (z = 1) of
x4 − 2x2y2 + y4 − 2x2w2 − 2y2w2 − 16z2w2 + w4 = 0



The double pillow is the image of the Gauss map (the dual
surface).

Figure: 16x2 − y4 + 2y2z2 − 8x2y2 − z4 − 8x2z2 − 16x4 = 0



Polar varieties
The polar varieties of X ⊂ Pn are the inverse images

P (L) := γ−1Ω(L)

of the Schubert varieties via the Gauss map.

Example

I X ⊂ P3 is a curve (m=1). Then P (1, 3) is the set of points
P ∈ X such that TP meets a given line, i.e., the
ramification points of the projection map X → P1.

I X ⊂ P5 is a surface (m = 2). Then P (1, 4, 5) is the
ramification locus of the projection map X → P3 with
center a line L0.



Projective invariants and characteristic classes
The polar classes are projective invariants (invariant under
linear projections and under sections by linear spaces).

Certain combinations of the polar classes are intrinsic invariants,
depending only on the variety, not on the projective embedding,
hence define characteristic classes (Severi, Todd, Eger):

ci(X) =

i∑
j=0

(−1)i−j
(
m+ 1− i+ j

j

)
[Mj ]h

j ,

where Mj = γ−1Ω(L) for Ω(L) a first special Schubert cycle
with dimLj−1 = j + n−m− 2, m = dimX, and h is the class
of a hyperplane section.



Example
Let X ⊂ P5 be a surface. Set µ0 = degX, µ1 = degP (2, 4, 5),
µ2 = degP (2, 3, 5), ν2 = degP (1, 4, 5).

Around 1871 M. Noether showed that

µ2 − 6µ1 + 9µ0 + ν2

is an invariant and Zeuthen discovered that

µ2 − 2µ1 + 3µ0

also is an invariant. Indeed,

µ2 − 6µ1 + 9µ0 + ν2 = c1(X)2 and µ2 − 2µ1 + 3µ0 = c2(X).

.



Singular varieties
The theory of polar varieties can be extended to the case of
singular varieties: replace X by the set of smooth points and
take closures.

One can then use the Todd–Eger relations to define
characteristic classes for singular varieties (Chern–Mather
classes). These are not topologically well behaved; the solution
is to use the Euler obstruction to define
Chern–Schwarz–MacPhersson classes.

Moreover, one can find formulas for the degrees of the polar
varieties in terms of the degree of the variety and the degrees of
the singular loci.



Polars
If X ⊂ Pn is a hypersurface, defined by a homogeneous
polynomial F = 0, then its polar with respect to a point
P = (b0 : . . . : bn) is the hypersurface

∑
bi

∂F
∂Xi

= 0. The
intersection of the variety with the polar is the polar variety
M1 = P (0, 2, . . . , n) (with L0 = P ).

Figure: The sextic surface x2 + y2 − z2 + z6 = 0 and its polar w.r.t.
the point (1 : 1 : 1 : 1), 6z5 + 4x2 + 4y2 − 4z2 + 2x+ 2y − 2z = 0. The
polar variety is the intersection of the two surfaces.



Finding real points

Let X ⊂ Rn be a real algebraic variety. Then X may have many
connected components. How to find a way of determining a
point on each connected component?

Bank, Giusti, Heintz, Mbakop, and Pardo proved that the polar
varieties of real, affine, non-singular, compact varieties contain
points on each connected component of the variety. Related
work has also been done by Safey El Din and Schost.

What if the variety is singular? Can one find nonsingular
points on each component?



Singular curves
Let X ⊂ R2 be a compact curve. We proved: if X has only
ordinary multiple points as singularities, then the polar variety
contains a non-singular point of each connected component.

Figure: A sextic and its polar.



There exist compact singular real affine plane curves such that
no polar variety contains a point from each connected
component, e.g. this sextic with eight cusps.:

The image of the affine Gauss map in P1
R is the union of two

disjoints intervals.



Reciprocal polar varieties
Let L : L0 ⊂ L1 ⊂ · · · ⊂ Ln−1 be a flag in Pn, where
Ln−1 = H∞ is the hyperplane at infinity. We then get the polar
flag with respect to Q:

L⊥ : L⊥n−1 ⊂ L⊥n−2 ⊂ · · · ⊂ L⊥1 ⊂ L⊥0

Definition
The i-th reciprocal polar variety W⊥Li+p−1

(V ), 1 ≤ i ≤ n− p, of a
variety X with respect to the flag L, is defined to be the Zariski
closure of the set

{P ∈ Xsm \ L⊥i+p−1 |TPX 6t 〈P,L⊥i+p−1〉⊥}



Hypersurfaces
When X ⊂ Pn is a hypersurface, the reciprocal polar variety is

W⊥Ln−1
(X) = {P ∈ Xsm |TPX ⊃ 〈P,L⊥n−1〉⊥}.

Note that

TPX ⊇ 〈P,L⊥n−1〉⊥ ⇔ TPX
⊥ ∈ 〈P,L⊥n−1〉.

The point TPX⊥ is on the line 〈P,L⊥n−1〉 if and only if the point
L⊥n−1 is on the line 〈P, TPX⊥〉. So the reciprocal polar variety is

W⊥Ln−1
(X) = {P ∈ Xsm |L⊥n−1 ∈ 〈P, TPX⊥〉}.



Reciprocal polars for hypersurfaces
Let Q : q = 0 be a quadric and X = Z(F ) be a hypersurface.

The reciprocal polar variety of X with respect to
L⊥n−1 = (b0 : · · · : bn) is the locus on X given by the vanishing of
the maximal minors of the determinant of b0 · · · bn

∂q
∂X0

· · · ∂q
∂Xn

∂f
∂X0

· · · ∂f
∂Xn

 .

Taking n = 2, L1 : X0 = 0 gives the affine reciprocal polar
∂q

∂X2

∂f

∂X1
− ∂q

∂X1

∂f

∂X2
= 0,

of the same degree as X.



Figure: A sextic curve with its polar and its reciprocal polar.



Replacing the polar with the reciprocal polar, we need not
assume the curve is compact.

Figure: A non-compact affine real sextic curve with its reciprocal
polar.



If the curve has arbitrary singularities, the result is no longer
true.

Figure: A compact sextic curve with four cusps and its reciprocal
polar.



Singular surfaces
Mork also studied surfaces and found similar results as for
curves.

Figure: The quartic surface x3 + y2 − z2 + z4 + y4 + x4 = 0 has an
A−

2 -singularity. Its polar with respect to the point (1 : 0 : 1 : 0),
4x3 + 4z3 + 3x2 − 2z = 0. The polar variety is the intersection of the
two surfaces.



Figure: The quartic surface x4 + x3w + y2w2 + z2w2 = 0 has an
A+

2 -singularity. Its polar with respect to the point (1 : 0 : 1 : 0),
4x3 + 3x2w + 2zw2 = 0. The polar variety is the intersection of the
two surfaces.



Figure: The sextic surface z6 +x4 + y2− z2 = 0 has an A−
3 -singularity.

Its polar with respect to the point (1 : 0 : 1 : 0), 6z5 + 4x3 − 2z = 0.
The polar variety is the intersection of the two surfaces.



Euclidean normal bundle (Catanese – Trifogli)

Consider X ⊂ Pn, fix a hyperplane H∞ ⊂ Pn at infinity and a
smooth quadric Q in H∞. Use the polarity in H∞ induced by Q
to define Euclidean normal spaces at each point x ∈ X:

NPX = 〈P, (TPX ∩H∞)⊥〉

The normal spaces are the fibers of the projective bundle
P(E) ⊂ X × Pn → X, where E = N∨X/Pn(−1)⊕OX(1).



The Euclidean endpoint map
Let p : P(E)→ X, and let q : P(E)→ Pn denote the projection
on the second factor – the endpoint map.

Let A ∈ Pn \H∞. Then p(q−1(A)) is a reciprocal polar variety:

p(q−1(A)) = {P ∈ X |A ∈ 〈P, (TPX ∩H∞)⊥〉

so the degree of q is the degree of the reciprocal polar variety.

Example
Assume X ⊂ P2 is a (general) plane curve of degree d.

The reciprocal polar variety is the intersection of the curve with
its reciprocal polar, which has degree d, so q has degree d2.



Euclidean distance degree (Sturmfels et al.)
The (general) Euclidean distance degree is the degree of the map
q : P(E)→ Pn . Hence

ED degX = p∗c1(OP(E)(1))n = sm(E),

where m = dimX. We can compute:

s(E) = s(N∨X/Pn(−1))s(OX(1)) = c(P1
X(1))c(OX(−1))−1

We conclude:

ED degX =

m∑
i=0

µi,

where µi is the degree of the ith polar variety [Mi] of X.



The focal locus (or ED discriminant)
The focal locus ΣX is the branch locus of the map q.

It is the image of the subscheme given by the ideal
F 0(Ω1

P(E)/Pn), so its class is

[ΣX ] = q∗(c1(Ω
1
P(E))− q

∗c1(Ω
1
Pn)
)
.

Example
X ⊂ P2 is a (general) plane curve of degree d. Then the focal
locus is the evolute (or caustic) of X. Its degree is

deg ΣX =
(
c1(Ω

1
P(E))− q

∗c1(Ω
1
P2)
)
c1(OP(E)(1)) = 3d(d− 1).



Mork, H., Piene, R.,
Polars of real singular plane curves.
IMA Volumes in Mathematics and its Applications, 146,
2008, 99–115..

Piene, R.,
Polar classes of singular varieties.
Ann. Sci. École Norm. Sup. (4), 11, 1978, 247–276.

Piene, R.,
Cycles polaires et classes de Chern pour les variétés
projectives singulières.
Introduction à la théorie des singularités, II, 7–34, Travaux
en Cours, 37, Hermann, Paris, 1988.



B. Bank, M. Giusti, J. Heintz, L.M. Pardo,
Generalized polar varieties: geometry and algorithms.
J. Complexity, 21 (2005), 377–412.

P. Bürgisser, M. Lotz,
The complexity of computing the Hilbert polynomial of
smooth equidimensional complex projective varieties.
Found. Comput. Math. (2007), 51–86.

J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, R.R.
Thomas,
The Euclidean distance degree of an algebraic variety.
arXiv:1309.0049



Safey El Din, M. and Schost, É.,
Polar varieties and computation of one point in each
connected component of a smooth algebraic set.
Proceedings of the 2003 ISSAC , 224–231, ACM, New York,
2003.

Soares, M.,
On the geometry of Poincaré’s problem for one-dimensional
projective foliations.
An. Acad. Bras. Cienc. 73 (2001), 475–482.

Endraß, S. et al.,
Surf 1.0.4, A Computer Software for Visualising Real
Algebraic Geometry,
http://surf.sourceforge.net, 2003.



C. Trifogli,
Focal loci of algebraic hyper surfaces: a general theory.
Geometrica Ded. 70 (1998), 1–26.

F. Catanese, C. Trifogli,
Focal loci of algebraic varieties I.
Comm. in Algebra 28 (2000), 6017–6057.

A. Josse, F. Pène,
Degree and class of caustics by reflection for a generic
source.
arXiv:1301.1846



Thank you for your attention!
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