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Pole and polars in the plane
Let Q be a conic section. Let P be a point in the plane. There
are two tangents to Q passing through P . The polar of P is
the line joining the two points of tangency. Conversely, if L is a
line, it intersects the conic in two points. The pole of L is the
intersection of the tangents to Q at these two points.



Polarity (reciprocation)

A quadric hypersurface Q in Pn given by a quadratic form q,
sets up a polarity between points and hyperplanes:

P = (b0 : · · · : bn) 7→ P⊥ = H :
∑
bi

∂q
∂Xi

= 0

The polar hyperplane P⊥ of P is the linear span of the points on
Q such that the tangent hyperplane at that point contains P .

If P ∈ Q, then P⊥ = TPQ.

If L ⊂ Pm is a linear space, then L⊥ = ∩P∈Q∩LTPQ.



If H is a hyperplane, its pole H⊥ is the intersection of the
tangent hyperplanes to Q at the points of intersection with H.

Example
If the quadric is q =

∑
X2
i , then the polar of P = (b0 : · · · : bm)

is the hyperplane P⊥ : b0X0 + . . .+ bnXn = 0.

The polar of the hyperplane H : b0X0 + . . .+ bnXn = 0 is the
point H⊥ = (b0 : · · · : bm).



Polar varieties and Chern classes

Let Lk ⊂ Pn be a linear subspace of codimension m− k + 2.

The kth polar variety of of X ⊂ Pn with respect to Lk is

Mk := {x ∈ X | dim(TX,x ∩ Lk) ≥ k − 1}.

Its class is [Mk] = ck(P1
X(1)) ∩ [X], hence we get the Todd–Eger

relation

[Mk] =

k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
hk−ici(TX) ∩ [X], (1)

where h = c1(OX(1)) is the class of a hyperplane.



Singular varieties and Nash transform

If X is singular, we take its Nash transform π : X → X and
replace Ω1

X by the Nash bundle Ω on X.

The Mather–Chern classes of X are

cMi (X) = π∗(ci(Ω
∨) ∩ [X]),

and we get for the polar varieties:

[Mk] =

k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
hk−i ∩ cMi (X). (2)



The Euclidean normal bundle (Catanese–Trifogli)
Consider X ⊂ Pn = P(V ), fix a hyperplane H∞ ⊂ Pn at infinity
and a smooth quadric Q in H∞.

Use the polarity in H∞ ∼= Pn−1 = P(V ′) induced by Q to define
Euclidean normal spaces at each smooth point P ∈ X \H∞:

NPX = 〈P, (TPX ∩H∞)⊥〉

Consider 0→ V ′′ → V → V ′ → 0 (dimV ′′ = 1) and

0→ NX(1)→ VX → P1
X(1)→ 0.

Assume (transversality of tangent spaces and H∞) this induces

0→ V ′′ → P1
X(1)→ P → 0.



Then we get
0→ NX(1)→ V ′X → P → 0.

The polarity in H∞ given by Q, gives V ′∨ ∼= V ′, so we have

V ′X
∼= V ′∨X → NX(1)∨

corresponding to the spaces perpendicular to the spaces
TPX ∩H∞, and combining with VX → V ′X and VX → OX(1),
we get

VX → N∨X(−1)⊕OX(1)

whose fibers correspond to the Euclidean normal spaces NPX.

We call E := N∨X(−1)⊕OX(1) the Euclidean normal bundle of
X.



Reciprocal polar varieties
Instead of imposing conditions on the tangent spaces of a
variety, one can similarly impose conditions on the Euclidean
normal spaces.

Let L ⊂ Pn have codimension w, n−m ≤ w ≤ n. Set
k = w − (n−m) and define reciprocal polar varieties

Mk(L)⊥ = {P ∈ X|NP (X) ∩ L 6= ∅}.

Then (Porteous’ formula) M⊥k have classes

[M⊥k ] = sk(E) ∩ [X] = [s(N∨X(−1))s(OX(1))]k ∩ [X],

hence

[M⊥k ] =

k∑
i=0

c1(OX(1))k−i ∩ [Mi].



Applications
Polar and reciprocal polar varieties have been applied to study

I singularities (Lê–Teissier, Merle, . . . )
I the topology of real affine varieties (Bank, Giusti, Heinz et

al., Safey El Din–Schost)
I real solutions of polynomial equations (Giusti, Heinz, et al.)
I complexity questions (Bürgisser–Lotz)
I foliations (Soares, . . . )
I Euclidean distance degree (Draisma et al.)
I finding nonsingular points on every component of a real

affine plane curve (Banks et al. for smooth curves, Mork–P
for compact curves with ordinary multiple points,
counterexamples for curves with worse singularities).



The Euclidean endpoint map
Consider P(E) ⊂ X × Pn.

Let p : P(E)→ X and q : P(E)→ Pn denote the projections on
the first and second factor. The map q is called the endpoint
map.

Let A ∈ Pn \H∞. Then p(q−1(A)) is a reciprocal polar variety:

p(q−1(A)) = {P ∈ X |A ∈ NPX} = Mm(A)⊥.

Hence:

deg q = degM⊥m =

m∑
k=0

degMk.



Euclidean distance degree

The degree of the endpoint map q : P(E)→ Pn is also called the
Euclidean distance degree1:

E degX = deg q = deg sm(E) =

m∑
k=0

degMk.

The points in Mm(A)⊥ are the points P ∈ X where the line
〈P,A〉 is perpendicular to the tangent space TPX. Hence they
are max/min points for the “distance function” induced by the
perpendicularity (defined by the quadric Q ⊂ H∞).

1Draisma–Horobet–Ottaviani–Sturmfels–Thomas.



Hypersurfaces with isolated singularities
If X ⊂ Pn is a smooth hypersurface of degree d, then
degMk = d(d− 1)k.

If X has only isolated singularities, then only degMn−1 is
affected, and we get (from Teissier’s formula and the Plücker
formula for hypersurfaces with isolated singularities (Teissier,
Laumon))

E degX =
d((d− 1)n − 1)

d− 2
−

∑
P∈Sing(X)

(µ
(n)
P + µ

(n−1)
P ),

where µ(n)P is the Milnor number and µ(n−1)P is the sectional
Milnor number of X at P .



Surface with ordinary singularities
Assume X ⊂ P3 is a generic projection of a smooth surface of
degree d, so that X has ordinary singularities: a double curve of
degree ε, t triple points, and ν2 pinch points. Then (using
known formulas for degM1 and degM2)

E degX = degX+degM1+degM2 = d3−d2+d−(3d−2)ε−3t−2ν2.

Example
The Roman Steiner surface: d = 4, ε = 3, t = 1, ν2 = 6

E degX = 7



The focal locus

The focal locus ΣX is the branch locus of the map q.

It is the image of the subscheme RX given by the Fitting ideal
F 0(Ω1

P(E)/Pn), so its class is

[ΣX ] = q∗((c1(Ω
1
P(E))− q

∗c1(Ω
1
Pn)
)
∩ [P(E)]).



Example
X ⊂ P2 is a (general) plane curve of degree d. Then the focal
locus is the evolute (or caustic) of X. Its degree is the degree of
the class

q∗
((
c1(Ω

1
P(E))− q

∗c1(Ω
1
P2)
)
c1(OP(E)(1)) ∩ [P(E ]

)
which one can compute: deg ΣX = 3d(d− 1).

In the case that X is a “Plücker curve” of degree d having only δ
nodes and κ ordinary cusps as singularities, then we obtain the
classical formula due to Salmon

deg ΣX = 3d(d− 1)− 6δ − 8κ.



The focal locus of a hypersurface
Let X ⊂ Pn be a general hypersurface (m = n− 1) of degree d.
It is known that in this case RX → ΣX is birational. We
compute

deg ΣX = (n− 1) degMn−1 + 2(d− 1)

n−2∑
i=0

degMi.

For a smooth hypersurface of degree d in Pn, we have
µi = d(d− 1)i. Hence

deg ΣX = (n−1)d(d−1)n−1 +2d(d−1)((d−1)n−1−1)(d−2)−1,

which checks with the formula found by Trifogli.



Toric varieties

The Chern–Mather class of a toric variety X is equal to

cM(X) =
∑
α

EuX(Xα)[Xα],

where the sum is taken over all orbits Xα of the torus action on
X, and where EuX(Xα) denotes the value of the local Euler
obstruction of X at a point in the orbit Xα.

Hence the degrees of the polar and reciprocal classes can be
expressed in terms of the Euler obstructions and the volumes of
the torus orbits, cf. the talks of Martin Helmer and Bernt-Ivar
U. Nødland.



Thanks for your attention!


