Polar varieties and Euclidean distance degree

Ragni Piene

SIAM AG17
Atlanta, Georgia, USA
August 3, 2017

Pole and polars in the plane

Let Q be a conic section. Let P be a point in the plane. There are two tangents to Q passing through P. The polar of P is the line joining the two points of tangency. Conversely, if L is a line, it intersects the conic in two points. The pole of L is the intersection of the tangents to Q at these two points.

UiO : University of Oslo

Polarity (reciprocation)

A quadric hypersurface Q in \mathbb{P}^{n} given by a quadratic form q, sets up a polarity between points and hyperplanes:

$$
P=\left(b_{0}: \cdots: b_{n}\right) \mapsto P^{\perp}=H: \sum b_{i} \frac{\partial q}{\partial X_{i}}=0
$$

The polar hyperplane P^{\perp} of P is the linear span of the points on Q such that the tangent hyperplane at that point contains P.

If $P \in Q$, then $P^{\perp}=T_{P} Q$.
If $L \subset \mathbb{P}^{m}$ is a linear space, then $L^{\perp}=\cap_{P \in Q \cap L} T_{P} Q$.

UiO : University of Oslo

If H is a hyperplane, its pole H^{\perp} is the intersection of the tangent hyperplanes to Q at the points of intersection with H.

Example

If the quadric is $q=\sum X_{i}^{2}$, then the polar of $P=\left(b_{0}: \cdots: b_{m}\right)$ is the hyperplane $P^{\perp}: b_{0} X_{0}+\ldots+b_{n} X_{n}=0$.

The polar of the hyperplane $H: b_{0} X_{0}+\ldots+b_{n} X_{n}=0$ is the point $H^{\perp}=\left(b_{0}: \cdots: b_{m}\right)$.

UiO: University of Oslo

Polar varieties and Chern classes

Let $L_{k} \subset \mathbb{P}^{n}$ be a linear subspace of codimension $m-k+2$.
The k th polar variety of of $X \subset \mathbb{P}^{n}$ with respect to L_{k} is

$$
M_{k}:=\left\{x \in X \mid \operatorname{dim}\left(T_{X, x} \cap L_{k}\right) \geq k-1\right\} .
$$

Its class is $\left[M_{k}\right]=c_{k}\left(\mathcal{P}_{X}^{1}(1)\right) \cap[X]$, hence we get the Todd-Eger relation

$$
\begin{equation*}
\left[M_{k}\right]=\sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} h^{k-i} c_{i}\left(T_{X}\right) \cap[X] \tag{1}
\end{equation*}
$$

where $h=c_{1}\left(\mathcal{O}_{X}(1)\right)$ is the class of a hyperplane.

UiO : University of Oslo

Singular varieties and Nash transform

If X is singular, we take its Nash transform $\pi: \bar{X} \rightarrow X$ and replace Ω_{X}^{1} by the Nash bundle Ω on \bar{X}.

The Mather-Chern classes of X are

$$
c_{i}^{M}(X)=\pi_{*}\left(c_{i}\left(\Omega^{\vee}\right) \cap[\bar{X}]\right),
$$

and we get for the polar varieties:

$$
\begin{equation*}
\left[M_{k}\right]=\sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} h^{k-i} \cap c_{i}^{M}(X) \tag{2}
\end{equation*}
$$

UiO : University of Oslo

The Euclidean normal bundle (Catanese-Trifogli)

Consider $X \subset \mathbb{P}^{n}=\mathbb{P}(V)$, fix a hyperplane $H_{\infty} \subset \mathbb{P}^{n}$ at infinity and a smooth quadric Q in H_{∞}.
Use the polarity in $H_{\infty} \cong \mathbb{P}^{n-1}=\mathbb{P}\left(V^{\prime}\right)$ induced by Q to define Euclidean normal spaces at each smooth point $P \in X \backslash H_{\infty}$:

$$
N_{P} X=\left\langle P,\left(T_{P} X \cap H_{\infty}\right)^{\perp}\right\rangle
$$

Consider $0 \rightarrow V^{\prime \prime} \rightarrow V \rightarrow V^{\prime} \rightarrow 0\left(\operatorname{dim} V^{\prime \prime}=1\right)$ and

$$
0 \rightarrow \mathcal{N}_{X}(1) \rightarrow V_{X} \rightarrow \mathcal{P}_{X}^{1}(1) \rightarrow 0
$$

Assume (transversality of tangent spaces and H_{∞}) this induces

$$
0 \rightarrow V^{\prime \prime} \rightarrow \mathcal{P}_{X}^{1}(1) \rightarrow \mathcal{P} \rightarrow 0
$$

UiO: University of Oslo

Then we get

$$
0 \rightarrow \mathcal{N}_{X}(1) \rightarrow V_{X}^{\prime} \rightarrow \mathcal{P} \rightarrow 0
$$

The polarity in H_{∞} given by Q, gives $V^{\prime \vee} \cong V^{\prime}$, so we have

$$
V_{X}^{\prime} \cong V_{X}^{\prime V} \rightarrow \mathcal{N}_{X}(1)^{\vee}
$$

corresponding to the spaces perpendicular to the spaces $T_{P} X \cap H_{\infty}$, and combining with $V_{X} \rightarrow V_{X}^{\prime}$ and $V_{X} \rightarrow \mathcal{O}_{X}(1)$, we get

$$
V_{X} \rightarrow \mathcal{N}_{X}^{\vee}(-1) \oplus \mathcal{O}_{X}(1)
$$

whose fibers correspond to the Euclidean normal spaces $N_{P} X$.
We call $\mathcal{E}:=\mathcal{N}_{X}^{\vee}(-1) \oplus \mathcal{O}_{X}(1)$ the Euclidean normal bundle of X.

UiO: University of Oslo

Reciprocal polar varieties

Instead of imposing conditions on the tangent spaces of a variety, one can similarly impose conditions on the Euclidean normal spaces.
Let $L \subset \mathbb{P}^{n}$ have codimension $w, n-m \leq w \leq n$. Set $k=w-(n-m)$ and define reciprocal polar varieties

$$
M_{k}(L)^{\perp}=\left\{P \in X \mid N_{P}(X) \cap L \neq \emptyset\right\} .
$$

Then (Porteous' formula) M_{k}^{\perp} have classes

$$
\left[M_{k}^{\perp}\right]=s_{k}(\mathcal{E}) \cap[X]=\left[s\left(\mathcal{N}_{X}^{\vee}(-1)\right) s\left(\mathcal{O}_{X}(1)\right)\right]_{k} \cap[X]
$$

hence

$$
\left[M_{k}^{\perp}\right]=\sum_{i=0}^{k} c_{1}\left(\mathcal{O}_{X}(1)\right)^{k-i} \cap\left[M_{i}\right]
$$

UiO : University of Oslo

Applications

Polar and reciprocal polar varieties have been applied to study

- singularities (Lê-Teissier, Merle, ...)
- the topology of real affine varieties (Bank, Giusti, Heinz et al., Safey El Din-Schost)
- real solutions of polynomial equations (Giusti, Heinz, et al.)
- complexity questions (Bürgisser-Lotz)
- foliations (Soares, ...)
- Euclidean distance degree (Draisma et al.)
- finding nonsingular points on every component of a real affine plane curve (Banks et al. for smooth curves, Mork-P for compact curves with ordinary multiple points, counterexamples for curves with worse singularities).

UiO: University of Oslo

The Euclidean endpoint map

Consider $\mathbb{P}(\mathcal{E}) \subset X \times \mathbb{P}^{n}$.
Let $p: \mathbb{P}(\mathcal{E}) \rightarrow X$ and $q: \mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}^{n}$ denote the projections on the first and second factor. The map q is called the endpoint map.

Let $A \in \mathbb{P}^{n} \backslash H_{\infty}$. Then $p\left(q^{-1}(A)\right)$ is a reciprocal polar variety:

$$
p\left(q^{-1}(A)\right)=\left\{P \in X \mid A \in N_{P} X\right\}=M_{m}(A)^{\perp}
$$

Hence:

$$
\operatorname{deg} q=\operatorname{deg} M_{m}^{\perp}=\sum_{k=0}^{m} \operatorname{deg} M_{k}
$$

UiO: University of Oslo

Euclidean distance degree

The degree of the endpoint map $q: \mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}^{n}$ is also called the Euclidean distance degree ${ }^{1}$:

$$
\mathrm{E} \operatorname{deg} X=\operatorname{deg} q=\operatorname{deg} s_{m}(\mathcal{E})=\sum_{k=0}^{m} \operatorname{deg} M_{k}
$$

The points in $M_{m}(A)^{\perp}$ are the points $P \in X$ where the line $\langle P, A\rangle$ is perpendicular to the tangent space $T_{P} X$. Hence they are max/min points for the "distance function" induced by the perpendicularity (defined by the quadric $Q \subset H_{\infty}$).
${ }^{1}$ Draisma-Horobet-Ottaviani-Sturmfels-Thomas.

UiO : University of Oslo

Hypersurfaces with isolated singularities

If $X \subset \mathbb{P}^{n}$ is a smooth hypersurface of degree d, then $\operatorname{deg} M_{k}=d(d-1)^{k}$.

If X has only isolated singularities, then only $\operatorname{deg} M_{n-1}$ is affected, and we get (from Teissier's formula and the Plücker formula for hypersurfaces with isolated singularities (Teissier, Laumon))

$$
\mathrm{E} \operatorname{deg} X=\frac{d\left((d-1)^{n}-1\right)}{d-2}-\sum_{P \in \operatorname{Sing}(X)}\left(\mu_{P}^{(n)}+\mu_{P}^{(n-1)}\right)
$$

where $\mu_{P}^{(n)}$ is the Milnor number and $\mu_{P}^{(n-1)}$ is the sectional Milnor number of X at P.

UiO : University of Oslo

Surface with ordinary singularities

Assume $X \subset \mathbb{P}^{3}$ is a generic projection of a smooth surface of degree d, so that X has ordinary singularities: a double curve of degree ϵ, t triple points, and ν_{2} pinch points. Then (using known formulas for $\operatorname{deg} M_{1}$ and $\operatorname{deg} M_{2}$)
$\mathrm{E} \operatorname{deg} X=\operatorname{deg} X+\operatorname{deg} M_{1}+\operatorname{deg} M_{2}=d^{3}-d^{2}+d-(3 d-2) \epsilon-3 t-2 \nu_{2}$.

Example
The Roman Steiner surface: $d=4, \epsilon=3, t=1, \nu_{2}=6$

$$
\mathrm{E} \operatorname{deg} X=7
$$

UiO: University of Oslo

The focal locus

The focal locus Σ_{X} is the branch locus of the map q.
It is the image of the subscheme R_{X} given by the Fitting ideal $F^{0}\left(\Omega_{\mathbb{P}(\mathcal{E}) / \mathbb{P}^{n}}^{1}\right)$, so its class is

$$
\left[\Sigma_{X}\right]=q_{*}\left(\left(c_{1}\left(\Omega_{\mathbb{P}(\mathcal{E})}^{1}\right)-q^{*} c_{1}\left(\Omega_{\mathbb{P}^{n}}^{1}\right)\right) \cap[\mathbb{P}(\mathcal{E})]\right)
$$

UiO : University of Oslo

Example

$X \subset \mathbb{P}^{2}$ is a (general) plane curve of degree d. Then the focal locus is the evolute (or caustic) of X. Its degree is the degree of the class

$$
q_{*}\left(\left(c_{1}\left(\Omega_{\mathbb{P}(\mathcal{E})}^{1}\right)-q^{*} c_{1}\left(\Omega_{\mathbb{P}^{2}}^{1}\right)\right) c_{1}\left(\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)\right) \cap[\mathbb{P}(\mathcal{E}])\right.
$$

which one can compute: $\operatorname{deg} \Sigma_{X}=3 d(d-1)$.
In the case that X is a "Plücker curve" of degree d having only δ nodes and κ ordinary cusps as singularities, then we obtain the classical formula due to Salmon

$$
\operatorname{deg} \Sigma_{X}=3 d(d-1)-6 \delta-8 \kappa
$$

UiO: University of Oslo

The focal locus of a hypersurface

Let $X \subset \mathbb{P}^{n}$ be a general hypersurface $(m=n-1)$ of degree d. It is known that in this case $R_{X} \rightarrow \Sigma_{X}$ is birational. We compute

$$
\operatorname{deg} \Sigma_{X}=(n-1) \operatorname{deg} M_{n-1}+2(d-1) \sum_{i=0}^{n-2} \operatorname{deg} M_{i}
$$

For a smooth hypersurface of degree d in \mathbb{P}^{n}, we have $\mu_{i}=d(d-1)^{i}$. Hence $\operatorname{deg} \Sigma_{X}=(n-1) d(d-1)^{n-1}+2 d(d-1)\left((d-1)^{n-1}-1\right)(d-2)^{-1}$, which checks with the formula found by Trifogli.

Toric varieties

The Chern-Mather class of a toric variety X is equal to

$$
c^{\mathrm{M}}(X)=\sum_{\alpha} \operatorname{Eu}_{X}\left(X_{\alpha}\right)\left[\bar{X}_{\alpha}\right]
$$

where the sum is taken over all orbits X_{α} of the torus action on X, and where $\mathrm{Eu}_{X}\left(X_{\alpha}\right)$ denotes the value of the local Euler obstruction of X at a point in the orbit X_{α}.

Hence the degrees of the polar and reciprocal classes can be expressed in terms of the Euler obstructions and the volumes of the torus orbits, cf. the talks of Martin Helmer and Bernt-Ivar U. Nødland.

UiO : University of Oslo

Thanks for your attention!

