Projective geometry from a toric point of view

Ragni Piene

Young Researchers in Mathematics Oxford August 18, 2015

Differential geometry

Let $r : \mathbb{R} \to \mathbb{R}^N$ be a (parameterized) curve, $t \mapsto r(t) = (r_1(t), r_2(t), \dots, r_N(t)).$

The tangent to the curve at the point r(t) is the line $\langle r(t), r'(t) \rangle$, the osculating plane is $\langle r(t), r'(t), r''(t) \rangle$, and so on.

Example

$$r(t) = (t, t^2, t^3) \in \mathbb{R}^3$$

The tangent line at (0,0,0) is $\langle (0,0,0), (1,0,0) \rangle$ – the x-axis.

The osculating plane at (0,0,0) is $\langle (0,0,0), (1,0,0), (0,2,0) \rangle$ – the xy-plane.

Twisted cubic

Projective varieties

Let $X \subset \mathbb{P}^N$ be a (smooth) projective algebraic variety of dimension n over an algebraically closed field \mathbb{K} .

Set $\mathcal{L} := \mathcal{O}_{\mathbb{P}^N}(1)|_X$. The kth jet bundle (or principal parts bundle of \mathcal{L}) is of rank $\binom{n+k}{n}$ and comes with a jet map

$$j_k \colon \mathcal{O}_X^{N+1} \to \mathcal{P}_X^k(\mathcal{L}),$$

whose fibers are given by Taylor expansions up to kth order of

$$s = (s_0, \ldots, s_N) \colon \mathcal{O}_X^{N+1} \to \mathcal{L}.$$

The exact sequences

$$0 \to S^i \Omega^1_X \otimes \mathcal{L} \to \mathcal{P}^i_X(\mathcal{L}) \to \mathcal{P}^{i-1}_X(\mathcal{L}) \to 0$$

allow one to compute the Chern classes of the jet bundles in terms of those of X and \mathcal{L} .

Tangent and osculating spaces

The embedded tangent space to X at a point x is equal to

$$\mathbb{T}_{X,x} = \mathbb{P}(\operatorname{Im} j_{1,x}) = \mathbb{P}(\mathcal{P}_X^1(\mathcal{L})_x) \cong \mathbb{P}^n.$$

The kth osculating space to X at x is the linear space

$$\mathbb{T}^k_{X,x} := \mathbb{P}(\operatorname{Im} j_{k,x}).$$

Note: dim
$$\mathbb{T}_{X,x}^k \le \operatorname{rk} \mathcal{P}_X^k(\mathcal{L}) - 1 = \binom{n+k}{k} - 1$$
.

Inflections

Let

$$d_k + 1 := \text{ generic rank of } j_k \colon \mathcal{O}_X^{N+1} \to \mathcal{P}_X^k(\mathcal{L}).$$

A point $x \in X$ is an inflection point of order k if $\operatorname{rk} j_{k,x} < d_k + 1$; equivalently, if $\dim \mathbb{T}^k_{X,x} < d_k$.

Question 1: Determine the (class of the) locus of inflection points on X.

Question 2: Classify varieties with special osculating behavior.

Example

A curve $X \subset \mathbb{P}^N$ of degree d and genus g has (N+1)(d+N(g-1)) inflection points. So the only uninflected curves in \mathbb{P}^N are the rational normal curves: d=N and g=0.

Three theorems

Theorem (Fulton-Kleiman-P.-Tai)

Let X be a smooth, irreducible variety of dimension n and set $N = \binom{n+k}{k} - 1$. The only embedding $X \to \mathbb{P}^N$ such that $\mathbb{T}^k_{X,x} = \mathbb{P}^N$ for all $x \in X$ is the kth Veronese embedding of $X = \mathbb{P}^n$.

Theorem (Ballico-P.-Tai)

Let $X \subset \mathbb{P}^{2k+1}$ be a smooth surface such that $\dim \mathbb{T}^m_{X,x} = 2m$ for all $x \in X$ and all $m \leq k$. Then X is equal to the balanced rational normal scroll of degree 2k.

Theorem (Lanteri-Mallavibarrena-P.)

The only uninflected n-dimensional scroll $X \subset \mathbb{P}^{nk+\ell-1}$, $1 \leq \ell \leq n$, is the balanced rational normal scroll of degree nk.

Toric embeddings

$$\mathcal{A} = \{a_0, \dots, a_N\} \subset \mathbb{Z}^n \leadsto X_{\mathcal{A}} \subseteq \mathbb{P}^N.$$

The associated (equivariantly embedded) projective toric variety $X_{\mathcal{A}}$ is the Zariski closure of the image of all $t = (t_1, \ldots, t_n) \in (\mathbb{K}^*)^n$ under the map

$$t \mapsto (t^{\mathbf{a_0}} : \cdots : t^{\mathbf{a_N}}).$$

E.g., $\mathcal{A} = P \cap \mathbb{Z}^n$, for a lattice polytope P.

The three above examples are toric:

- the kth Veronese of \mathbb{P}^n : $P = k\Delta_n$
- ▶ a balanced rational normal scroll of dimension n, degree nk: $P = \Delta_{n-1} \times k\Delta_1$.

If we assume X is toric, the theorems are easier to prove.

Togliatti's surface

The lattice point configuration

$$\mathcal{A} = \{(1,0), (0,1), (2,0), (0,2), (2,1), (1,2)\} \subset \mathbb{Z}^2$$

gives the toric embedding

$$(\mathbb{K}^*)^2 \to \mathbb{P}^5$$

given by

$$(x,y) \mapsto (x:y:x^2:y^2:x^2y:xy^2).$$

Togliatti lattice point configuration

Polytopes and toric varieties: dictionary

 $P \subset \mathbb{R}^n$ lattice polytope, $X_P \subset \mathbb{P}^N$

- $ightharpoonup X_P$ smooth iff P smooth
- ▶ Hilbert polynomial of X_P = Ehrhart polynomial of P
- $\dim H^0(X_P, mL_P) = \#(mP \cap \mathbb{Z})$
- ► X_P a surface: sectional genus = # Int $P \cap \mathbb{Z}$
- $deg X_P = c_1(L_P)^n =$ $Vol_{\mathbb{Z}}(P)$

- $c_i(T_{X_P})c_1(L_P)^{n-i} = \sum_{\text{codim } F_i=i} \text{Vol}_{\mathbb{Z}}(F_i).$
- $ightharpoonup c_n(T_{X_P}) = \# \text{ vertices of } P$
- ► Riemann–Roch and Ehrhart series
- ► Resolution of singularities and continued fractions
- ► Local Euler obstruction = "corner volume"

Sections and projections

Let $\mathcal{A} = \{a_0, \dots, a_N\} \subset \mathbb{Z}^n$ be a lattice point configuration and let $X_{\mathcal{A}} \subset \mathbb{P}^N$ denote the corresponding toric embedding. Let \mathcal{A}' be a lattice point configuration obtained from \mathcal{A} by removing m points. Then the toric embedding $X_{\mathcal{A}'} \subset \mathbb{P}^{N'}$, where N' = N - m, is the (toric) linear projection of $X_{\mathcal{A}}$ with center equal to the linear span of the "removed points".

A toric hyperplane section of $X_{\mathcal{A}}$ is obtained by taking a hyperplane in \mathbb{Z}^n and "collapsing" the point configuration \mathcal{A} into this lattice hyperplane in such a way that one point is "lost": two points map to the same point.

Del Pezzo lattice configuration

 $\mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^8 \text{ via } \mathcal{O}(2,2)$

Third Veronese: $\mathbb{P}^2 \hookrightarrow \mathbb{P}^9$

Cayley polytopes

Let $P_0, \ldots, P_r \subset \mathbb{R}^{n-r}$ be convex lattice polytopes and e_0, \ldots, e_r the vertices of $\Delta_r \subset \mathbb{R}^r$.

The polytope

$$P = \operatorname{Conv}\{e_0 \times P_0, \dots, e_r \times P_r\} \subset \mathbb{R}^r \times \mathbb{R}^{n-r} = \mathbb{R}^n,$$

is called a Cayley polytope.

We write

$$P = \text{Cayley}(P_0, \dots, P_r).$$

Hollow polytopes

A Cayley polytope is "hollow": it has no interior lattice points.

The codegree and degree of a polytope

 $codeg(P) := min\{m \mid mP \text{ has interior lattice points}\}.$

$$\deg(P) := n + 1 - \operatorname{codeg}(P)$$

Example (1)

$$\operatorname{codeg}(\Delta_n) = n + 1 \text{ and } \operatorname{codeg}(2\Delta_n) = \lceil \frac{n+1}{2} \rceil.$$

Example (2)

$$P = \text{Cayley}(P_0, \dots, P_r) \text{ implies } \text{codeg}(P) \ge r + 1.$$

$$codeg(P_1) = 3$$
 $codeg(P_2) = 2$ $codeg(P_3) = 1$

The Cayley polytope conjecture

Question (Batyrev–Nill): Is there an integer N(d) such that any polytope P of degree d and dim $P \ge N(d)$ is a Cayley polytope?

Answer (Haase–Nill–Payne): Yes, and $N(d) \le (d^2 + 19d - 4)/2$

Question: Is N(d) linear in d?

Answer (Dickenstein–Di Rocco–P.): Yes, N(d) = 2d + 1 (if P is smooth and \mathbb{Q} -normal).

Note that $n \ge 2d + 1$ is equivalent to $codeg(P) \ge \frac{n+3}{2}$.

Theorem (Dickenstein, Di Rocco, P., Nill)

Let P be a smooth lattice polytope of dimension n. The following are equivalent

- (1) $\operatorname{codeg}(P) \ge \frac{n+3}{2}$
- (2) $P = \text{Cayley}(P_0, \dots, P_r)$ is a smooth Cayley polytope with r + 1 = codeg(P) and $r > \frac{n}{2}$.

The proof of this combinatorial result is algebro-geometric (adjoints and nef-value maps à la Beltrametti–Sommese, toric fibrations à la Reid).

Higher order dual varieties

The kth dual variety $X^{(k)}$ is defined as:

$$X^{(k)} = \overline{\{H \in (\mathbb{P}^N)^{\vee} \mid H \supseteq \mathbb{T}^k_{X,x} \text{ for some } x \in X_{j_k-\mathrm{cst}}\}}.$$

In particular, $X^{(1)} = X^{\vee}$, $X^{(k-1)} \supseteq X^{(k)}$, and $X^{(k)}$ is contained in the singular locus of X^{\vee} for $k \ge 2$.

The expected dimension of X^{\vee} is N-1 and that of $X^{(k)}$ is $n+N-d_k-1$.

Degree of dual varieties

Gelfand-Kapranov-Zelevinsky:

If X_P is smooth, then

$$\deg X_P^{\vee} = \sum_{F \prec P} (-1)^{\operatorname{cod} F} (\dim F + 1) \operatorname{Vol}_{\mathbb{Z}}(F)$$

Matsui-Takeuchi:

$$\deg X_P^{\vee} = \sum_{F \prec P} (-1)^{\operatorname{cod} F} (\dim F + 1) \operatorname{Vol}_{\mathbb{Z}}(F) \operatorname{Eu}(F),$$

where Eu(F) denotes the generic value of the local Euler obstruction of points on X_P corresponding to the face F.

Weighted projective planes

The weighted projective plane $\mathbb{P}(k,m,n)$ is the toric surface in \mathbb{P}^N , with N=(kmn+k+m+n)/2, given by the lattice points in the convex hull of the points $\{(mn,0,0),(0,kn,0),(0,0,km)\}$. This surface has isolated cyclic quotient singularities at the points corresponding to the vertices of the triangle.

Theorem (Nødland)

$$\deg \mathbb{P}(k,m,n)^{\vee} = 3kmn - 2(k+n+m) + \sum_{i=1}^{r} (2-a_i) + \sum_{i=1}^{s} (2-b_i) + \sum_{i=1}^{t} (2-c_i),$$
 where the (a_i) , (b_i) , (c_i) are the integers appearing in the Hirzebruch–Jung continued fractions coming from the three singular points.

Degree of higher dual varieties

Theorem (Dickenstein-Di Rocco-P.)

Let (X_P, L_P) be a smooth, 2-regular toric threefold embedding $\neq (\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(i)), i = 2, 3, (\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b) \oplus \mathcal{O}_{\mathbb{P}^1}(c)), 2\xi).$ Then

$$\deg X^{(2)} = 62V - 57F + 28E - 8v + 58V_1 + 51F_1 + 20E_1,$$

where V, F, E (resp. V_1 , F_1 , E_1) denote the (lattice) volume, area of facets, length of edges of P (resp. the adjoint polytope Conv(Int P)), and $v = \#\{vertices \ of \ P\}$.

k-selfdual toric varieties (joint with A. Dickenstein)

 $\mathcal{A} = \{a_0, \dots, a_N\} \subset \mathbb{Z}^n$ a lattice point configuration, and $X_{\mathcal{A}} \subset \mathbb{P}^N$ the corresponding toric embedding.

Form the matrix A by adding a row of 1's to the matrix $(a_0|\cdots|a_N)$. Denote by $\mathbf{v}_0=(1,\ldots,1), \mathbf{v}_1,\ldots,\mathbf{v}_n\in\mathbb{Z}^{N+1}$ the row vectors of A.

For any $\alpha \in \mathbb{N}^{n+1}$, denote by $\mathbf{v}_{\alpha} \in \mathbb{Z}^{N+1}$ the vector obtained as the coordinatewise product of α_0 times the row vector \mathbf{v}_0 times ... times α_n times the row vector \mathbf{v}_n .

Order the vectors $\{\mathbf{v}_{\alpha} : |\alpha| \leq k\}$. Let $A^{(k)}$ be the $\binom{n+k}{k} \times (N+1)$ integer matrix with these rows.

Rational normal curve

Take $\mathcal{A} = \{0, \dots, d\}$. Then

$$A = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & d \end{array}\right),$$

and

$$A^{(3)} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & d \\ 0 & 1 & 4 & 9 & \cdots & d^2 \\ 0 & 1 & 8 & 27 & \cdots & d^3 \end{pmatrix}.$$

Note that

$$A^{(3)} \cong \left(\begin{array}{ccccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & d \\ 0 & 0 & 1 & 3 & \cdots & {d \choose 2} \\ 0 & 0 & 0 & 1 & \cdots & {d \choose 2} \end{array}\right).$$

The case k=2

Denote by $\mathbf{v}_i * \mathbf{v}_j \in \mathbb{Z}^{m+1}$ the vector given by the coordinatewise product of these vectors. Define the $\binom{n+2}{2} \times (m+1)$ -matrix

$$A^{(2)} = \left(egin{array}{c} \mathbf{v}_0 \\ \vdots \\ \mathbf{v}_n \\ \mathbf{v}_1 * \mathbf{v}_1 \\ \mathbf{v}_1 * \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_{n-1} * \mathbf{v}_n \\ \mathbf{v}_n * \mathbf{v}_n \end{array}
ight),$$

 $\mathbf{v}_i * \mathbf{v}_j$, $1 \le i \le j \le n$. Then, $\mathbb{P}(\operatorname{Rowspan}(A^{(2)})) = \mathbb{T}^2_{X_A, \mathbf{1}}$ describes the second osculating space of X_A at the point $\mathbf{1}$.

Non-pyramidal configurations

The configuration \mathcal{A} is a *non-pyramid* (nap) if the configuration of columns in A is not a pyramid (i.e., no basis vector e_i of \mathbb{R}^{N+1} lies in the rowspan of the matrix).

The configuration \mathcal{A} is knap if the configuration of columns in $A^{(k)}$ is not a pyramid.

Note that any vector in the rowspan of $A^{(k)}$ is equal to

$$(Q(a_0),\ldots,Q(a_N)),$$

for some polynomial Q in n variables, of degree $\leq k$.

 $A^{(k)}$ is a pyramid iff there exist Q, i such that $Q(a_j) = 0$ for all $j \neq i$ and $Q(a_i) \neq 0$.

Characterization of k-self dual configurations

 $X_{\mathcal{A}}$ is k-selfdual if $\phi(X_{\mathcal{A}}) = X_{\mathcal{A}}^{(k)}$ for some $\phi \colon \mathbb{P}^N \cong (\mathbb{P}^N)^{\vee}$.

Theorem (Dickenstein-P.)

- (1) $X_{\mathcal{A}}$ is k-selfdual if and only if dim $X_{\mathcal{A}} = \dim X_{\mathcal{A}}^{(k)}$ and \mathcal{A} is knap.
- (2) If A is knap and dim $\operatorname{Ker} A^{(k)} = 1$, then X_A is k-selfdual.

The proof generalizes [Bourel–Dickenstein–Rittatore] (k = 1).

A surface in \mathbb{P}^3

$$\mathcal{A} = \{(0,0), (1,0), (1,1), (0,2)\}$$

gives

$$X_{\mathcal{A}}:(x,y)\mapsto (1:x:xy:y^2)$$

and

$$X_{\mathcal{A}}^{\vee} \cong X_{\mathcal{A}^{\vee}} : (x, y) \mapsto (-1 : 2x^{-1} : -2x^{-1}y^{-1} : y^{-2}),$$

with

$$\mathcal{A}^{\vee} = \{(0,0), (-1,0), (-1,-1), (0,-2)\} = -\mathcal{A}.$$

This surface is self dual.

The corresponding polytopes

Del Pezzo and Togliatti

Del Pezzo is not 2nap:

Togliatti is 2nap:

Example

This square is an example of a 4-selfdual smooth surface which is not projectively normal and not centrally symmetric.

The *complete* polytope is 7-selfdual, projectively normal and centrally symmetric.

Chasles-Cayley-Bacharach

Non-trivial linear relations between the rows of $A^{(k)}$ correspond to polynomials of degree $\leq k$ vanishing on \mathcal{A} (D. Perkinson).

Example

Three quadrics $Q_1, Q_2, Q_3 \in \mathbb{Z}[x_1, x_2, x_3]$ with

$$Q_1 \cap Q_2 \cap Q_3 = \{a_0, \dots, a_7\} = \mathcal{A} \subset \mathbb{Z}^3 \subset \mathbb{R}^3.$$

Then $X_{\mathcal{A}}$ is a 2-selfdual threefold:

The rank of the (10×8) -matrix $A^{(2)}$ is 10 - 3 = 7, so dim Ker $A^{(k)} = 1$.

Connections with number theory

In general it is difficult to find integer polynomials with many integer roots (cf. Rodriguez Villegas, Voloch, Zagier).

Example

Consider 3 integers m_1, m_2, m_3 and $f(x) = \prod_{i=1}^3 (x - m_i)$. Consider the quadratic polynomial

$$Q(x,y) = \frac{f(x) - f(y)}{x - y} \in \mathbb{Z}[x,y]$$

Q vanishes at the 6 lattice points $(m_i, m_j), j \neq i$, while $\binom{2+2}{2}$ is also equal to 6.

The configuration \mathcal{A} given by these 6 points is 2-self dual because it is 2nap and dim Ker $A^{(k)} = 1$.

Curves with many lattice points

$$\mathcal{A}' := \{(0,0), (1,0), (0,1), (3,1), (1,2)\}$$

The unique conic through these five points, given by the vanishing of $Q = x^2 - 2xy + 2y^2 - x - 2y$, also goes through the lattice points $a_5 = (3,3)$, $a_6 = (4,3)$ and $a_7 = (4,2)$. So it is a conic through 8

So it is a conic through 8 lattice points.

Adding any one of these three points to \mathcal{A}' gives 3 examples of 2-selfdual surfaces in \mathbb{P}^5 that are non-smooth. If we add all 3 points, we get a

3-selfdual surface.

Joins

Let V_1, \ldots, V_s be finite dimensional \mathbb{K} -vector spaces and let $X_1 \subseteq \mathbb{P}(V_1), \ldots, X_s \subseteq \mathbb{P}(V_s)$ be projective varieties. The *join* of X_1, \ldots, X_s is the projective subvariety of $\mathbb{P}(V_1 \oplus \cdots \oplus V_s)$ defined by

$$J(X_1,...,X_s) = \overline{\{[x_1:...:x_s] | [x_i] \in X_i\}}.$$

Proposition (Dickenstein-P.)

Assume A_1, \ldots, A_s are knap and k-selfdual. Then the join $X_A = J(X_{A_1}, \ldots, X_{A_s})$ is s-Cayley, knap, and k-selfdual, with

$$\dim \operatorname{Ker} A^{(k)} = \dim \operatorname{Ker} A_1^{(k)} + \dots + \dim \operatorname{Ker} A_s^{(k)} \ge s.$$

Joins of varieties of degree at least 2 are not smooth.

k-selfdual Cayley polytopes

Proposition (Dickenstein-P.)

Let \mathcal{B} be a lattice configuration of cardinality m+1 such that the general kth osculating space of $X_{\mathcal{B}}$ is the whole \mathbb{P}^m and dim Ker $B^{(k-1)} = 1$. Let $r \geq 1$ and take $\mathcal{A} = \text{Cayley}(\mathcal{B}, \ldots, \mathcal{B})$ (r+1 times), so that

$$X_A = \mathbb{P}^r \times X_B \subset \mathbb{P}^{(r+1)(m+1)-1}$$
.

Then, $X_{\mathcal{A}}$ is k-selfdual if and only if $X_{\mathcal{B}}$ is (k-1)-selfdual.

Proof.

One checks that \mathcal{A} is knap if and only if \mathcal{B} is (k-1)nap, and that dim Ker $A^{(k)} = r$. Then use a combinatorial/toric variety argument.

Segre-Veronese examples

The Segre embedding $\mathbb{P}^1 \times \cdots \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^{2^n-1}$ is (n-1)-selfdual [Vallès, 2006]. More generally:

Proposition (Dickenstein-P.)

Let \mathcal{A} be a lattice point configuration such that $X_{\mathcal{A}}$ is equal to a Segre embedding of the following form:

(i)
$$\mathbb{P}^1 \times \cdots \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^N$$
,

(ii)
$$\mathbb{P}^r \times \mathbb{P}^1 \times \cdots \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^N$$
,

with $m \ge 1$ copies of \mathbb{P}^1 's, and the embedding is of type (ℓ_1, \ldots, ℓ_m) with $k := \sum_{i=1}^m \ell_i - 1 > 0$ in case (i), or

$$(1, \ell_1, \dots, \ell_m)$$
 with $k := \sum_{i=1}^m \ell_i$ in case (ii), $\ell_i \ge 1$.

Then, in both cases X_A is k-selfdual. Moreover, dim Ker $A^{(k)} = 1$ in case (i) and dim Ker $A^{(k)} = r$ in case (ii).

Towards a classification in the smooth case

Conjecture

The only smooth, projectively normal k-selfdual toric varieties $X_{\mathcal{A}}$ with $\dim \operatorname{Ker} A^{(k)} > 1$ are the Segre-Veronese examples described in the previous Proposition (ii).

For k=1, this holds: the only smooth, projectively normal selfdual toric varieties are: the plane conic $\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$, the quadric surface in $\mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ and the Segre embeddings $\mathbb{P}^r \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^{2r+1}$ for any $r \geq 2$.

For k > 1, when $\dim \operatorname{Ker} A^{(k)} = 1$, there is no hope to get a classification, nor is there hope when $\mathcal{A} \neq \operatorname{Conv}(\mathcal{A}) \cap \mathbb{Z}^n$.

THANK YOU FOR YOUR ATTENTION!

