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Differential geometry

Let r : R→ RN be a (parameterized) curve,
t 7→ r(t) = (r1(t), r2(t), . . . , rN (t)).

The tangent to the curve at the point r(t) is the line
〈r(t), r′(t)〉, the osculating plane is 〈r(t), r′(t), r′′(t)〉, and so on.

Example
r(t) = (t, t2, t3) ∈ R3

The tangent line at (0, 0, 0) is 〈(0, 0, 0), (1, 0, 0)〉 – the x-axis.

The osculating plane at (0, 0, 0) is 〈(0, 0, 0), (1, 0, 0), (0, 2, 0)〉 –
the xy-plane.



Twisted cubic



Projective varieties
Let X ⊂ PN be a (smooth) projective algebraic variety of
dimension n over an algebraically closed field K.

Set L := OPN (1)|X . The kth jet bundle (or principal parts
bundle of L) is of rank

(
n+k
n

)
and comes with a jet map

jk : ON+1
X → PkX(L),

whose fibers are given by Taylor expansions up to kth order of

s = (s0, . . . , sN ) : ON+1
X → L.

The exact sequences

0→ SiΩ1
X ⊗ L → P iX(L)→ P i−1X (L)→ 0

allow one to compute the Chern classes of the jet bundles in
terms of those of X and L.



Tangent and osculating spaces

The embedded tangent space to X at a point x is equal to

TX,x = P(Im j1,x) = P(P1
X(L)x) ∼= Pn.

The kth osculating space to X at x is the linear space

TkX,x := P(Im jk,x).

Note: dimTkX,x ≤ rkPkX(L)− 1 =
(
n+k
k

)
− 1.



Inflections
Let

dk + 1 := generic rank of jk : ON+1
X → PkX(L).

A point x ∈ X is an inflection point of order k if
rk jk,x < dk + 1; equivalently, if dimTkX,x < dk.

Question 1: Determine the (class of the) locus of inflection
points on X.

Question 2: Classify varieties with special osculating behavior.

Example
A curve X ⊂ PN of degree d and genus g has
(N + 1)(d+N(g − 1)) inflection points. So the only uninflected
curves in PN are the rational normal curves: d = N and g = 0.



Three theorems
Theorem (Fulton–Kleiman–P.–Tai)
Let X be a smooth, irreducible variety of dimension n and set
N =

(
n+k
k

)
− 1. The only embedding X → PN such that

TkX,x = PN for all x ∈ X is the kth Veronese embedding of
X = Pn.

Theorem (Ballico–P.–Tai)
Let X ⊂ P2k+1 be a smooth surface such that dimTmX,x = 2m for
all x ∈ X and all m ≤ k. Then X is equal to the balanced
rational normal scroll of degree 2k.

Theorem (Lanteri–Mallavibarrena–P.)
The only uninflected n-dimensional scroll X ⊂ Pnk+`−1,
1 ≤ ` ≤ n, is the balanced rational normal scroll of degree nk.



Toric embeddings
A = {a0, . . . , aN} ⊂ Zn  XA ⊆ PN .

The associated (equivariantly embedded) projective toric variety
XA is the Zariski closure of the image of all
t = (t1, . . . , tn) ∈ (K∗)n under the map

t 7→ (ta0 : · · · : taN ).

E.g., A = P ∩ Zn, for a lattice polytope P .

The three above examples are toric:
I the kth Veronese of Pn: P = k∆n

I a balanced rational normal scroll of dimension n, degree nk:
P = ∆n−1 × k∆1.

If we assume X is toric, the theorems are easier to prove.



Togliatti’s surface

The lattice point configuration

A = {(1, 0), (0, 1), (2, 0), (0, 2), (2, 1), (1, 2)} ⊂ Z2

gives the toric embedding

(K∗)2 → P5

given by
(x, y) 7→ (x : y : x2 : y2 : x2y : xy2).



Togliatti lattice point configuration

◦ ◦ ◦ ◦

• • ◦ ◦

• ◦ • ◦

◦ • • ◦



Polytopes and toric varieties: dictionary
P ⊂ Rn lattice polytope, XP ⊂ PN

I XP smooth iff P smooth
I Hilbert polynomial of
XP = Ehrhart polynomial
of P

I dimH0(XP ,mLP ) =
#(mP ∩ Z)

I XP a surface: sectional
genus = # IntP ∩ Z

I degXP = c1(LP )n =
VolZ(P )

I ci(TXP
)c1(LP )n−i =∑

codimFi=i
VolZ(Fi).

I cn(TXP
) = # vertices of P

I Riemann–Roch and
Ehrhart series

I Resolution of singularities
and continued fractions

I Local Euler obstruction =
“corner volume”



Sections and projections

Let A = {a0, . . . , aN} ⊂ Zn be a lattice point configuration and
let XA ⊂ PN denote the corresponding toric embedding. Let A′
be a lattice point configuration obtained from A by removing m
points. Then the toric embedding XA′ ⊂ PN ′ , where
N ′ = N −m, is the (toric) linear projection of XA with center
equal to the linear span of the “removed points”.

A toric hyperplane section of XA is obtained by taking a
hyperplane in Zn and “collapsing” the point configuration A into
this lattice hyperplane in such a way that one point is “lost”:
two points map to the same point.



Del Pezzo lattice configuration

	
  

◦ ◦ ◦ ◦

• • ◦ ◦

• • • ◦

◦ • • ◦



P1 × P1 ↪→ P8 via O(2, 2)

◦ ◦ ◦ ◦

• • • ◦

• • • ◦

• • • ◦



Third Veronese: P2 ↪→ P9

• ◦ ◦ ◦

• • ◦ ◦

• • • ◦

• • • •



Cayley polytopes

Let P0, . . . , Pr ⊂ Rn−r be
convex lattice polytopes and
e0, . . . , er the vertices of
∆r ⊂ Rr.

The polytope

P = Conv{e0 × P0, . . . , er × Pr} ⊂ Rr × Rn−r = Rn,

is called a Cayley polytope.

We write
P = Cayley(P0, . . . , Pr).



Hollow polytopes

A Cayley polytope is “hollow”: it has no interior lattice points.

distancelattice
one

P

P2

P1



The codegree and degree of a polytope

codeg(P ) := min{m |mP has interior lattice points}.

deg(P ) := n+ 1− codeg(P )

Example (1)

codeg(∆n) = n+ 1 and codeg(2∆n) = dn+ 1

2
e.

Example (2)

P = Cayley(P0, . . . , Pr) implies codeg(P ) ≥ r + 1.



P2
P3P1

codeg(P1) = 3 codeg(P2) = 2 codeg(P3) = 1



The Cayley polytope conjecture

Question (Batyrev–Nill): Is there an integer N(d) such that any
polytope P of degree d and dimP ≥ N(d) is a Cayley polytope?

Answer (Haase–Nill–Payne): Yes, and N(d) ≤ (d2 + 19d− 4)/2

Question: Is N(d) linear in d?

Answer (Dickenstein–Di Rocco–P.): Yes, N(d) = 2d+ 1
(if P is smooth and Q-normal).

Note that n ≥ 2d+ 1 is equivalent to codeg(P ) ≥ n+3
2 .



Theorem (Dickenstein, Di Rocco, P., Nill)
Let P be a smooth lattice polytope of dimension n. The following
are equivalent
(1) codeg(P ) ≥ n+3

2

(2) P = Cayley(P0, . . . , Pr) is a smooth Cayley polytope with
r + 1 = codeg(P ) and r > n

2 .

The proof of this combinatorial result is algebro-geometric
(adjoints and nef-value maps à la Beltrametti–Sommese, toric
fibrations à la Reid).



Higher order dual varieties

The kth dual variety X(k) is defined as:

X(k) = {H ∈ (PN )∨ |H ⊇ TkX,x for some x ∈ Xjk−cst}.

In particular, X(1) = X∨, X(k−1) ⊇ X(k), and X(k) is contained
in the singular locus of X∨ for k ≥ 2.

The expected dimension of X∨ is N − 1 and that of X(k) is
n+N − dk − 1.



Degree of dual varieties

Gelfand–Kapranov–Zelevinsky:
If XP is smooth, then

degX∨P =
∑
F≺P

(−1)codF (dimF + 1) VolZ(F )

Matsui–Takeuchi:

degX∨P =
∑
F≺P

(−1)codF (dimF + 1) VolZ(F ) Eu(F ),

where Eu(F ) denotes the generic value of the local Euler
obstruction of points on XP corresponding to the face F .



Weighted projective planes
The weighted projective plane P(k,m, n) is the toric surface in
PN , with N = (kmn+ k +m+ n)/2, given by the lattice points
in the convex hull of the points {(mn, 0, 0), (0, kn, 0), (0, 0, km)}.
This surface has isolated cyclic quotient singularities at the
points corresponding to the vertices of the triangle.

Theorem (Nødland)
degP(k,m, n)∨ =
3kmn−2(k+n+m)+

∑r
i=1(2−ai)+

∑s
i=1(2−bi)+

∑t
i=1(2−ci),

where the (ai), (bi), (ci) are the integers appearing in the
Hirzebruch–Jung continued fractions coming from the three
singular points.



Degree of higher dual varieties

Theorem (Dickenstein–Di Rocco–P.)
Let (XP , LP ) be a smooth, 2-regular toric threefold embedding
6= (P3,OP3(i)), i = 2, 3, (P(OP1(a)⊕OP1(b)⊕OP1(c)), 2ξ).
Then

degX(2) = 62V − 57F + 28E − 8v + 58V1 + 51F1 + 20E1,

where V , F , E (resp. V1, F1, E1) denote the (lattice) volume,
area of facets, length of edges of P (resp. the adjoint polytope
Conv(IntP )), and v = #{vertices of P}.



k-selfdual toric varieties (joint with A. Dickenstein)

A = {a0, . . . , aN} ⊂ Zn a lattice point configuration, and
XA ⊂ PN the corresponding toric embedding.

Form the matrix A by adding a row of 1’s to the matrix
(a0| · · · |aN ). Denote by v0 = (1, . . . , 1), v1, . . . ,vn ∈ ZN+1 the
row vectors of A.

For any α ∈ Nn+1, denote by vα ∈ ZN+1 the vector obtained as
the coordinatewise product of α0 times the row vector v0 times
. . . times αn times the row vector vn.

Order the vectors {vα : |α| ≤ k}. Let A(k) be the(
n+k
k

)
× (N + 1) integer matrix with these rows.



Rational normal curve
Take A = {0, . . . , d}. Then

A =

(
1 1 1 1 · · · 1
0 1 2 3 · · · d

)
,

and

A(3) =


1 1 1 1 · · · 1
0 1 2 3 · · · d
0 1 4 9 · · · d2

0 1 8 27 · · · d3

 .

Note that

A(3) ∼=


1 1 1 1 · · · 1
0 1 2 3 · · · d

0 0 1 3 · · ·
(
d
2

)
0 0 0 1 · · ·

(
d
3

)
 .



The case k = 2
Denote by vi ∗vj ∈ Zm+1 the vector given by the coordinatewise
product of these vectors. Define the

(
n+2
2

)
× (m+ 1)-matrix

A(2) =



v0

...
vn

v1 ∗ v1

v1 ∗ v2

...
vn−1 ∗ vn

vn ∗ vn


,

vi ∗ vj , 1 ≤ i ≤ j ≤ n. Then, P(Rowspan(A(2))) = T2
XA,1

describes the second osculating space of XA at the point 1.



Non-pyramidal configurations
The configuration A is a non-pyramid (nap) if the configuration
of columns in A is not a pyramid (i.e., no basis vector ei of
RN+1 lies in the rowspan of the matrix).

The configuration A is knap if the configuration of columns in
A(k) is not a pyramid.

Note that any vector in the rowspan of A(k) is equal to

(Q(a0), . . . , Q(aN )),

for some polynomial Q in n variables, of degree ≤ k.

A(k) is a pyramid iff there exist Q, i such that Q(aj) = 0 for all
j 6= i and Q(ai) 6= 0.



Characterization of k-self dual configurations

XA is k-selfdual if φ(XA) = X
(k)
A for some φ : PN ∼= (PN )∨.

Theorem (Dickenstein–P.)

(1) XA is k-selfdual if and only if dimXA = dimX
(k)
A and A is

knap.
(2) If A is knap and dim KerA(k) = 1, then XA is k-selfdual.

The proof generalizes [Bourel–Dickenstein–Rittatore] (k = 1).



A surface in P3

A = {(0, 0), (1, 0), (1, 1), (0, 2)}

gives
XA : (x, y) 7→ (1 : x : xy : y2)

and

X∨A
∼= XA∨ : (x, y) 7→ (−1 : 2x−1 : −2x−1y−1 : y−2),

with
A∨ = {(0, 0), (−1, 0), (−1,−1), (0,−2)} = −A.

This surface is self dual.



The corresponding polytopes

◦ • ◦

◦ ◦ •

◦ • •

◦ ◦ ◦

◦ ◦ ◦

A

◦ ◦ ◦

◦ ◦ ◦

• • ◦

• ◦ ◦

◦ • ◦

A∨ = −A



Del Pezzo and Togliatti

Del Pezzo is not 2nap:

• • ◦

• • •

◦ • •

Togliatti is 2nap:

• • ◦

• ◦ •

◦ • •



Example

This square is an example of a
4-selfdual smooth surface
which is not projectively
normal and not centrally
symmetric.

The complete polytope is
7-selfdual, projectively normal
and centrally symmetric.

• • ◦ • •

• • ◦ ◦ •

◦ ◦ • ◦ ◦

• • ◦ • •

• • ◦ • •



Chasles–Cayley–Bacharach

Non-trivial linear relations between the rows of A(k) correspond
to polynomials of degree ≤ k vanishing on A (D. Perkinson).

Example
Three quadrics Q1, Q2, Q3 ∈ Z[x1, x2, x3] with

Q1 ∩Q2 ∩Q3 = {a0, . . . , a7} = A ⊂ Z3 ⊂ R3.

Then XA is a 2-selfdual threefold:

The rank of the (10× 8)-matrix A(2) is 10− 3 = 7, so
dim KerA(k) = 1.



Connections with number theory
In general it is difficult to find integer polynomials with many
integer roots (cf. Rodriguez Villegas, Voloch, Zagier).

Example
Consider 3 integers m1,m2,m3 and f(x) =

∏3
i=1(x−mi).

Consider the quadratic polynomial

Q(x, y) =
f(x)− f(y)

x− y
∈ Z[x, y]

Q vanishes at the 6 lattice points (mi,mj), j 6= i, while
(
2+2
2

)
is

also equal to 6.
The configuration A given by these 6 points is 2-self dual
because it is 2nap and dim KerA(k) = 1.



Curves with many lattice points

A′ := {(0, 0), (1, 0), (0, 1), (3, 1), (1, 2)}

The unique conic through
these five points, given by the
vanishing of
Q = x2 − 2xy + 2y2 − x− 2y,
also goes through the lattice
points a5 = (3, 3), a6 = (4, 3)
and a7 = (4, 2).
So it is a conic through 8
lattice points.

◦ ◦ ◦ ◦ •

◦ • ◦ ◦ ◦

• ◦ ◦ • ◦

• • ◦ ◦ ◦
Adding any one of these three
points to A′ gives 3 examples
of 2-selfdual surfaces in P5

that are non-smooth.
If we add all 3 points, we get a
3-selfdual surface.



Joins
Let V1, . . . , Vs be finite dimensional K-vector spaces and let
X1 ⊆ P(V1), . . . , Xs ⊆ P(Vs) be projective varieties. The join of
X1, . . . , Xs is the projective subvariety of P(V1 ⊕ · · · ⊕ Vs)
defined by

J(X1, . . . , Xs) =
{

[x1 : · · · : xs] | [xi] ∈ Xi

}
.

Proposition (Dickenstein–P.)
Assume A1, . . . ,As are knap and k-selfdual. Then the join
XA = J(XA1 , . . . , XAs) is s-Cayley, knap, and k-selfdual, with

dim KerA(k) = dim KerA
(k)
1 + · · ·+ dim KerA(k)

s ≥ s.

Joins of varieties of degree at least 2 are not smooth.



k-selfdual Cayley polytopes
Proposition (Dickenstein–P.)
Let B be a lattice configuration of cardinality m+ 1 such that
the general kth osculating space of XB is the whole Pm and
dim KerB(k−1) = 1. Let r ≥ 1 and take A = Cayley(B, . . . ,B)
(r + 1 times), so that

XA = Pr ×XB ⊂ P(r+1)(m+1)−1.

Then, XA is k-selfdual if and only if XB is (k − 1)-selfdual.

Proof.
One checks that A is knap if and only if B is (k − 1)nap, and
that dim KerA(k) = r. Then use a combinatorial/toric variety
argument.



Segre-Veronese examples
The Segre embedding P1 × · · · × P1 ↪→ P2n−1 is (n− 1)-selfdual
[Vallès, 2006]. More generally:

Proposition (Dickenstein–P.)
Let A be a lattice point configuration such that XA is equal to
a Segre embedding of the following form:
(i) P1 × · · · × P1 ↪→ PN ,
(ii) Pr × P1 × · · · × P1 ↪→ PN ,
with m ≥ 1 copies of P1’s, and the embedding is of type
(`1, . . . , `m) with k :=

∑m
i=1 `i − 1 > 0 in case (i), or

(1, `1, . . . , `m) with k :=
∑m

i=1 `i in case (ii), `i ≥ 1.
Then, in both cases XA is k-selfdual. Moreover,
dim KerA(k) = 1 in case (i) and dim KerA(k) = r in case (ii).



Towards a classification in the smooth case

Conjecture
The only smooth, projectively normal k-selfdual toric varieties
XA with dim KerA(k) > 1 are the Segre-Veronese examples
described in the previous Proposition (ii).

For k = 1, this holds: the only smooth, projectively normal
selfdual toric varieties are: the plane conic P1 ↪→ P2, the quadric
surface in P1 × P1 ↪→ P3 and the Segre embeddings
Pr × P1 ↪→ P2r+1 for any r ≥ 2.

For k > 1, when dim KerA(k) = 1, there is no hope to get a
classification, nor is there hope when A 6= Conv(A) ∩ Zn.



Thank you for your attention!


