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Differential geometry

Let r : R — RY be a (parameterized) curve,

tr(t) = (ri(t), ra(t),...,rn(t)).

The tangent to the curve at the point () is the line
(r(t),r'(t)), the osculating plane is (r(t),7'(t),r"(t)), and so on.

Example
r(t) = (t,t2,¢3) e R?
The tangent line at (0,0,0) is ((0,0,0),(1,0,0)) — the z-axis.

The osculating plane at (0,0,0) is ((0,0,0), (1,0,0), (0,2,0)) —
the zy-plane.
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Twisted cubic
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Projective varieties
Let X C PV be a (smooth) projective algebraic variety of
dimension n over an algebraically closed field K.

Set L := Opn~ (1)|x. The kth jet bundle (or principal parts
bundle of £) is of rank (”:k) and comes with a jet map

gr: OXTE = PR (L),
whose fibers are given by Taylor expansions up to kth order of
s =1(80,...,5N): (’)§+1 — L.
The exact sequences
0— SO ®L— P(L) = PL(L)—0

allow one to compute the Chern classes of the jet bundles in
terms of those of X and L.
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Tangent and osculating spaces

The embedded tangent space to X at a point x is equal to
Tx. = P(Imj; ) = P(P%(L).) = P".
The kth osculating space to X at x is the linear space

T% , = P(Im ji.0).

Note: dim T])“(@ <tk PE(L)—1= (n;:rk) - L
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Inflections
Let
dp + 1 := generic rank of j,: OY Tt — PY(L).

A point x € X is an inflection point of order k if
vk jr» < di + 1; equivalently, if dim T% , < dj.

Question 1: Determine the (class of the) locus of inflection
points on X.

Question 2: Classify varieties with special osculating behavior.

Example

A curve X C PV of degree d and genus ¢ has
(N +1)(d+ N(g — 1)) inflection points. So the only uninflected
curves in PV are the rational normal curves: d = N and g = 0.
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Three theorems
Theorem (Fulton—Kleiman—P.—Tai)

Let X be a smooth, irreducible variety of dimension n and set
N = (”zk) — 1. The only embedding X — PN such that

T])C(’z =PV for all x € X is the kth Veronese embedding of

X =P".

Theorem (Ballico-P.—Tai)

Let X C P?**1 be a smooth surface such that dim Tm = 2m for

all € X and all m < k. Then X is equal to the balanced
rational normal scroll of degree 2k.

Theorem (Lanteri-Mallavibarrena—P.)

The only uninflected n-dimensional scroll X C Prk+t-1
1 < /¢ <mn, is the balanced rational normal scroll of degree nk.
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Toric embeddings
A={ag,....an} CZ" ~ X4 CPV.

The associated (equivariantly embedded) projective toric variety
X 4 is the Zariski closure of the image of all
t=(t1,...,tn) € (K*)” under the map

t (90 0o Y.

E.g., A= PNZ", for a lattice polytope P.

The three above examples are toric:
» the kth Veronese of P": P = kA,

» a balanced rational normal scroll of dimension n, degree nk:

P = An,1 X k‘Al

If we assume X is toric, the theorems are easier to prove.
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Togliatti’s surface

The lattice point configuration
A={(1,0),(0,1),(2,0),(0,2),(2,1),(1,2)} C Z°
gives the toric embedding
(K*)? — PP

given by
(z,y) — (x:y: 2 y%: 2%y xy?).
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Togliatti lattice point configuration

(¢] (¢] e}
[ ] [ ] ¢}
\
[ ] (e] (]
\
(¢] [ ] L]
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Polytopes and toric varieties: dictionary

P C R” lattice polytope, Xp C PN

>

>

X p smooth iff P smooth
Hilbert polynomial of

Xp = Ehrhart polynomial
of P

dimHO(Xp, mLp) ==
#(mPNZ)

X p a surface: sectional
genus = #Int PNZ
degXp = Cl(Lp)n =

VOIZ (P )
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>

ci(Txp)er(Lp)" ™" =
Ecodim Fi=i VOIZ(E)
cn(Txp) = # vertices of P
Riemann—Roch and
Ehrhart series

Resolution of singularities
and continued fractions

Local Euler obstruction =
“corner volume”




Sections and projections

Let A ={ap,...,an} C Z" be a lattice point configuration and
let X 4 C PV denote the corresponding toric embedding. Let A’
be a lattice point configuration obtained from A by removing m
points. Then the toric embedding X 4 € PN, where

N’ = N —m, is the (toric) linear projection of X 4 with center
equal to the linear span of the “removed points”.

A toric hyperplane section of X 4 is obtained by taking a
hyperplane in Z™ and “collapsing” the point configuration A into
this lattice hyperplane in such a way that one point is “lost”:
two points map to the same point.
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Del Pezzo lattice configuration
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P! x P! — P via O(2,2)
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Third Veronese: P? — P?
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Cayley polytopes

Let Py,...,P. CR™ " be
convex lattice polytopes and
€o, - . ., e, the vertices of

A, CR".

The polytope
P = Conv{eg x Py,...,e, x B} CR" x R" " =R",
is called a Cayley polytope.

We write
P = Cayley(FPy, ..., P).
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Hollow polytopes

A Cayley polytope is “hollow”: it has no interior lattice points.

lattice
cﬁs ance
one
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The codegree and degree of a polytope
codeg(P) := min{m | mP has interior lattice points}.
deg(P) :=n+ 1 — codeg(P)

Example (1)

n+1
2 I

codeg(A,) =n+ 1 and codeg(2A,) = |

Example (2)

P = Cayley(PF, ..., P,) implies codeg(P) > r + 1.
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The Cayley polytope conjecture

Question (Batyrev—Nill): Is there an integer N(d) such that any
polytope P of degree d and dim P > N(d) is a Cayley polytope?

Answer (Haase Nill-Payne): Yes, and N(d) < (d? +19d — 4)/2

Question: Is N(d) linear in d?

Answer (Dickenstein-Di Rocco-P.): Yes, N(d) = 2d + 1
(if P is smooth and Q-normal).

Note that n > 2d + 1 is equivalent to codeg(P) > %r?’
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Theorem (Dickenstein, Di Rocco, P., Nill)
Let P be a smooth lattice polytope of dimension n. The following
are equivalent
3
(1) codeg(P) > 52
(2) P = Cayley(Fy, ..., P) is a smooth Cayley polytope with
r+1 = codeg(P) and r > 3.

The proof of this combinatorial result is algebro-geometric
(adjoints and nef-value maps a la Beltrametti-Sommese, toric
fibrations a la Reid).
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Higher order dual varieties

The kth dual variety X*) is defined as:

x (k) — {H e (PN)V|H D ’]I‘%x for some = € X, —cst}-

In particular, X = XV, X* =1 > X*) and X* is contained
in the singular locus of XV for k > 2.

The expected dimension of XV is N — 1 and that of X*) is
n+ N — dk —1.
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Degree of dual varieties

Gelfand—Kapranov—Zelevinsky:
If Xp is smooth, then

deg X = Y (—1)*F(dim F + 1) Vol (F)
F<pP

Matsui—Takeuchi:

deg X = Y (~1)°F(dim F + 1) Vol (F) Bu(F),
F<P

where Eu(F') denotes the generic value of the local Euler
obstruction of points on Xp corresponding to the face F.
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Weighted projective planes

The weighted projective plane P(k,m,n) is the toric surface in
PN, with N = (kmn + k +m + n)/2, given by the lattice points
in the convex hull of the points {(mn,0,0), (0, kn,0), (0,0, km)}.
This surface has isolated cyclic quotient singularities at the
points corresponding to the vertices of the triangle.

Theorem (Ngdland)

degP(k,m,n)"V =

Bkmn —2(k+n+m)+3 1 (2—a;) + 35 (2= b))+ 2, (2— ),
where the (a;), (b;), (¢;) are the integers appearing in the
Hirzebruch—Jung continued fractions coming from the three
singular points.
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Degree of higher dual varieties

Theorem (Dickenstein—Di Rocco—P.)

Let (Xp,Lp) be a smooth, 2-reqular toric threefold embedding
7é (IP)37 O]P’3 (Z)); =23, (IP)(O]P’I (a) D O]lj’l (b) D O]P’l (C))v 25)
Then

deg X = 62V — 57F + 28F — 8v + 58V4 + 51F} + 20,
where V., F, E (resp. Vi, F1, E1) denote the (lattice) volume,

area of facets, length of edges of P (resp. the adjoint polytope
Conv(Int P)), and v = # {vertices of P }.
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k-selfdual toric varieties (joint with A. Dickenstein)

A ={ag,...,an} C Z" alattice point configuration, and
X 4 C PV the corresponding toric embedding.

Form the matrix A by adding a row of 1’s to the matrix
(a0| e |aN) Denote by vy = (]_’ R 1)’ Vi,...,Vn c ZN+1 the
row vectors of A.

For any a € N**1 denote by v, € ZN*+! the vector obtained as

the coordinatewise product of o times the row vector vy times
... times «,, times the row vector v,,.

Order the vectors {v, : |a| < k}. Let A®) be the
(”zk) X (N + 1) integer matrix with these rows.
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Rational normal curve
Take A ={0,...,d}. Then

1111
A_<0123

and
1 11 1
01 2 3
(3) —
4 014 9
0 1 8 27
Note that
1 11 1
01 2 3
(3)
A 0 01 3
00 01
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The case k = 2

Denote by v; xv; € Z™*1 the vector given by the coordinatewise
product of these vectors. Define the (”;2) X (m 4+ 1)-matrix

Vo

Van
Vi *Vy
Vi * Vg

A —

Vp—1%Vp
Vi ¥ Vp

v; *v;, 1 <i < j <n. Then, P(Rowspan(A®)) = T—2XA71
describes the second osculating space of X 4 at the point 1.

UiO 2 University of Oslo




Non-pyramidal configurations

The configuration A is a non-pyramid (nap) if the configuration
of columns in A is not a pyramid (i.e., no basis vector e; of
RN*1 lies in the rowspan of the matrix).

The configuration A is knap if the configuration of columns in
A®) is not a pyramid.

Note that any vector in the rowspan of A®) is equal to

(Q(aO)a SRR Q(GN)),

for some polynomial () in n variables, of degree < k.

A®) is a pyramid iff there exist Q, i such that Q(a;j) = 0 for all
J # i and Q(a;) # 0.
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Characterization of k-self dual configurations

X a4 is k-selfdual if $(X4) = X for some ¢: PN = (PN)V.
Theorem (Dickenstein—P.)

(1) X 4 is k-selfdual if and only if dim X 4 = dim Xv(f) and A is
knap.
(2) If A is knap and dimKerA®) =1, then X 4 is k-selfdual.

The proof generalizes [Bourel-Dickenstein-Rittatore| (k = 1).
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A surface in P3

A= {(07 O)’ (17 0)7 (17 1)’ (Oa 2)}
gives
Xa:(z,y)—= 1:z:zy:y?)
and
XN =X (z,y) = (—1: 2070 =207y oy,
with
AY ={(0,0),(-1,0),(-1,-1),(0,-2)} = —A.

This surface is self dual.
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The corresponding polytopes

O [ ] ) (0] o O
\
[¢] [¢] [ (0] o (@]
[¢] [ ] [ [ ] [ ] [¢]
[¢] [©] O [ ] e] [¢]
\
O @] ) (0] [ ] (@]
A A=A
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Del Pezzo and Togliatti

Del Pezzo is not 2nap:

N\
N

) UiO ¢ University of Oslo

Togliatti is 2nap:

AN




Example

This square is an example of a
4-selfdual smooth surface
which is not projectively
normal and not centrally
symmetric.

The complete polytope is
7-selfdual, projectively normal
and centrally symmetric.
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Chasles—Cayley—-Bacharach

Non-trivial linear relations between the rows of A%®) correspond
to polynomials of degree < k vanishing on A (D. Perkinson).

Example
Three quadrics Q1, Q2, Q3 € Z[z1, x2, x3] with
QiNQaNQs = {ag,...,a7} = ACZ3CR.

Then X 4 is a 2-selfdual threefold:

The rank of the (10 x 8)-matrix A®) is 10 — 3 =7, so
dim Ker A®) = 1.
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Connections with number theory

In general it is difficult to find integer polynomials with many
integer roots (cf. Rodriguez Villegas, Voloch, Zagier).

Example
Consider 3 integers mi,mo, m3 and f(z) = H?Zl(:v —m;).
Consider the quadratic polynomial

f(x) = f(y)

Qr,y) = — € Z[z,y]
T —y
@ vanishes at the 6 lattice points (m;, m;), j # i, while (252) is
also equal to 6.
The configuration A given by these 6 points is 2-self dual

because it is 2nap and dim Ker A% = 1.
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Curves with many lattice points

A’ :={(0,0),(1,0),(0,1),(3,1),(1,2)}

The unique conic through ° o o o °
these five points, given by the
vanishing of

Q:x2—2xy+2y2—x—2y, o ) o o o

also goes through the lattice /
points as = (3,3), ag = (4, 3)

[ ] (o] O [ @]
and a7 = (4,2).
So it is a conic through 8
lattice points. . ° o o )

Adding any one of these three
points to A’ gives 3 examples
of 2-selfdual surfaces in P°
that are non-smooth.

If we add all 3 points, we get a
3-selfdual surface.
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Joins
Let Vi,..., Vs be finite dimensional K-vector spaces and let
X1 CP(V1), ..., Xs CP(V;) be projective varieties. The join of
X1,...,X; is the projective subvariety of P(V} @ - - @ V)
defined by

J(X1,. o, Xs) = {[zr -+ a] | [w] € X}

Proposition (Dickenstein—P.)
Assume A, ..., As are knap and k-selfdual. Then the join
Xa=J(X4y,...,Xa,) is s-Cayley, knap, and k-selfdual, with

dim Ker A® = dim Ker Agk) + -+ dim Ker Agk) > s.

Joins of varieties of degree at least 2 are not smooth.
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k-seltdual Cayley polytopes
Proposition (Dickenstein—P.)
Let B be a lattice configuration of cardinality m + 1 such that

the general kth osculating space of Xz is the whole P and

dim Ker B*=1) = 1. Let r > 1 and take A = Cayley(B,...,B)
(r 4+ 1 times), so that

X.A — P x XB C IP:(T‘-l—l)(m-i—l)—l'

Then, X 4 is k-selfdual if and only if Xp is (k — 1)-selfdual.

Proof.

One checks that A is knap if and only if B is (kK — 1)nap, and
that dim Ker A*) = . Then use a combinatorial /toric variety
argument.
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Segre-Veronese examples
The Segre embedding P! x --- x P! < P2"~1 is (n — 1)-selfdual
[Valles, 2006]. More generally:

Proposition (Dickenstein—P.)
Let A be a lattice point configuration such that X 4 is equal to
a Segre embedding of the following form:

(i) P! x -« x Pl — PV,

(ii) P" x P! x - x Pt s PN,
with m > 1 copies of P'’s, and the embedding is of type
(€1,...,bm) with k:=>"", ¢; —1 > 0 in case (i), or
(1,61,...,0p) with k= 5" /; in case (ii), ¢; > 1.
Then, in both cases X 4 is k-selfdual. Moreover,
dim Ker A®) =1 in case (i) and dim Ker A®) = 7 in case (ii).
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Towards a classification in the smooth case

Conjecture

The only smooth, projectively normal k-selfdual toric varieties
X 4 with dim Ker A®) > 1 are the Segre-Veronese examples
described in the previous Proposition (ii).

For k = 1, this holds: the only smooth, projectively normal
selfdual toric varieties are: the plane conic P! < P2, the quadric
surface in P! x P! < P3 and the Segre embeddings

P x P! < P?"*! for any r > 2.

For k > 1, when dim Ker A%) = 1, there is no hope to get a
classification, nor is there hope when A # Conv(A) N Z".
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