Projective geometry from a toric point of view

Ragni Piene

Young Researchers in Mathematics
Oxford
August 18, 2015

Differential geometry

Let $r: \mathbb{R} \rightarrow \mathbb{R}^{N}$ be a (parameterized) curve, $t \mapsto r(t)=\left(r_{1}(t), r_{2}(t), \ldots, r_{N}(t)\right)$.

The tangent to the curve at the point $r(t)$ is the line $\left\langle r(t), r^{\prime}(t)\right\rangle$, the osculating plane is $\left\langle r(t), r^{\prime}(t), r^{\prime \prime}(t)\right\rangle$, and so on.

Example
$r(t)=\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3}$
The tangent line at $(0,0,0)$ is $\langle(0,0,0),(1,0,0)\rangle$ - the x-axis.
The osculating plane at $(0,0,0)$ is $\langle(0,0,0),(1,0,0),(0,2,0)\rangle-$ the $x y$-plane.

UiO: University of Oslo

Twisted cubic

Projective varieties

Let $X \subset \mathbb{P}^{N}$ be a (smooth) projective algebraic variety of dimension n over an algebraically closed field \mathbb{K}.
Set $\mathcal{L}:=\left.\mathcal{O}_{\mathbb{P}^{N}}(1)\right|_{X}$. The k th jet bundle (or principal parts bundle of \mathcal{L}) is of $\operatorname{rank}\binom{n+k}{n}$ and comes with a jet map

$$
j_{k}: \mathcal{O}_{X}^{N+1} \rightarrow \mathcal{P}_{X}^{k}(\mathcal{L})
$$

whose fibers are given by Taylor expansions up to k th order of

$$
s=\left(s_{0}, \ldots, s_{N}\right): \mathcal{O}_{X}^{N+1} \rightarrow \mathcal{L}
$$

The exact sequences

$$
0 \rightarrow S^{i} \Omega_{X}^{1} \otimes \mathcal{L} \rightarrow \mathcal{P}_{X}^{i}(\mathcal{L}) \rightarrow \mathcal{P}_{X}^{i-1}(\mathcal{L}) \rightarrow 0
$$

allow one to compute the Chern classes of the jet bundles in terms of those of X and \mathcal{L}.

UiO : University of Oslo

Tangent and osculating spaces

The embedded tangent space to X at a point x is equal to

$$
\mathbb{T}_{X, x}=\mathbb{P}\left(\operatorname{Im} j_{1, x}\right)=\mathbb{P}\left(\mathcal{P}_{X}^{1}(\mathcal{L})_{x}\right) \cong \mathbb{P}^{n}
$$

The k th osculating space to X at x is the linear space

$$
\mathbb{T}_{X, x}^{k}:=\mathbb{P}\left(\operatorname{Im} j_{k, x}\right)
$$

Note: $\operatorname{dim} \mathbb{T}_{X, x}^{k} \leq \operatorname{rk} \mathcal{P}_{X}^{k}(\mathcal{L})-1=\binom{n+k}{k}-1$.

UiO : University of Oslo

Inflections

Let

$$
d_{k}+1:=\text { generic rank of } j_{k}: \mathcal{O}_{X}^{N+1} \rightarrow \mathcal{P}_{X}^{k}(\mathcal{L}) .
$$

A point $x \in X$ is an inflection point of order k if rk $j_{k, x}<d_{k}+1$; equivalently, if $\operatorname{dim} \mathbb{T}_{X, x}^{k}<d_{k}$.
Question 1: Determine the (class of the) locus of inflection points on X.

Question 2: Classify varieties with special osculating behavior.
Example
A curve $X \subset \mathbb{P}^{N}$ of degree d and genus g has
$(N+1)(d+N(g-1))$ inflection points. So the only uninflected curves in \mathbb{P}^{N} are the rational normal curves: $d=N$ and $g=0$.

UiO : University of Oslo

Three theorems

Theorem (Fulton-Kleiman-P.-Tai)

Let X be a smooth, irreducible variety of dimension n and set $N=\binom{n+k}{k}-1$. The only embedding $X \rightarrow \mathbb{P}^{N}$ such that $\mathbb{T}_{X, x}^{k}=\mathbb{P}^{N}$ for all $x \in X$ is the k th Veronese embedding of $X=\mathbb{P}^{n}$.

Theorem (Ballico-P.-Tai)
Let $X \subset \mathbb{P}^{2 k+1}$ be a smooth surface such that $\operatorname{dim} \mathbb{T}_{X, x}^{m}=2 m$ for all $x \in X$ and all $m \leq k$. Then X is equal to the balanced rational normal scroll of degree $2 k$.
Theorem (Lanteri-Mallavibarrena-P.)
The only uninflected n-dimensional scroll $X \subset \mathbb{P}^{n k+\ell-1}$, $1 \leq \ell \leq n$, is the balanced rational normal scroll of degree $n k$.

UiO: University of Oslo

Toric embeddings

$$
\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n} \rightsquigarrow X_{\mathcal{A}} \subseteq \mathbb{P}^{N} .
$$

The associated (equivariantly embedded) projective toric variety $X_{\mathcal{A}}$ is the Zariski closure of the image of all
$t=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{K}^{*}\right)^{n}$ under the map

$$
t \mapsto\left(t^{a_{0}}: \cdots: t^{a_{N}}\right)
$$

E.g., $\mathcal{A}=P \cap \mathbb{Z}^{n}$, for a lattice polytope P.

The three above examples are toric:

- the k th Veronese of $\mathbb{P}^{n}: P=k \Delta_{n}$
- a balanced rational normal scroll of dimension n, degree $n k$: $P=\Delta_{n-1} \times k \Delta_{1}$.
If we assume X is toric, the theorems are easier to prove.

UiO : University of Oslo

Togliatti's surface

The lattice point configuration

$$
\mathcal{A}=\{(1,0),(0,1),(2,0),(0,2),(2,1),(1,2)\} \subset \mathbb{Z}^{2}
$$

gives the toric embedding

$$
\left(\mathbb{K}^{*}\right)^{2} \rightarrow \mathbb{P}^{5}
$$

given by

$$
(x, y) \mapsto\left(x: y: x^{2}: y^{2}: x^{2} y: x y^{2}\right)
$$

Togliatti lattice point configuration

Polytopes and toric varieties: dictionary

$P \subset \mathbb{R}^{n}$ lattice polytope, $X_{P} \subset \mathbb{P}^{N}$

- X_{P} smooth iff P smooth
- Hilbert polynomial of
$X_{P}=$ Ehrhart polynomial of P
- $\operatorname{dim} H^{0}\left(X_{P}, m L_{P}\right)=$ $\#(m P \cap \mathbb{Z})$
- X_{P} a surface: sectional genus $=\# \operatorname{Int} P \cap \mathbb{Z}$
- $\operatorname{deg} X_{P}=c_{1}\left(L_{P}\right)^{n}=$ $\mathrm{Vol}_{\mathbb{Z}}(P)$
- $c_{i}\left(T_{X_{P}}\right) c_{1}\left(L_{P}\right)^{n-i}=$ $\sum_{\text {codim } F_{i}=i} \operatorname{Vol}_{\mathbb{Z}}\left(F_{i}\right)$.
- $c_{n}\left(T_{X_{P}}\right)=\#$ vertices of P
- Riemann-Roch and Ehrhart series
- Resolution of singularities and continued fractions
- Local Euler obstruction = "corner volume"

UiO: University of Oslo

Sections and projections

Let $\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n}$ be a lattice point configuration and let $X_{\mathcal{A}} \subset \mathbb{P}^{N}$ denote the corresponding toric embedding. Let \mathcal{A}^{\prime} be a lattice point configuration obtained from \mathcal{A} by removing m points. Then the toric embedding $X_{\mathcal{A}^{\prime}} \subset \mathbb{P}^{N^{\prime}}$, where $N^{\prime}=N-m$, is the (toric) linear projection of $X_{\mathcal{A}}$ with center equal to the linear span of the "removed points".

A toric hyperplane section of $X_{\mathcal{A}}$ is obtained by taking a hyperplane in \mathbb{Z}^{n} and "collapsing" the point configuration \mathcal{A} into this lattice hyperplane in such a way that one point is "lost": two points map to the same point.

UiO: University of Oslo

Del Pezzo lattice configuration

UiO: University of Oslo
$\mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ via $\mathcal{O}(2,2)$

Third Veronese: $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{9}$

Cayley polytopes

> Let $P_{0}, \ldots, P_{r} \subset \mathbb{R}^{n-r}$ be convex lattice polytopes and e_{0}, \ldots, e_{r} the vertices of $\Delta_{r} \subset \mathbb{R}^{r}$.

The polytope

$$
P=\operatorname{Conv}\left\{e_{0} \times P_{0}, \ldots, e_{r} \times P_{r}\right\} \subset \mathbb{R}^{r} \times \mathbb{R}^{n-r}=\mathbb{R}^{n}
$$

is called a Cayley polytope.
We write

$$
P=\operatorname{Cayley}\left(P_{0}, \ldots, P_{r}\right)
$$

UiO: University of Oslo

Hollow polytopes

A Cayley polytope is "hollow": it has no interior lattice points.

UiO: University of Oslo

The codegree and degree of a polytope

$\operatorname{codeg}(P):=\min \{m \mid m P$ has interior lattice points $\}$.

$$
\operatorname{deg}(P):=n+1-\operatorname{codeg}(P)
$$

Example (1)

$$
\operatorname{codeg}\left(\Delta_{n}\right)=n+1 \text { and } \operatorname{codeg}\left(2 \Delta_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil
$$

Example (2)
$P=\operatorname{Cayley}\left(P_{0}, \ldots, P_{r}\right)$ implies $\operatorname{codeg}(P) \geq r+1$.
UiO : University of Oslo

$\operatorname{codeg}\left(P_{1}\right)=3 \quad \operatorname{codeg}\left(P_{2}\right)=2$
$\operatorname{codeg}\left(P_{3}\right)=1$

UiO: University of Oslo

The Cayley polytope conjecture

Question (Batyrev-Nill): Is there an integer $N(d)$ such that any polytope P of degree d and $\operatorname{dim} P \geq N(d)$ is a Cayley polytope?

Answer (Haase-Nill-Payne): Yes, and $N(d) \leq\left(d^{2}+19 d-4\right) / 2$
Question: Is $N(d)$ linear in d ?
Answer (Dickenstein-Di Rocco-P.): Yes, $N(d)=2 d+1$ (if P is smooth and \mathbb{Q}-normal).

Note that $n \geq 2 d+1$ is equivalent to $\operatorname{codeg}(P) \geq \frac{n+3}{2}$.

UiO: University of Oslo

Theorem (Dickenstein, Di Rocco, P., Nill)

Let P be a smooth lattice polytope of dimension n. The following are equivalent
(1) $\operatorname{codeg}(P) \geq \frac{n+3}{2}$
(2) $P=\operatorname{Cayley}\left(P_{0}, \ldots, P_{r}\right)$ is a smooth Cayley polytope with $r+1=\operatorname{codeg}(P)$ and $r>\frac{n}{2}$.

The proof of this combinatorial result is algebro-geometric (adjoints and nef-value maps à la Beltrametti-Sommese, toric fibrations à la Reid).

UiO: University of Oslo

Higher order dual varieties

The k th dual variety $X^{(k)}$ is defined as:

$$
X^{(k)}=\overline{\left\{H \in\left(\mathbb{P}^{N}\right)^{\vee} \mid H \supseteq \mathbb{T}_{X, x}^{k} \text { for some } x \in X_{j_{k}-\mathrm{cst}}\right\}} .
$$

In particular, $X^{(1)}=X^{\vee}, X^{(k-1)} \supseteq X^{(k)}$, and $X^{(k)}$ is contained in the singular locus of X^{\vee} for $k \geq 2$.
The expected dimension of X^{\vee} is $N-1$ and that of $X^{(k)}$ is $n+N-d_{k}-1$.

UiO : University of Oslo

Degree of dual varieties

Gelfand-Kapranov-Zelevinsky:
If X_{P} is smooth, then

$$
\operatorname{deg} X_{P}^{\vee}=\sum_{F \prec P}(-1)^{\operatorname{cod} F}(\operatorname{dim} F+1) \operatorname{Vol}_{\mathbb{Z}}(F)
$$

Matsui-Takeuchi:

$$
\operatorname{deg} X_{P}^{\vee}=\sum_{F \prec P}(-1)^{\operatorname{cod} F}(\operatorname{dim} F+1) \operatorname{Vol}_{\mathbb{Z}}(F) \operatorname{Eu}(F),
$$

where $\mathrm{Eu}(F)$ denotes the generic value of the local Euler obstruction of points on X_{P} corresponding to the face F.

UiO : University of Oslo

Weighted projective planes

The weighted projective plane $\mathbb{P}(k, m, n)$ is the toric surface in \mathbb{P}^{N}, with $N=(k m n+k+m+n) / 2$, given by the lattice points in the convex hull of the points $\{(m n, 0,0),(0, k n, 0),(0,0, k m)\}$. This surface has isolated cyclic quotient singularities at the points corresponding to the vertices of the triangle.

Theorem (Nødland)

$\operatorname{deg} \mathbb{P}(k, m, n)^{\vee}=$
$3 k m n-2(k+n+m)+\sum_{i=1}^{r}\left(2-a_{i}\right)+\sum_{i=1}^{s}\left(2-b_{i}\right)+\sum_{i=1}^{t}\left(2-c_{i}\right)$,
where the $\left(a_{i}\right),\left(b_{i}\right),\left(c_{i}\right)$ are the integers appearing in the Hirzebruch-Jung continued fractions coming from the three singular points.

UiO: University of Oslo

Degree of higher dual varieties

Theorem (Dickenstein-Di Rocco-P.)

Let $\left(X_{P}, L_{P}\right)$ be a smooth, 2-regular toric threefold embedding $\neq\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(i)\right), i=2,3,\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b) \oplus \mathcal{O}_{\mathbb{P}^{1}}(c)\right), 2 \xi\right)$.
Then

$$
\operatorname{deg} X^{(2)}=62 V-57 F+28 E-8 v+58 V_{1}+51 F_{1}+20 E_{1}
$$

where V, F, E (resp. V_{1}, F_{1}, E_{1}) denote the (lattice) volume, area of facets, length of edges of P (resp. the adjoint polytope $\operatorname{Conv}(\operatorname{Int} P))$, and $v=\#\{$ vertices of $P\}$.

UiO: University of Oslo

k-selfdual toric varieties (joint with A. Dickenstein)

$\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n}$ a lattice point configuration, and $X_{\mathcal{A}} \subset \mathbb{P}^{N}$ the corresponding toric embedding.

Form the matrix A by adding a row of 1's to the matrix $\left(a_{0}|\cdots| a_{N}\right)$. Denote by $\mathbf{v}_{0}=(1, \ldots, 1), \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{Z}^{N+1}$ the row vectors of A.
For any $\alpha \in \mathbb{N}^{n+1}$, denote by $\mathbf{v}_{\alpha} \in \mathbb{Z}^{N+1}$ the vector obtained as the coordinatewise product of α_{0} times the row vector \mathbf{v}_{0} times
\ldots times α_{n} times the row vector \mathbf{v}_{n}.
Order the vectors $\left\{\mathbf{v}_{\alpha}:|\alpha| \leq k\right\}$. Let $A^{(k)}$ be the $\binom{n+k}{k} \times(N+1)$ integer matrix with these rows.

Rational normal curve

Take $\mathcal{A}=\{0, \ldots, d\}$. Then

$$
A=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d
\end{array}\right)
$$

and

$$
A^{(3)}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d \\
0 & 1 & 4 & 9 & \cdots & d^{2} \\
0 & 1 & 8 & 27 & \cdots & d^{3}
\end{array}\right)
$$

Note that

$$
A^{(3)} \cong\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d \\
0 & 0 & 1 & 3 & \cdots & \left(\begin{array}{c}
d \\
2 \\
2
\end{array}\right) ~ . ~ \\
0 & 0 & 0 & 1 & \cdots & \binom{d}{3}
\end{array}\right)
$$

UiO : University of Oslo

The case $k=2$

Denote by $\mathbf{v}_{i} * \mathbf{v}_{j} \in \mathbb{Z}^{m+1}$ the vector given by the coordinatewise product of these vectors. Define the $\binom{n+2}{2} \times(m+1)$-matrix

$$
A^{(2)}=\left(\begin{array}{c}
\mathbf{v}_{0} \\
\vdots \\
\mathbf{v}_{n} \\
\mathbf{v}_{1} * \mathbf{v}_{1} \\
\mathbf{v}_{1} * \mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{n-1} * \mathbf{v}_{n} \\
\mathbf{v}_{n} * \mathbf{v}_{n}
\end{array}\right)
$$

$\mathbf{v}_{i} * \mathbf{v}_{j}, 1 \leq i \leq j \leq n$. Then, $\mathbb{P}\left(\right.$ Rowspan $\left.\left(A^{(2)}\right)\right)=\mathbb{T}_{X_{\mathcal{A}}, \mathbf{1}}^{2}$ describes the second osculating space of $X_{\mathcal{A}}$ at the point 1 .

UiO : University of Oslo

Non-pyramidal configurations

The configuration \mathcal{A} is a non-pyramid (nap) if the configuration of columns in A is not a pyramid (i.e., no basis vector e_{i} of \mathbb{R}^{N+1} lies in the rowspan of the matrix).

The configuration \mathcal{A} is knap if the configuration of columns in $A^{(k)}$ is not a pyramid.
Note that any vector in the rowspan of $A^{(k)}$ is equal to

$$
\left(Q\left(a_{0}\right), \ldots, Q\left(a_{N}\right)\right),
$$

for some polynomial Q in n variables, of degree $\leq k$.
$A^{(k)}$ is a pyramid iff there exist Q, i such that $Q\left(a_{j}\right)=0$ for all $j \neq i$ and $Q\left(a_{i}\right) \neq 0$.

UiO : University of Oslo

Characterization of k-self dual configurations

$X_{\mathcal{A}}$ is k-selfdual if $\phi\left(X_{\mathcal{A}}\right)=X_{\mathcal{A}}^{(k)}$ for some $\phi: \mathbb{P}^{N} \cong\left(\mathbb{P}^{N}\right)^{\vee}$.
Theorem (Dickenstein-P.)
(1) $X_{\mathcal{A}}$ is k-selfdual if and only if $\operatorname{dim} X_{\mathcal{A}}=\operatorname{dim} X_{\mathcal{A}}^{(k)}$ and \mathcal{A} is knap.
(2) If \mathcal{A} is $k n a p$ and $\operatorname{dim} \operatorname{Ker} A^{(k)}=1$, then $X_{\mathcal{A}}$ is k-selfdual.

The proof generalizes [Bourel-Dickenstein-Rittatore] $(k=1)$.

UiO : University of Oslo

A surface in \mathbb{P}^{3}

$$
\mathcal{A}=\{(0,0),(1,0),(1,1),(0,2)\}
$$

gives

$$
X_{\mathcal{A}}:(x, y) \mapsto\left(1: x: x y: y^{2}\right)
$$

and

$$
X_{\mathcal{A}}^{\vee} \cong X_{\mathcal{A}^{\vee}}:(x, y) \mapsto\left(-1: 2 x^{-1}:-2 x^{-1} y^{-1}: y^{-2}\right)
$$

with

$$
\mathcal{A}^{\vee}=\{(0,0),(-1,0),(-1,-1),(0,-2)\}=-\mathcal{A} .
$$

This surface is self dual.

UiO : University of Oslo

The corresponding polytopes

UiO: University of Oslo

Del Pezzo and Togliatti

Del Pezzo is not 2nap:

Togliatti is 2nap:

Example

This square is an example of a 4-selfdual smooth surface which is not projectively normal and not centrally symmetric.

The complete polytope is 7-selfdual, projectively normal and centrally symmetric.

UiO : University of Oslo

Chasles-Cayley-Bacharach

Non-trivial linear relations between the rows of $A^{(k)}$ correspond to polynomials of degree $\leq k$ vanishing on \mathcal{A} (D. Perkinson).
Example
Three quadrics $Q_{1}, Q_{2}, Q_{3} \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$ with

$$
Q_{1} \cap Q_{2} \cap Q_{3}=\left\{a_{0}, \ldots, a_{7}\right\}=\mathcal{A} \subset \mathbb{Z}^{3} \subset \mathbb{R}^{3}
$$

Then $X_{\mathcal{A}}$ is a 2 -selfdual threefold:
The rank of the (10×8)-matrix $A^{(2)}$ is $10-3=7$, so $\operatorname{dim} \operatorname{Ker} A^{(k)}=1$.

UiO : University of Oslo

Connections with number theory

In general it is difficult to find integer polynomials with many integer roots (cf. Rodriguez Villegas, Voloch, Zagier).

Example

Consider 3 integers m_{1}, m_{2}, m_{3} and $f(x)=\prod_{i=1}^{3}\left(x-m_{i}\right)$.
Consider the quadratic polynomial

$$
Q(x, y)=\frac{f(x)-f(y)}{x-y} \in \mathbb{Z}[x, y]
$$

Q vanishes at the 6 lattice points $\left(m_{i}, m_{j}\right), j \neq i$, while $\binom{2+2}{2}$ is also equal to 6 .
The configuration \mathcal{A} given by these 6 points is 2 -self dual because it is 2 nap and $\operatorname{dim} \operatorname{Ker} A^{(k)}=1$.

UiO : University of Oslo

Curves with many lattice points

$$
\mathcal{A}^{\prime}:=\{(0,0),(1,0),(0,1),(3,1),(1,2)\}
$$

The unique conic through these five points, given by the vanishing of
$Q=x^{2}-2 x y+2 y^{2}-x-2 y$, also goes through the lattice points $a_{5}=(3,3), a_{6}=(4,3)$ and $a_{7}=(4,2)$.
So it is a conic through 8 lattice points.

UiO: University of Oslo

Adding any one of these three points to \mathcal{A}^{\prime} gives 3 examples of 2 -selfdual surfaces in \mathbb{P}^{5} that are non-smooth. If we add all 3 points, we get a 3 -selfdual surface.

Joins

Let V_{1}, \ldots, V_{s} be finite dimensional \mathbb{K}-vector spaces and let $X_{1} \subseteq \mathbb{P}\left(V_{1}\right), \ldots, X_{s} \subseteq \mathbb{P}\left(V_{s}\right)$ be projective varieties. The join of X_{1}, \ldots, X_{s} is the projective subvariety of $\mathbb{P}\left(V_{1} \oplus \cdots \oplus V_{s}\right)$ defined by

$$
\mathrm{J}\left(X_{1}, \ldots, X_{s}\right)=\overline{\left\{\left[x_{1}: \cdots: x_{s}\right] \mid\left[x_{i}\right] \in X_{i}\right\}} .
$$

Proposition (Dickenstein-P.)
Assume $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}$ are k nap and k-selfdual. Then the join $X_{\mathcal{A}}=\mathrm{J}\left(X_{\mathcal{A}_{1}}, \ldots, X_{\mathcal{A}_{s}}\right)$ is s-Cayley, k nap, and k-selfdual, with

$$
\operatorname{dim} \operatorname{Ker} A^{(k)}=\operatorname{dim} \operatorname{Ker} A_{1}^{(k)}+\cdots+\operatorname{dim} \operatorname{Ker} A_{s}^{(k)} \geq s
$$

Joins of varieties of degree at least 2 are not smooth.

UiO: University of Oslo

k-selfdual Cayley polytopes

Proposition (Dickenstein-P.)

Let \mathcal{B} be a lattice configuration of cardinality $m+1$ such that the general k th osculating space of $X_{\mathcal{B}}$ is the whole \mathbb{P}^{m} and $\operatorname{dim} \operatorname{Ker} B^{(k-1)}=1$. Let $r \geq 1$ and take $\mathcal{A}=\operatorname{Cayley}(\mathcal{B}, \ldots, \mathcal{B})$ ($r+1$ times), so that

$$
X_{\mathcal{A}}=\mathbb{P}^{r} \times X_{\mathcal{B}} \subset \mathbb{P}^{(r+1)(m+1)-1}
$$

Then, $X_{\mathcal{A}}$ is k-selfdual if and only if $X_{\mathcal{B}}$ is $(k-1)$-selfdual.

Proof.

One checks that \mathcal{A} is k nap if and only if \mathcal{B} is $(k-1)$ nap, and that $\operatorname{dim} \operatorname{Ker} A^{(k)}=r$. Then use a combinatorial/toric variety argument.

UiO : University of Oslo

Segre-Veronese examples

The Segre embedding $\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{2^{n}-1}$ is $(n-1)$-selfdual [Vallès, 2006]. More generally:

Proposition (Dickenstein-P.)
Let \mathcal{A} be a lattice point configuration such that $X_{\mathcal{A}}$ is equal to a Segre embedding of the following form:
(i) $\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{N}$,
(ii) $\mathbb{P}^{r} \times \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{N}$,
with $m \geq 1$ copies of \mathbb{P}^{1} 's, and the embedding is of type
$\left(\ell_{1}, \ldots, \ell_{m}\right)$ with $k:=\sum_{i=1}^{m} \ell_{i}-1>0$ in case (i), or
$\left(1, \ell_{1}, \ldots, \ell_{m}\right)$ with $k:=\sum_{i=1}^{m} \ell_{i}$ in case (ii), $\ell_{i} \geq 1$.
Then, in both cases $X_{\mathcal{A}}$ is k-selfdual. Moreover, $\operatorname{dim} \operatorname{Ker} A^{(k)}=1$ in case (i) and $\operatorname{dim} \operatorname{Ker} A^{(k)}=r$ in case (ii).

UiO : University of Oslo

Towards a classification in the smooth case

Conjecture

The only smooth, projectively normal k-selfdual toric varieties $X_{\mathcal{A}}$ with $\operatorname{dim} \operatorname{Ker} A^{(k)}>1$ are the Segre-Veronese examples described in the previous Proposition (ii).

For $k=1$, this holds: the only smooth, projectively normal selfdual toric varieties are: the plane conic $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{2}$, the quadric surface in $\mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}$ and the Segre embeddings $\mathbb{P}^{r} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{2 r+1}$ for any $r \geq 2$.

For $k>1$, when $\operatorname{dim} \operatorname{Ker} A^{(k)}=1$, there is no hope to get a classification, nor is there hope when $\mathcal{A} \neq \operatorname{Conv}(\mathcal{A}) \cap \mathbb{Z}^{n}$.

UiO : University of Oslo

Thank you for your attention!

