
Node polynomials for curves on surfaces

Ragni Piene
(joint work with Steven Kleiman)

Commutative algebra and algebraic geometry
MCA

Guanajuato, Mexico
August 8, 2013



Introduction

Consider a smooth, projective surface S, and a line bundle L.

Let V ⊂ H0(S,L) be a linear system on S of dimension
dim |V | = r.

Problem: How many curves with r nodes are in |V |?

The number Nr depends only on the Chern numbers d = c1(L)2,
k = c1(L)c1(ΩS), s = c1(ΩS)2, x = c2(ΩS) of S and L.

N1 = 3d+ 2k + x
N2 = 1

2(9d2 + 12dk+ 6dx+ 4k2 +x2 + 4kx− 42d− 39k− 6s+ 7x)
N3 = . . .



A very short history
For S = P2: d = m2, k = −3m, s = 9, x = 3.

N1(m) = 3(m− 1)2 (Steiner 1848)
N2(m) = 3

2(m− 1)(m− 2)(3m2 − 3m− 11) (Cayley 1863)
N3(m) = 9

2m
6 − 27m5 + 9

2m
4 + 423

2 m
3 − 229m2 − 829

2 m+ 525
(Roberts 1875)

Nr(m) for r = 4, 5, 6 Vainsencher 1995.

Recursive formula for all r by Caporaso–Harris 1998.

For arbitrary S: Vainsencher r ≤ 6(7), Kleiman–Piene r ≤ 8.

It was natural to conjecture:
Nr is given by a universal polynomial in d, k, s, and x.



Göttsche’s conjecture
∑
r

Nrt
r = Ad1A

k
2A

s
3A

x
4

where the Aj ∈ Q[[t]] are universal power series.

Proved in 2010 by Tzeng and by Kool–Shende–Thomas.

Equivalent formulation:∑
r

Nrt
r = exp(

∑
i

ait
i/i!)

where the ai = ai(d, k, s, x) are linear forms defined by
log(Ad1A

k
2A

s
3A

x
4) = d logA1 + . . . =

∑
ai(d, k, s, x)ti.



Bell polynomials
E.T. Bell defined recursively polynomials by P0 = 1 and

Pr+1(a1, . . . , ar+1) =
∑r

j=0

(
r
j

)
Pr−j(a1, . . . , ar−j)aj+1.

Equivalently, by the formal identity∑
r≥0 Pr(a1, . . . , ar)t

r/r! = exp
(∑

i≥1 ait
i/i!
)
.

or by

Pr(a1, . . . , ar) =
∑

k1+2k2···+rkr=r

r!

k1! · · · kr!
(a1

1!

)k1 · · · (ar
r!

)kr
Hence we have:

Nr = Pr(a1, . . . , ar)/r!

where the ai = ai(d, k, s, x) are (universal) linear forms. Their
coefficients are integers (Kleiman–P for i ≤ 8, Qviller for all i).



Why Bell polynomials?
I A recursive formula for Nr fits with the Bell polynomials

(reminiscent of “derivations” like in the Faà di Bruno
formula).

I An intersection theoretic approach on the configuration
space Sr, shows that each ai comes from an intersection
class supported on a diagonal, and each product of ai’s to a
class on a corresponding polydiagonal (Qviller).

The advantage of knowing the Bell form of the node
polynomials Nr is that in order to compute Nr+1 from the
previous Ni’s one only needs to compute one new term, ar+1:

Nr+1 =
1

(r + 1)!

r−1∑
i=0

(
r

i

)
(r − i)!Nr−i ai+1 +

1

(r + 1)!
ar+1



Faà di Bruno’s formula
Let h(t) = f(g(t)) be a composed function.

Differentiate once: h′(t) = f ′(g(t))g′(t)

and twice: h′′(t) = f ′′(g(t))g′(t)2 + f ′(t)g′′(t).

Set hi = h(i)(t), fi(t) = f (i)(g(t)), gi = g(i)(t). Then

h1 = f1 g1, h2 = f2 g
2
1 + f1 g2, h3 = f3 g

3
1 + 3f2 g1 g2 + f1 g3,

and hn =
∑n

k=1 fk Pn,k(g1, . . . , gn−k+1),

where the Pn,k are the partial Bell polynomials

Pn,k(a1, . . . , an−k+1) =
∑(

n
j1···jn−k+1

)
(a11! )

j1 · · · ( an−k+1

(n−k+1)!)
jn−k+1 ,

summing over
∑
iji = n,

∑
ji = k.



From r − 1 to r nodes

Consider the family of curves D ⊂ F := S × Y → Y , and a new
family

π′ : F ′ → F = S × Y,

obtained by blowing up the diagonal in F ×Y F .

The new family is a family of surfaces Sx, where Sx is the blow
up of S in the point x. Let X ⊂ F be the set of singular points
of the fibers of D; then the r-nodal fibers of D → Y correspond
to the (r − 1)-nodal fibres (π′∗D − 2E)|X → X.

We get the r-nodal formula ur by pushing down the
(r − 1)-nodal formula u′r−1.



Derivations
We express u′r−1 = π′∗ur−1 + zr−1, zr−1 a correction class.

Then π′∗(u′r−1 · [X]) = ur−1u1 + π′∗zr−1, since π′∗[X] = u1.

This creates a “derivation formula” of the form

rur = ur−1u1 + ∂(ur−1)

Pretend ∂ behaves like a derivation, and set ai = ∂i−1(u1).
Then

2u2 = u21 + ∂(u1) = a21 + a2,
3!u3 = (u21 + ∂(u1))u1 + ∂(u21 + ∂(u1)) = a31 + 3a1a2 + a3

r!u3 = Pr(u1, . . . , ∂
r−1(u1)) = r!P (a1, . . . , ar).



Polydiagonals
Let X be a space, and consider

Xn = X × · · · ×X = {(x1, . . . , xn) |xi ∈ X}.

By a polydiagonal of type k = (k1, . . . kr) we mean the subset
where k2 pairs of points of (x1, . . . , xr) are equal, k3 triples of
points of (x1, . . . , xr) are equal, and so on, with
k1 + 2k2 + · · ·+ rkr = r. There are precisely

r!

k1! · · · kr!
( 1

1!

)k1 · · · ( 1

r!

)kr
polydiagonals of type (k1, . . . , kr).

This is precisely the coefficient of ak11 · · · akrr in the Bell
polynomial.



Intersections on configuration spaces
Let X ⊂ D × Y ⊂ F = S × Y denote the set of points that are
singular on the fibres, and set ξ = [X]. Want to compute
p∗1ξ · · · p∗rξ on F ×Y . . .×Y F modulo the equivalences of all
polydiagonals (which represent excess intersection).

Let B(i) denote the equivalence of all distinguished varieties
whose support is contained in the (small) diagonal ∆(i).

Then Nikolay Qviller proved:

ai = (−1)i−1(i− 1)!p∗B
(i),

where p : F ×Y . . .×Y F → Y .

Products of ai’s “correspond” to polydiagonals, again making
the Bell polynomials natural in this context.



Plane curves

Di Francesco–Itzykson conjectured in 1994 that the node
polynomials Nr(m), in the case of plane curves of degree m, had
a particular shape.

The conjecture was refined by Göttsche, and proved by Nikolay
Qviller in his 2012 Ph.D. Thesis:

Nr(m) =
3r

r!

2r∑
µ=0

1

µ!3bµ/2c
r!

(r − dµ/2e)!
Qµ(r)m2r−µ,

where Qµ is a polynomial with integer coefficients and degree
bµ/2c.



Thank you for your attention!


