Enriques diagrams and equisingular strata of families of curves

Ragni Piene

Brazil - Mexico 1st Meeting on Singularities
Querétaro, Mexico
August 2, 2013

UiO: University of Oslo

UiO : University of Oslo

Planar curve singularities

A planar curve singularity $(C, 0)$, given by $f(x, y)=0$, and its normalization $n: C^{\prime} \rightarrow C$.

Many numerical invariants associated to $(C, 0)$:

- multiplicity $m: f \in \mathfrak{m}^{m}, f \notin \mathfrak{m}^{m+1}$
- delta invariant $\delta=\operatorname{dim} n_{*} \mathcal{O}_{C^{\prime}} / \mathcal{O}_{C}$
- Milnor number $\mu=\operatorname{dim} k[[x, y]] /\left(f_{x}, f_{y}\right)$
- Tjurina number $\tau=\operatorname{dim} k[[x, y]] /\left(f, f_{x}, f_{y}\right)$
- number of branches $r=\# n^{-1}(0)$

Milnor's formula: $\mu=2 \delta-r+1$

UiO : University of Oslo

UiO: University of Oslo

Resolution by blowing ups

A singular point on a curve on a smooth surface: $0 \in C \subset S$
By a succession of blow-ups we get a good embedded resolution $\nu: S^{\prime} \rightarrow S$: the strict transform C^{\prime} is smooth and $\nu^{-1}(0)_{\text {red }}=C^{\prime} \cup \bigcup_{i} E_{i}$ is a normal crossing divisor.
The resolution can be encoded in a diagram, the Enriques diagram.

> An ordinary cusp $f(x, y)=y^{2}-x^{3}$ $\nu^{-1}(0)_{\text {red }}=C^{\prime} \cup E_{1} \cup E_{2} \cup E_{3}$, where E_{3} intersects each of C^{\prime}, E_{1} and E_{2} in one point.
> No other intersections.

UiO: University of Oslo

Enriques diagrams

An Enriques diagram is a finite directed graph with no loops, and with assigned weights to the vertices.

There are three types of vertices: roots, free vertices and satellites.

Figure: The Enriques diagram $\mathbf{M}_{m, p}$, with $m \geq p=5$. For $m=5$, $f(x, y)=y^{5}-x^{6}$.

Figure: The Enriques diagram corresponding to the Fibonacci singularity $f(x, y)=y^{8}-x^{13}$.

Numerical characters

Let \mathbf{D} be a diagram with one root R. Define

- $\delta(\mathbf{D}):=\sum_{V \in \mathbf{D}}\binom{m_{V}}{2}$
- $r(\mathbf{D}):=\sum_{V \in \mathbf{D}}\left(m_{V}-\sum_{W \operatorname{prox} V} m_{W}\right)$
- $\mu(\mathbf{D}):=2 \delta \mathbf{D})-r(\mathbf{D})+1$

Define for any \mathbf{D}

- $\operatorname{dim}(\mathbf{D}):=\operatorname{rts}(\mathbf{D})+\operatorname{frs}(\mathbf{D})$
- $\operatorname{deg}(\mathbf{D}):=\sum_{V \in \mathbf{D}}\binom{m_{V}+1}{2}$
- $\operatorname{cod}(\mathbf{D}):=\operatorname{deg}(\mathbf{D})-\operatorname{dim}(\mathbf{D})$

UiO : University of Oslo

The \mathbf{A}_{2} singularity (ordinary cusp)

$$
\begin{aligned}
& \delta(\mathbf{D})=1 \\
& r(\mathbf{D})=2-1-1+1-1+1=1 \\
& \mu(\mathbf{D})=2 \\
& \operatorname{dim}(\mathbf{D})=1+2=3 \\
& \operatorname{deg}(\mathbf{D})=\binom{3}{2}+\binom{2}{2}+\binom{2}{2}=5 \\
& \operatorname{cod}(\mathbf{D})=5-3=2
\end{aligned}
$$

Complete ideals

Let $\nu: S^{\prime} \rightarrow S$ be a good embedded resolution of $0 \in C \subset S$.
Let \mathbf{D} be the associated Enriques diagram.
Each vertex $V \in \mathbf{D}$ corresponds to an infinitely near point of 0 .
Set $E:=\sum_{V \in \mathbf{D}} m_{V} E_{V}$, where E_{V} is the total transform of the exceptional divisor coming from blowing up the point corresponding to V.

The ideal $\mathcal{I}:=\nu_{*} \mathcal{O}_{S^{\prime}}(-E)$ is complete (integrally closed).
Enriques-Hoskin-Deligne-Casas: $\operatorname{dim} \mathcal{O}_{S} / \mathcal{I}=\operatorname{deg}(\mathbf{D})$
The diagram \boldsymbol{D} can be recovered from \mathcal{I}.

UiO : University of Oslo

Hilbert schemes

Let \mathbf{D} be a diagram, $d:=\operatorname{deg}(\mathbf{D})$. Set

$$
H(\mathbf{D}):=\left\{\mathcal{I} \subset \mathcal{O}_{S} \mid \mathcal{I} \text { has diagram } \mathbf{D}\right\} \subset \operatorname{Hilb}_{S}^{d}
$$

Proposition
$H(\boldsymbol{D})$ is locally closed, smooth and irreducible, of dimension $\operatorname{dim}(\boldsymbol{D})$.

Example $\operatorname{dim} H\left(\mathbf{A}_{1}\right)=2$, in fact $H\left(\mathbf{A}_{1}\right) \cong S$.

UiO : University of Oslo

Deformation space

Let $(C, 0)$ be a singularity, given by $f(x, y)=0$, with diagram D. The tangent space to the versal deformation space is
$B=\mathcal{O}_{C, 0} /\left(f, f_{x}, f_{y}\right)$.
$\operatorname{dim} B=\tau$, the Tjurina number. Note: $\tau \leq \mu$, and equality holds for quasi-homogeneous singularities.

Let $B_{\text {es }} \subset B$ denote the (topological) equisingular locus. We have $\operatorname{cod}\left(B_{\text {es }}, B\right)=\operatorname{cod}(\mathbf{D})$.

Example

If $f(x, y)=x y\left(x^{2}-y^{2}\right)$ is an ordinary quadruple point, then $\tau=\mu=9$ and $\operatorname{cod}\left(B_{\text {es }}, B\right)=\operatorname{dim} B-\operatorname{dim} B_{\text {es }}=9-1=8=$ $\operatorname{cod}(\mathbf{D})=\operatorname{deg}(\mathbf{D})-\operatorname{dim}(\mathbf{D})=10-2$.

UiO : University of Oslo

Arbitrarily near points

Let $\pi: F \rightarrow Y$ be a family of surfaces, $F^{\prime} \rightarrow F \times_{Y} F$ the blow up of the diagonal, and $\pi^{\prime}: F^{\prime} \rightarrow F$ the composition of the blow up with the second projection .
Define recursively $\pi^{(i)}: F^{(i)} \rightarrow F^{(i-1)}$ in the same way. Let $E^{(i)}$ denote the exceptional divisor.

Theorem

Let \boldsymbol{D} be an ordered (unweighted) Enriques diagram on $n+1$ vertices. The functor of sequences of arbitrarily near T-points of F / Y with diagram \boldsymbol{D} is represented by a subscheme $F(\boldsymbol{D}) \subset F^{(n)}$, which is Y-smooth with irreducible geometric fibers of dimension $\operatorname{dim} \boldsymbol{D}$.

UiO : University of Oslo

Relative Hilbert schemes

Let \mathbf{D} be an Enriques diagram with $\operatorname{deg}(\mathbf{D})=d$. As in the case of a single surface S, define $H(\mathbf{D}) \subset \operatorname{Hilb}_{F / Y}^{d}$.

Theorem
There is a natural bijective map

$$
\Psi: Q(\boldsymbol{D}):=F(\boldsymbol{D}) / \operatorname{Aut}(\boldsymbol{D}) \rightarrow H(\boldsymbol{D}),
$$

which is an isomorphism in characteristic 0.
The map Ψ can be purely inseparable in characteristic $p>0$, e.g. for $\mathbf{D}=\mathbf{M}_{m, p}$ (Tyomkin).

UiO: University of Oslo

The equisingular stratification

Let $D \subset F \rightarrow Y$ be a family of curves on a family of surfaces.
For a given Enriques diagram \mathbf{D} with $\operatorname{deg}(\mathbf{D})=d$, let $Y(\mathbf{D})$ parameterize the fibers of D that have singularities of type \mathbf{D}. The expected codimension of $Y(\mathbf{D})$ is $\operatorname{cod}(\mathbf{D})$.
Problem: Determine the class of the cycle $[\overline{Y(\boldsymbol{D})}]$ in terms of the Chern classes of F / Y and D.

To define the cycle, we set

$$
G(\mathbf{D}):=\operatorname{Hilb}_{D / Y}^{d} \times_{\operatorname{Hilb}_{F / Y}^{d}} H(\mathbf{D})
$$

and define $Y(\mathbf{D})$ as the image of the map $G(\mathbf{D}) \rightarrow Y$.

UiO: University of Oslo

Applications to curve counting

A family $D \subset F / Y$ is said to be r-generic if for every \mathbf{D} and every $y \in Y(\mathbf{D})$, we have

$$
\operatorname{cod}(Y(\mathbf{D}), Y) \leq \min \{r+1, \operatorname{cod}(\mathbf{D}))\}
$$

Construct a derived family $D^{\prime} \subset F^{\prime} / Y^{\prime}$, where $Y^{\prime}=$ the set of points of D that are singular in a fibre of D / Y, a fiber of $F^{\prime} \rightarrow Y^{\prime}$ is the blowup of a fiber of F / Y at a point of Y^{\prime}, and $D^{\prime}=D-2 E$.

Proposition

If $D \subset F / Y$ is r-generic, then $D^{\prime} \subset F^{\prime} / Y^{\prime}$ is $(r-1)$-generic. This allows us to prove formulas e.g. for the classes $\left[\overline{Y\left(r \mathbf{A}_{1}\right)}\right]$.

UiO: University of Oslo

Curves with singularities of given type

Given an Enriques diagram $\mathbf{D}=\mathbf{D}_{1}, \ldots, \mathbf{D}_{n}$, how many curves in a given linear system $|\mathcal{L}|$ have singularities of these types (and pass through the required number of points)?

Theorem

(Li-Tzeng, Rennemo) There exists a universal polynomial P of degree n in four variables such that this number is equal to P evaluated in the Chern numbers of S and \mathcal{L}.

Proof.

(Rennemo (2013)) The number is given by the degree of the class $c_{m}\left(\mathcal{L}^{[d]}\right) \cap \overline{H(\mathbf{D})}$, where $m=\operatorname{dim} H(\mathbf{D}), d=\operatorname{deg}(\mathbf{D})$, and $\mathcal{L}^{[d]}=q_{*} p^{*} \mathcal{L}$ with $p: \mathcal{Z} \rightarrow S, q: \mathcal{Z} \rightarrow S^{[d]}$ are the projections from the incidence scheme $\mathcal{Z} \subset S \times S^{[d]}$.

Cuspidal curves

For a cusp (unibranch singularity) the Enriques diagram can be replaced by the multiplicity sequence.

Many open questions:

- How many cusps can a plane cuspidal curve have? Tono: $\leq(21 g+17) / 2$. Conjecture: ≤ 4 for $g=0$.
- Coolidge-Nagata: Any rational plane cuspidal curve can be transformed to a line via a sequence of Cremona transformations.
- Orevkov-Chéniot: For a plane rational cuspidal curve, $\sum \bar{M} \leq 3(\operatorname{deg} C-3)+\operatorname{dim} \operatorname{Stab}_{P G L(3)}(C)$.
T. K. Moe (2013): A cuspidal curve on a Hirzebruch surface can have at most $(21 g+29) / 2$ cusps.

UiO : University of Oslo

Fibonacci cusps

Let φ_{k} denote k th Fibonacci number:

$$
\varphi_{0}=0, \varphi_{1}=1, \varphi_{2}=1, \varphi_{3}=2, \varphi_{4}=3, \varphi_{5}=5, \ldots
$$

The Fibonacci singularity $\mathbf{F}_{k}: y^{\varphi_{k}}-x^{\varphi_{k+1}}=0$ has the following numerical characters:

- $\operatorname{dim}\left(\mathbf{F}_{k}\right)=3$
- $\operatorname{deg}\left(\mathbf{F}_{k}\right)=\left(\varphi_{k}+1\right)\left(\varphi_{k+1}+1\right) / 2-1$
- $\operatorname{cod}\left(\mathbf{F}_{k}\right)=\left(\varphi_{k}+1\right)\left(\varphi_{k+1}+1\right) / 2-4$
- $\delta\left(\mathbf{F}_{k}\right)=\left(\varphi_{k}-1\right)\left(\varphi_{k+1}-1\right) / 2$
- $\mu\left(\mathbf{F}_{k}\right)=2 \delta\left(\mathbf{F}_{k}\right)=\left(\varphi_{k}-1\right)\left(\varphi_{k+1}-1\right)$
- $\bar{M}:=\operatorname{cod}\left(\mathbf{F}_{k}\right)-\delta\left(\mathbf{F}_{k}\right)=\varphi_{k+2}-4$

UiO: University of Oslo

Fibonacci curves

The rational plane curve $C_{k}: y^{\varphi_{k}} z^{\varphi_{k-1}}-x^{\varphi_{k+1}}=0$ has two cusps: one Fibonacci cusp and one "semi"-Fibonacci cusp:
$z^{\varphi_{k-1}}-x^{\varphi_{k+1}}=0$.

- C_{k} is toric, and (hence) self-dual (the cusps are interchanged under the Gauss map).
- C_{k} is "maximally inflected" (i.e., all cusps and flexes are real - here there are no flexes).
- The sum of the \bar{M}-numbers is (for $k \geq 4$)

$$
\varphi_{k+2}-4+\varphi_{k+1}-4+\varphi_{k-1}=3\left(\varphi_{k+1}-3\right)+1
$$

cf. Orevkov- Chéniots conjecture:

$$
\sum \bar{M} \leq 3(\operatorname{deg} C-3)+\operatorname{dim} \operatorname{Stab}_{P G L(3)}(C)
$$

UiO: University of Oslo

Thank you for your attention!

UiO : University of Oslo

