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Planar curve singularities

A planar curve singularity (C, 0), given by f(x, y) = 0, and its
normalization n : C ′ → C.

Many numerical invariants associated to (C, 0):
I multiplicity m: f ∈ mm, f 6∈ mm+1

I delta invariant δ = dimn∗OC′/OC

I Milnor number µ = dim k[[x, y]]/(fx, fy)

I Tjurina number τ = dim k[[x, y]]/(f, fx, fy)

I number of branches r = #n−1(0)

Milnor’s formula: µ = 2δ − r + 1





Resolution by blowing ups
A singular point on a curve on a smooth surface: 0 ∈ C ⊂ S
By a succession of blow-ups we get a good embedded resolution
ν : S′ → S: the strict transform C ′ is smooth and
ν−1(0)red = C ′ ∪

⋃
iEi is a normal crossing divisor.

The resolution can be encoded in a diagram, the Enriques
diagram.
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An ordinary cusp
f(x, y) = y2 − x3
ν−1(0)red = C ′ ∪ E1 ∪ E2 ∪ E3,
where E3 intersects each of C ′,
E1 and E2 in one point.
No other intersections.



Enriques diagrams
An Enriques diagram is a finite directed graph with no loops,
and with assigned weights to the vertices.

There are three types of vertices: roots, free vertices and
satellites.
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Figure: The Enriques diagram Mm,p, with m ≥ p = 5. For m = 5,
f(x, y) = y5 − x6.
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Figure: The Enriques diagram corresponding to the Fibonacci
singularity f(x, y) = y8 − x13.



Numerical characters

Let D be a diagram with one root R. Define
I δ(D) :=

∑
V ∈D

(
mV
2

)
I r(D) :=

∑
V ∈D(mV −

∑
W prox V mW )

I µ(D) := 2δD)− r(D) + 1

Define for any D
I dim(D) := rts(D) + frs(D)

I deg(D) :=
∑

V ∈D
(
mV +1

2

)
I cod(D) := deg(D)− dim(D)



The A2 singularity (ordinary cusp)
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δ(D) = 1
r(D) = 2− 1− 1 + 1− 1 + 1 = 1
µ(D) = 2
dim(D) = 1 + 2 = 3
deg(D) =

(
3
2

)
+
(
2
2

)
+
(
2
2

)
= 5

cod(D) = 5− 3 = 2.



Complete ideals

Let ν : S′ → S be a good embedded resolution of 0 ∈ C ⊂ S.

Let D be the associated Enriques diagram.

Each vertex V ∈ D corresponds to an infinitely near point of 0.

Set E :=
∑

V ∈DmVEV , where EV is the total transform of the
exceptional divisor coming from blowing up the point
corresponding to V .

The ideal I := ν∗OS′(−E) is complete (integrally closed).

Enriques–Hoskin–Deligne–Casas: dimOS/I = deg(D)

The diagram D can be recovered from I.



Hilbert schemes

Let D be a diagram, d := deg(D). Set

H(D) := {I ⊂ OS | I has diagram D} ⊂ Hilbd
S

Proposition
H(D) is locally closed, smooth and irreducible, of dimension
dim(D).

Example
dimH(A1) = 2, in fact H(A1) ∼= S.



Deformation space
Let (C, 0) be a singularity, given by f(x, y) = 0, with diagram
D. The tangent space to the versal deformation space is
B = OC,0/(f, fx, fy).

dimB = τ , the Tjurina number. Note: τ ≤ µ, and equality
holds for quasi-homogeneous singularities.

Let Bes ⊂ B denote the (topological) equisingular locus. We
have cod(Bes, B) = cod(D).

Example
If f(x, y) = xy(x2 − y2) is an ordinary quadruple point, then
τ = µ = 9 and cod(Bes, B) = dimB − dimBes = 9− 1 = 8 =
cod(D) = deg(D)− dim(D) = 10− 2.



Arbitrarily near points
Let π : F → Y be a family of surfaces, F ′ → F ×Y F the blow
up of the diagonal, and π′ : F ′ → F the composition of the blow
up with the second projection .

Define recursively π(i) : F (i) → F (i−1) in the same way. Let E(i)

denote the exceptional divisor.

Theorem
Let D be an ordered (unweighted) Enriques diagram on n+ 1
vertices. The functor of sequences of arbitrarily near T -points of
F/Y with diagram D is represented by a subscheme
F (D) ⊂ F (n), which is Y -smooth with irreducible geometric
fibers of dimension dimD.



Relative Hilbert schemes

Let D be an Enriques diagram with deg(D) = d. As in the case
of a single surface S, define H(D) ⊂ Hilbd

F/Y .

Theorem
There is a natural bijective map

Ψ: Q(D) := F (D)/Aut(D)→ H(D),

which is an isomorphism in characteristic 0.
The map Ψ can be purely inseparable in characteristic p > 0,
e.g. for D = Mm,p (Tyomkin).



The equisingular stratification
Let D ⊂ F → Y be a family of curves on a family of surfaces.

For a given Enriques diagram D with deg(D) = d, let Y (D)
parameterize the fibers of D that have singularities of type D.
The expected codimension of Y (D) is cod(D).

Problem: Determine the class of the cycle [Y (D)] in terms of
the Chern classes of F/Y and D.

To define the cycle, we set

G(D) := Hilbd
D/Y ×HilbdF/Y

H(D)

and define Y (D) as the image of the map G(D)→ Y .



Applications to curve counting
A family D ⊂ F/Y is said to be r-generic if for every D and
every y ∈ Y (D), we have

cod(Y (D), Y ) ≤ min{r + 1, cod(D))}

Construct a derived family D′ ⊂ F ′/Y ′, where Y ′ = the set of
points of D that are singular in a fibre of D/Y , a fiber of
F ′ → Y ′ is the blowup of a fiber of F/Y at a point of Y ′, and
D′ = D − 2E.

Proposition
If D ⊂ F/Y is r-generic, then D′ ⊂ F ′/Y ′ is (r − 1)-generic.
This allows us to prove formulas e.g. for the classes [Y (rA1)].



Curves with singularities of given type
Given an Enriques diagram D = D1, . . . ,Dn, how many curves
in a given linear system |L| have singularities of these types
(and pass through the required number of points)?

Theorem
(Li–Tzeng, Rennemo) There exists a universal polynomial P of
degree n in four variables such that this number is equal to P
evaluated in the Chern numbers of S and L.

Proof.
(Rennemo (2013)) The number is given by the degree of the
class cm(L[d]) ∩H(D), where m = dimH(D), d = deg(D), and
L[d] = q∗p

∗L with p : Z → S, q : Z → S[d] are the projections
from the incidence scheme Z ⊂ S × S[d].



Cuspidal curves
For a cusp (unibranch singularity) the Enriques diagram can be
replaced by the multiplicity sequence.

Many open questions:
I How many cusps can a plane cuspidal curve have? Tono:
≤ (21g + 17)/2. Conjecture: ≤ 4 for g = 0.

I Coolidge–Nagata: Any rational plane cuspidal curve can be
transformed to a line via a sequence of Cremona
transformations.

I Orevkov–Chéniot: For a plane rational cuspidal curve,∑
M ≤ 3(degC − 3) + dim StabPGL(3)(C).

T. K. Moe (2013): A cuspidal curve on a Hirzebruch surface can
have at most (21g + 29)/2 cusps.



Fibonacci cusps
Let ϕk denote kth Fibonacci number:

ϕ0 = 0, ϕ1 = 1, ϕ2 = 1, ϕ3 = 2, ϕ4 = 3, ϕ5 = 5, . . .

The Fibonacci singularity Fk: yϕk − xϕk+1 = 0 has the following
numerical characters:

I dim(Fk) = 3

I deg(Fk) = (ϕk + 1)(ϕk+1 + 1)/2− 1

I cod(Fk) = (ϕk + 1)(ϕk+1 + 1)/2− 4

I δ(Fk) = (ϕk − 1)(ϕk+1 − 1)/2

I µ(Fk) = 2δ(Fk) = (ϕk − 1)(ϕk+1 − 1)

I M := cod(Fk)− δ(Fk) = ϕk+2 − 4



Fibonacci curves
The rational plane curve Ck : yϕkzϕk−1 − xϕk+1 = 0 has two
cusps: one Fibonacci cusp and one “semi”-Fibonacci cusp:
zϕk−1 − xϕk+1 = 0.

I Ck is toric, and (hence) self-dual (the cusps are
interchanged under the Gauss map).

I Ck is “maximally inflected” (i.e., all cusps and flexes are
real — here there are no flexes).

I The sum of the M -numbers is (for k ≥ 4)

ϕk+2 − 4 + ϕk+1 − 4 + ϕk−1 = 3(ϕk+1 − 3) + 1

cf. Orevkov– Chéniots conjecture:∑
M ≤ 3(degC − 3) + dim StabPGL(3)(C)



Thank you for your attention!




