Node polynomials for curves on surfaces

Ragni Piene (joint work with Steven Kleiman)

Commutative algebra and algebraic geometry MCA
Guanajuato, Mexico
August 8, 2013

Introduction

Consider a smooth, projective surface S, and a line bundle \mathcal{L}.
Let $V \subset H^{0}(S, \mathcal{L})$ be a linear system on S of dimension $\operatorname{dim}|V|=r$.

Problem: How many curves with r nodes are in $|V|$?
The number N_{r} depends only on the Chern numbers $d=c_{1}(\mathcal{L})^{2}$, $k=c_{1}(\mathcal{L}) c_{1}\left(\Omega_{S}\right), s=c_{1}\left(\Omega_{S}\right)^{2}, x=c_{2}\left(\Omega_{S}\right)$ of S and \mathcal{L}.
$N_{1}=3 d+2 k+x$
$N_{2}=\frac{1}{2}\left(9 d^{2}+12 d k+6 d x+4 k^{2}+x^{2}+4 k x-42 d-39 k-6 s+7 x\right)$
$N_{3}=\ldots$

UiO: University of Oslo

A very short history

For $S=\mathbb{P}^{2}: d=m^{2}, k=-3 m, s=9, x=3$.
$N_{1}(m)=3(m-1)^{2}($ Steiner 1848)
$N_{2}(m)=\frac{3}{2}(m-1)(m-2)\left(3 m^{2}-3 m-11\right)$ (Cayley 1863)
$N_{3}(m)=\frac{9}{2} m^{6}-27 m^{5}+\frac{9}{2} m^{4}+\frac{423}{2} m^{3}-229 m^{2}-\frac{829}{2} m+525$
(Roberts 1875)
$N_{r}(m)$ for $r=4,5,6$ Vainsencher 1995.
Recursive formula for all r by Caporaso-Harris 1998.
For arbitrary S : Vainsencher $r \leq 6(7)$, Kleiman-Piene $r \leq 8$.
It was natural to conjecture:
N_{r} is given by a universal polynomial in d, k, s, and x.

UiO : University of Oslo

Göttsche's conjecture

$$
\sum_{r} N_{r} t^{r}=A_{1}^{d} A_{2}^{k} A_{3}^{s} A_{4}^{x}
$$

where the $A_{j} \in \mathbb{Q}[[t]]$ are universal power series.
Proved in 2010 by Tzeng and by Kool-Shende-Thomas.
Equivalent formulation:

$$
\sum_{r} N_{r} t^{r}=\exp \left(\sum_{i} a_{i} t^{i} / i!\right)
$$

where the $a_{i}=a_{i}(d, k, s, x)$ are linear forms defined by $\log \left(A_{1}^{d} A_{2}^{k} A_{3}^{s} A_{4}^{x}\right)=d \log A_{1}+\ldots=\sum a_{i}(d, k, s, x) t^{i}$.

Bell polynomials

E.T. Bell defined recursively polynomials by $P_{0}=1$ and

$$
P_{r+1}\left(a_{1}, \ldots, a_{r+1}\right)=\sum_{j=0}^{r}\binom{r}{j} P_{r-j}\left(a_{1}, \ldots, a_{r-j}\right) a_{j+1}
$$

Equivalently, by the formal identity

$$
\sum_{r \geq 0} P_{r}\left(a_{1}, \ldots, a_{r}\right) t^{r} / r!=\exp \left(\sum_{i \geq 1} a_{i} t^{i} / i!\right)
$$

or by

$$
P_{r}\left(a_{1}, \ldots, a_{r}\right)=\sum_{k_{1}+2 k_{2} \cdots+r k_{r}=r} \frac{r!}{k_{1}!\cdots k_{r}!}\left(\frac{a_{1}}{1!}\right)^{k_{1}} \cdots\left(\frac{a_{r}}{r!}\right)^{k_{r}}
$$

Hence we have:

$$
N_{r}=P_{r}\left(a_{1}, \ldots, a_{r}\right) / r!
$$

where the $a_{i}=a_{i}(d, k, s, x)$ are (universal) linear forms. Their coefficients are integers (Kleiman-P for $i \leq 8$, Qviller for all i).

UiO : University of Oslo

Why Bell polynomials?

- A recursive formula for N_{r} fits with the Bell polynomials (reminiscent of "derivations" like in the Faà di Bruno formula).
- An intersection theoretic approach on the configuration space S^{r}, shows that each a_{i} comes from an intersection class supported on a diagonal, and each product of a_{i} 's to a class on a corresponding polydiagonal (Qviller).
The advantage of knowing the Bell form of the node polynomials N_{r} is that in order to compute N_{r+1} from the previous N_{i} 's one only needs to compute one new term, a_{r+1} :

$$
N_{r+1}=\frac{1}{(r+1)!} \sum_{i=0}^{r-1}\binom{r}{i}(r-i)!N_{r-i} a_{i+1}+\frac{1}{(r+1)!} a_{r+1}
$$

UiO : University of Oslo

Faà di Bruno's formula

Let $h(t)=f(g(t))$ be a composed function.
Differentiate once: $h^{\prime}(t)=f^{\prime}(g(t)) g^{\prime}(t)$
and twice: $h^{\prime \prime}(t)=f^{\prime \prime}(g(t)) g^{\prime}(t)^{2}+f^{\prime}(t) g^{\prime \prime}(t)$.
Set $h_{i}=h^{(i)}(t), f_{i}(t)=f^{(i)}(g(t)), g_{i}=g^{(i)}(t)$. Then
$h_{1}=f_{1} g_{1}, h_{2}=f_{2} g_{1}^{2}+f_{1} g_{2}, h_{3}=f_{3} g_{1}^{3}+3 f_{2} g_{1} g_{2}+f_{1} g_{3}$,

$$
\text { and } h_{n}=\sum_{k=1}^{n} f_{k} P_{n, k}\left(g_{1}, \ldots, g_{n-k+1}\right)
$$

where the $P_{n, k}$ are the partial Bell polynomials

$$
P_{n, k}\left(a_{1}, \ldots, a_{n-k+1}\right)=\sum\left(\underset{j_{1} \cdots j_{n-k+1}}{n}\right)\left(\frac{a_{1}}{1!}\right)^{j_{1}} \cdots\left(\frac{a_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}},
$$

summing over $\sum i j_{i}=n, \sum j_{i}=k$.

UiO : University of Oslo

From $r-1$ to r nodes

Consider the family of curves $D \subset F:=S \times Y \rightarrow Y$, and a new family

$$
\pi^{\prime}: F^{\prime} \rightarrow F=S \times Y
$$

obtained by blowing up the diagonal in $F \times_{Y} F$.
The new family is a family of surfaces S_{x}, where S_{x} is the blow up of S in the point x. Let $X \subset F$ be the set of singular points of the fibers of D; then the r-nodal fibers of $D \rightarrow Y$ correspond to the $(r-1)$-nodal fibres $\left.\left(\pi^{\prime *} D-2 E\right)\right|_{X} \rightarrow X$.

We get the r-nodal formula u_{r} by pushing down the $(r-1)$-nodal formula u_{r-1}^{\prime}.

UiO: University of Oslo

Derivations

We express $u_{r-1}^{\prime}=\pi^{\prime} * u_{r-1}+z_{r-1}, z_{r-1}$ a correction class.
Then $\pi_{*}^{\prime}\left(u_{r-1}^{\prime} \cdot[X]\right)=u_{r-1} u_{1}+\pi_{*}^{\prime} z_{r-1}$, since $\pi_{*}^{\prime}[X]=u_{1}$.
This creates a "derivation formula" of the form

$$
r u_{r}=u_{r-1} u_{1}+\partial\left(u_{r-1}\right)
$$

Pretend ∂ behaves like a derivation, and set $a_{i}=\partial^{i-1}\left(u_{1}\right)$. Then

$$
\begin{aligned}
& 2 u_{2}=u_{1}^{2}+\partial\left(u_{1}\right)=a_{1}^{2}+a_{2}, \\
& 3!u_{3}=\left(u_{1}^{2}+\partial\left(u_{1}\right)\right) u_{1}+\partial\left(u_{1}^{2}+\partial\left(u_{1}\right)\right)=a_{1}^{3}+3 a_{1} a_{2}+a_{3}
\end{aligned}
$$

$$
r!u_{3}=P_{r}\left(u_{1}, \ldots, \partial^{r-1}\left(u_{1}\right)\right)=r!P\left(a_{1}, \ldots, a_{r}\right)
$$

Polydiagonals

Let X be a space, and consider

$$
X^{n}=X \times \cdots \times X=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}
$$

By a polydiagonal of type $\mathbf{k}=\left(k_{1}, \ldots k_{r}\right)$ we mean the subset where k_{2} pairs of points of $\left(x_{1}, \ldots, x_{r}\right)$ are equal, k_{3} triples of points of $\left(x_{1}, \ldots, x_{r}\right)$ are equal, and so on, with $k_{1}+2 k_{2}+\cdots+r k_{r}=r$. There are precisely

$$
\frac{r!}{k_{1}!\cdots k_{r}!}\left(\frac{1}{1!}\right)^{k_{1}} \cdots\left(\frac{1}{r!}\right)^{k_{r}}
$$

polydiagonals of type $\left(k_{1}, \ldots, k_{r}\right)$.
This is precisely the coefficient of $a_{1}^{k_{1}} \cdots a_{r}^{k_{r}}$ in the Bell polynomial.

UiO : University of Oslo

Intersections on configuration spaces

Let $X \subset D \times Y \subset F=S \times Y$ denote the set of points that are singular on the fibres, and set $\xi=[X]$. Want to compute $p_{1}^{*} \xi \cdots p_{r}^{*} \xi$ on $F \times_{Y} \ldots \times_{Y} F$ modulo the equivalences of all polydiagonals (which represent excess intersection).
Let $B^{(i)}$ denote the equivalence of all distinguished varieties whose support is contained in the (small) diagonal $\Delta^{(i)}$.

Then Nikolay Qviller proved:

$$
a_{i}=(-1)^{i-1}(i-1)!p_{*} B^{(i)}
$$

where $p: F \times_{Y} \ldots \times_{Y} F \rightarrow Y$.
Products of a_{i} 's "correspond" to polydiagonals, again making the Bell polynomials natural in this context.

UiO : University of Oslo

Plane curves

Di Francesco-Itzykson conjectured in 1994 that the node polynomials $N_{r}(m)$, in the case of plane curves of degree m, had a particular shape.
The conjecture was refined by Göttsche, and proved by Nikolay Qviller in his 2012 Ph.D. Thesis:

$$
N_{r}(m)=\frac{3^{r}}{r!} \sum_{\mu=0}^{2 r} \frac{1}{\mu!3^{\lfloor\mu / 2\rfloor}} \frac{r!}{(r-\lceil\mu / 2\rceil)!} Q_{\mu}(r) m^{2 r-\mu}
$$

where Q_{μ} is a polynomial with integer coefficients and degree $\lfloor\mu / 2\rfloor$.

UiO: University of Oslo

Thank you for your attention!

