Enriques diagrams and equisingular strata of families of curves

Ragni Piene

Brazil – Mexico 1st Meeting on Singularities Querétaro, Mexico August 2, 2013

Planar curve singularities

A planar curve singularity (C, 0), given by f(x, y) = 0, and its normalization $n: C' \to C$.

Many numerical invariants associated to (C, 0):

- multiplicity $m: f \in \mathfrak{m}^m, f \notin \mathfrak{m}^{m+1}$
- delta invariant $\delta = \dim n_* \mathcal{O}_{C'} / \mathcal{O}_C$
- Milnor number $\mu = \dim k[[x, y]]/(f_x, f_y)$
- ► Tjurina number $\tau = \dim k[[x, y]]/(f, f_x, f_y)$
- number of branches $r = \#n^{-1}(0)$

Milnor's formula: $\mu = 2\delta - r + 1$

Resolution by blowing ups

A singular point on a curve on a smooth surface: $0 \in C \subset S$

By a succession of blow-ups we get a good embedded resolution $\nu: S' \to S$: the strict transform C' is smooth and $\nu^{-1}(0)_{\text{red}} = C' \cup \bigcup_i E_i$ is a normal crossing divisor.

The resolution can be encoded in a diagram, the *Enriques* diagram.

An ordinary cusp $f(x,y) = y^2 - x^3$ $\nu^{-1}(0)_{\text{red}} = C' \cup E_1 \cup E_2 \cup E_3$, where E_3 intersects each of C', E_1 and E_2 in one point. No other intersections.

Enriques diagrams

An *Enriques diagram* is a finite directed graph with no loops, and with assigned weights to the vertices.

There are three types of vertices: roots, free vertices and satellites.

Figure: The Enriques diagram $\mathbf{M}_{m,p}$, with $m \ge p = 5$. For m = 5, $f(x, y) = y^5 - x^6$.

Figure: The Enriques diagram corresponding to the Fibonacci singularity $f(x, y) = y^8 - x^{13}$.

Numerical characters

Let \mathbf{D} be a diagram with one root R. Define

•
$$\delta(\mathbf{D}) := \sum_{V \in \mathbf{D}} {m_V \choose 2}$$

• $r(\mathbf{D}) := \sum_{V \in \mathbf{D}} (m_V - \sum_{W \text{ prox } V} m_W)$
• $\mu(\mathbf{D}) := 2\delta\mathbf{D}) - r(\mathbf{D}) + 1$

Define for any ${\bf D}$

- $\bullet \dim(\mathbf{D}) := \mathrm{rts}(\mathbf{D}) + \mathrm{frs}(\mathbf{D})$
- deg(**D**) := $\sum_{V \in \mathbf{D}} \binom{m_V + 1}{2}$

$$\blacktriangleright \operatorname{cod}(\mathbf{D}) := \operatorname{deg}(\mathbf{D}) - \operatorname{dim}(\mathbf{D})$$

The A_2 singularity (ordinary cusp)

1

$$\delta(\mathbf{D}) = 1$$

$$r(\mathbf{D}) = 2 - 1 - 1 + 1 - 1 + 1 = \mu$$

$$\mu(\mathbf{D}) = 2$$

$$\dim(\mathbf{D}) = 1 + 2 = 3$$

$$\deg(\mathbf{D}) = \binom{3}{2} + \binom{2}{2} + \binom{2}{2} = 5$$

$$\operatorname{cod}(\mathbf{D}) = 5 - 3 = 2.$$

Complete ideals

Let $\nu \colon S' \to S$ be a good embedded resolution of $0 \in C \subset S$. Let **D** be the associated Enriques diagram.

Each vertex $V \in \mathbf{D}$ corresponds to an infinitely near point of 0.

Set $E := \sum_{V \in \mathbf{D}} m_V E_V$, where E_V is the total transform of the exceptional divisor coming from blowing up the point corresponding to V.

The ideal $\mathcal{I} := \nu_* \mathcal{O}_{S'}(-E)$ is *complete* (integrally closed).

Enriques–Hoskin–Deligne–Casas: dim $\mathcal{O}_S/\mathcal{I} = \deg(\mathbf{D})$

The diagram D can be recovered from \mathcal{I} .

Hilbert schemes

Let **D** be a diagram, $d := \deg(\mathbf{D})$. Set

 $H(\mathbf{D}) := \{ \mathcal{I} \subset \mathcal{O}_S \mid \mathcal{I} \text{ has diagram } \mathbf{D} \} \subset \operatorname{Hilb}_S^d$

Proposition

H(D) is locally closed, smooth and irreducible, of dimension $\dim(D)$.

Example

dim $H(\mathbf{A}_1) = 2$, in fact $H(\mathbf{A}_1) \cong S$.

Deformation space

Let (C, 0) be a singularity, given by f(x, y) = 0, with diagram **D**. The tangent space to the versal deformation space is $B = \mathcal{O}_{C,0}/(f, f_x, f_y)$.

 $\dim B=\tau,$ the Tjurina number. Note: $\tau\leq\mu,$ and equality holds for quasi-homogeneous singularities.

Let $B_{\rm es} \subset B$ denote the (topological) equisingular locus. We have $\operatorname{cod}(B_{\rm es}, B) = \operatorname{cod}(\mathbf{D})$.

Example

If $f(x, y) = xy(x^2 - y^2)$ is an ordinary quadruple point, then $\tau = \mu = 9$ and $\operatorname{cod}(B_{es}, B) = \dim B - \dim B_{es} = 9 - 1 = 8 = \operatorname{cod}(\mathbf{D}) = \operatorname{deg}(\mathbf{D}) - \operatorname{dim}(\mathbf{D}) = 10 - 2.$

Arbitrarily near points

Let $\pi: F \to Y$ be a family of surfaces, $F' \to F \times_Y F$ the blow up of the diagonal, and $\pi': F' \to F$ the composition of the blow up with the second projection.

Define recursively $\pi^{(i)}: F^{(i)} \to F^{(i-1)}$ in the same way. Let $E^{(i)}$ denote the exceptional divisor.

Theorem

Let D be an ordered (unweighted) Enriques diagram on n + 1vertices. The functor of sequences of arbitrarily near T-points of F/Y with diagram D is represented by a subscheme $F(D) \subset F^{(n)}$, which is Y-smooth with irreducible geometric fibers of dimension dim D.

Relative Hilbert schemes

Let **D** be an Enriques diagram with $\deg(\mathbf{D}) = d$. As in the case of a single surface S, define $H(\mathbf{D}) \subset \operatorname{Hilb}_{F/Y}^d$.

Theorem

There is a natural bijective map

$$\Psi \colon Q(\boldsymbol{D}) := F(\boldsymbol{D}) / \operatorname{Aut}(\boldsymbol{D}) \to H(\boldsymbol{D}),$$

which is an isomorphism in characteristic 0. The map Ψ can be purely inseparable in characteristic p > 0, e.g. for $\mathbf{D} = \mathbf{M}_{m,p}$ (Tyomkin).

The equisingular stratification

Let $D \subset F \to Y$ be a family of curves on a family of surfaces.

For a given Enriques diagram \mathbf{D} with $\deg(\mathbf{D}) = d$, let $Y(\mathbf{D})$ parameterize the fibers of D that have singularities of type \mathbf{D} . The expected codimension of $Y(\mathbf{D})$ is $\operatorname{cod}(\mathbf{D})$.

Problem: Determine the class of the cycle $[\overline{Y(D)}]$ in terms of the Chern classes of F/Y and D.

To define the cycle, we set

$$G(\mathbf{D}) := \operatorname{Hilb}_{D/Y}^d \times_{\operatorname{Hilb}_{F/Y}^d} H(\mathbf{D})$$

and define $Y(\mathbf{D})$ as the image of the map $G(\mathbf{D}) \to Y$.

Applications to curve counting

A family $D \subset F/Y$ is said to be *r*-generic if for every **D** and every $y \in Y(\mathbf{D})$, we have

$$\operatorname{cod}(Y(\mathbf{D}), Y) \le \min\{r+1, \operatorname{cod}(\mathbf{D})\}\$$

Construct a derived family $D' \subset F'/Y'$, where Y' = the set of points of D that are singular in a fibre of D/Y, a fiber of $F' \to Y'$ is the blowup of a fiber of F/Y at a point of Y', and D' = D - 2E.

Proposition

If $D \subset F/Y$ is r-generic, then $D' \subset F'/Y'$ is (r-1)-generic. This allows us to prove formulas e.g. for the classes $[\overline{Y(r\mathbf{A}_1)}]$.

Curves with singularities of given type

Given an Enriques diagram $\mathbf{D} = \mathbf{D}_1, \dots, \mathbf{D}_n$, how many curves in a given linear system $|\mathcal{L}|$ have singularities of these types (and pass through the required number of points)?

Theorem

(Li-Tzeng, Rennemo) There exists a universal polynomial P of degree n in four variables such that this number is equal to P evaluated in the Chern numbers of S and \mathcal{L} .

Proof.

(Rennemo (2013)) The number is given by the degree of the class $c_m(\mathcal{L}^{[d]}) \cap \overline{H(\mathbf{D})}$, where $m = \dim H(\mathbf{D})$, $d = \deg(\mathbf{D})$, and $\mathcal{L}^{[d]} = q_* p^* \mathcal{L}$ with $p: \mathcal{Z} \to S, q: \mathcal{Z} \to S^{[d]}$ are the projections from the incidence scheme $\mathcal{Z} \subset S \times S^{[d]}$.

Cuspidal curves

For a cusp (unibranch singularity) the Enriques diagram can be replaced by the multiplicity sequence.

Many open questions:

- ▶ How many cusps can a plane cuspidal curve have? Tono: $\leq (21g + 17)/2$. Conjecture: ≤ 4 for g = 0.
- Coolidge–Nagata: Any rational plane cuspidal curve can be transformed to a line via a sequence of Cremona transformations.
- ► Orevkov–Chéniot: For a plane rational cuspidal curve, $\sum \overline{M} \leq 3(\deg C - 3) + \dim \operatorname{Stab}_{PGL(3)}(C).$

T. K. Moe (2013): A cuspidal curve on a Hirzebruch surface can have at most (21g + 29)/2 cusps.

Fibonacci cusps

Let φ_k denote kth Fibonacci number:

$$\varphi_0 = 0, \varphi_1 = 1, \varphi_2 = 1, \varphi_3 = 2, \varphi_4 = 3, \varphi_5 = 5, \dots$$

The Fibonacci singularity \mathbf{F}_k : $y^{\varphi_k} - x^{\varphi_{k+1}} = 0$ has the following numerical characters:

•
$$\dim(\mathbf{F}_k) = 3$$

$$\blacktriangleright \operatorname{deg}(\mathbf{F}_k) = (\varphi_k + 1)(\varphi_{k+1} + 1)/2 - 1$$

$$\blacktriangleright \operatorname{cod}(\mathbf{F}_k) = (\varphi_k + 1)(\varphi_{k+1} + 1)/2 - 4$$

$$\bullet \ \delta(\mathbf{F}_k) = (\varphi_k - 1)(\varphi_{k+1} - 1)/2$$

$$\blacktriangleright \ \mu(\mathbf{F}_k) = 2\delta(\mathbf{F}_k) = (\varphi_k - 1)(\varphi_{k+1} - 1)$$

$$\bullet \ \overline{M} := \operatorname{cod}(\mathbf{F}_k) - \delta(\mathbf{F}_k) = \varphi_{k+2} - 4$$

Fibonacci curves

The rational plane curve $C_k : y^{\varphi_k} z^{\varphi_{k-1}} - x^{\varphi_{k+1}} = 0$ has two cusps: one Fibonacci cusp and one "semi"-Fibonacci cusp: $z^{\varphi_{k-1}} - x^{\varphi_{k+1}} = 0.$

- ► C_k is toric, and (hence) self-dual (the cusps are interchanged under the Gauss map).
- ▶ C_k is "maximally inflected" (i.e., all cusps and flexes are real here there are no flexes).
- The sum of the \overline{M} -numbers is (for $k \ge 4$)

$$\varphi_{k+2} - 4 + \varphi_{k+1} - 4 + \varphi_{k-1} = 3(\varphi_{k+1} - 3) + 1$$

cf. Orevkov– Chéniots conjecture:

$$\sum \overline{M} \le 3(\deg C - 3) + \dim \operatorname{Stab}_{PGL(3)}(C)$$

THANK YOU FOR YOUR ATTENTION!

