The TEXpert’s Guide to Survival

Martin Helsg

25th February 2019

When any writing project grows large, the document becomes increasingly
difficult to maintain. As a TEXpert, you have an arsenal of tools to help you
keep organised. This is an exposition of ITEX features that make the writing
process easier.

1 File Management

It is easier to keep organised if you break the document up into smaller,
manageable files.

1.1 Create Your Own Package or Class

You should move most of your preamble to a separate file. This will make
your main file less cluttered and make it easier to reuse the preamble in other
projects. The separate file can be a .sty file (package) or a .cls file (class).
Keep this separate file as organised as possible; it will save you a lot of headache
in the long run.
In the .sty or .cls file, you need to write name} or
name}, respectively, to specify the name. The name must be
the same as the name of the file. You should also end the file with

In the .tex file, you import the package or class with name
or name}, respectively. If you create a .cls file, then you
probably want to use class} to inherit properties from an existing

class. There are more advanced things you can do with packages and classes,
but this is all you need to move the preamble from the main file.

There is one further advantage to creating your own package or class. In
order to protect certain commands, it is not possible to use “@” in macro names
in a .tex file. If you need to use “@”, then you must declare “@” as a letter with

first and call when you are done. In a .sty or
.cls file, you are free to use “@’ without any restrictions.

1.2 Include and Input

The command is used to include text that logically starts on a new
page, such as a chapter. Say you have a file “filename.tex” with no preamble
and no document}. Then filename} is equivalent to copy-
ing the contents of “filename.tex” directly into the main file where
is written, after a . Note that filename.tex} does not
work; you cannot use the file extension.

The command should be used in conjunction with .
In the preamble, you enter a list of files in . As the name suggests,
only these files will be included when you compile. If you have compiled all
the files previously, then will ensure that you can still use cross
references to files that are not currently included. It will also keep track of
the page numbers, and section and environment counters. The moral is that
you should never comment out , but rather files from the list in

The command is similar to , but works on a lower level.
It does not automatically start a new page. Unlike , it can be nested;
you can use or on a file which contains another
command. You would normally use for smaller sections in a large
chapter, or for instance to import a long table or TikZ code.

1.3 Standalone

In the process of creating an illustration, for instance with TikZ, you typically
need to compile the drawing several times. To save time, you do not want to
recompile the rest of the document each time. It is also easier to reuse the
figure if it is contained in a separate file. In situations like this, it is helpful to
use standalone, which is both a class and package.

The document class standalone is used for a single figure. It automatically
crops the page to the content. If you have the standalone package in your
main file, then you can include standalone files with or .
The preamble in the standalone file will then be ignored, so the preamble in
the main file must contain the necessary packages to draw the figure. Also, the
packages used in the standalone file must be imported after the standalone
package in the main file. Therefore, standalone should be the first package
you import.

If you do not wish to recompile the figure every time you compile the main
document, then you can include the compiled PDF with
instead of the .tex file with

1.4 Graphicspath

The graphicx bundle provides the command . The syntax is
as follows:

\graphicspath{{subdirl/}{subdir2/3}{subdir3/}...{subdirn/}}

You enter a list of subdirectories where ITEX should look for images to be
included in the document. Instead of typing

\includegraphics{subdirl/figure}

You need only type

\includegraphics{figure}

There is one drawback: The search through the list of folders can be slow if
there are many directories. This is a non-issue if you only keep one folder for
images.

2 Draft and Final Options

Reflecting the various stages of writing, IATEX is equipped with the document classji
options draft and final. When draft is enabled, overfull hboxes are marked
with a black box in the right margin.

On that note, every document should import the package microtype. It
makes subtle changes to the spaces between words. You will not notice the
changes without looking closely, but this greatly reduces the occurrences of
overfull hboxes.

In themselves, the options draft and final do nothing more, but they are
passed on to the imported packages. Here are some packages affected by this:

changes turns off mark-up of changes in final mode,

graphicx replaces images with a frame indicating where the pictures should
be in draft mode,

hyperref disables linking features in draft mode,

listings does not include external files in draft mode,

microtype is disabled in draft mode,

showkeys is disabled in final mode,

todonotes is disabled in final mode if the package option obeyFinal is used.

You may manually overrule the global class options for each package. If you
are using draft to detect overfull hboxes, then you want

\usepackage[final]{microtype}

to prevent changes in line-breaks. Moreover, if you are using draft to find
overfull hboxes in a code listing, then you need

\usepackage[final]{listings}

3 Todonotes

The package todonotes allows you to write marginal notes with the \todo{}
command. The notes are placed directly in the text if you instead use
\todo[inline]{}:

You can remove the line pointing to the text with \todo[nolinel{}. The _
package enables you to indicate images-to-be with \missingfigure{}:

Missing
figure

You can also get a list of all that needs doing with \Llistoftodos:

Todo list

Make this clearer. e
An inline note.o

=]

@

=

=.

-+

@
NN NS

4 Cross References

You are probably not always writing in a linear fashion, so section, theorem
and equation numbers will change in the process. To keep of track of these
numbers in references, you should use automatic cross reference tools.

The holy trinity of cross reference packages are varioref, hyperref and
cleveref. They should be imported in precisely that order and they should
be the last packages you import. The hyperref package creates clickable links,
cleveref defines the command \cref{}, which can tell what type of item it is
referring to, and varioref defines \vref{}, which can tell where the item is.
If the packages are imported in the correct order, then varioref learns from
cleveref.

In order to reference something, you must give it a key with key}.
To create a cross reference, write key}, where is your favourite cross
reference command:

is the most basic reference command and only prints the number,
is for equations only and adds parentheses around the number,
prints the page number,
prints the type of object as well as number,
prints the type of object, its location and number.

Both and add parentheses if they are referring to an equation.
You also have the command keyl{description}, which is a
bit different. You choose a description, which becomes clickable and points to
the item belonging to the key.
The ITEX way of dealing with tables and figures is letting them float. You
will save yourself a lot of hassle by allowing this. Note that if you use ,
then it will always be easy for the reader to find the floating object.

4.1 Label Keys

It can be difficult to come up with good keys for labels. Remember that keys
are case-sensitive, but can be as long as you want and they may contain spaces.
Therefore,

\label{A short story about a man called Jesus}

is a perfectly acceptable key. However, it is a good idea to use a prefix to
indicate what kind of item the label belongs to, such as “thm” for theorems and
“ex” for examples. If you have a section, theorem, example and equation that
are all related to the same subject, then you may recycle the key for all of them
and only change the prefix.

Since spaces are allowed in the keys, you cannot use a space to separate
the keys when cross referencing multiple items at the same time. Hence

keyl, key2} is correct, but keyl, key2} is not.

When it comes to tables and figures, note that it is the caption that is
numbered, not the table or the figure. Therefore, key} must be called
after
5 Showkeys

The package showkeys displays labels and cite keys in the margin. This saves
you from searching through the .tex files for the right key. The package will
also print the key used by the various cross reference commands and

This can be turned off with the package options notref and notcite. All the
functionality of showkeys is disabled when the class option final is used.

6 Comment

The package comment provides the environment comment, which is used to
comment out multiple lines of code at once. Moreover, adding either the line

comment} or comment} to the preamble
will turn the comments on or off. In fact, you can use those commands to
define any comment-like environment. For instance, notes

defines the environment notes, which is printed as normal. Changing the line to
notes} removes the notes from the PDF. The appearance
of notes can be further customised using the macro.

7 Changes

The changes package allows you to mark added and deleted text, which is
handy if you are working on a document with other people. The mark-up is
disabled when the class option final is in use.

Since changes requires you to manually mark the changes, it may be
preferable to use an external version control program.

8 User-defined Commands

Creating your own macros can save you time typing, help you avoid misprints
and make the code easier to read. Moreover, if you have not decided on the
spelling of a word, you may postpone the decision by making a command
with one spelling. If you change your mind, then you simply edit the macro
definition.

There are several ways of specifying user-defined commands:

only works when the macro you are trying to create is previously
undefined.

is used to overwrite an existing command. You will get a
compilation error if you attempt to overwrite an undefined macro.

defines the macro whether or not it already exists. This is potentially
dangerous, and there is normally no reason to use it. However, is
useful in package writing, where you do not have the luxury of checking if
the command is defined.

is similar to , but it defines an environment,
which is initialised by environment} ... environment}.

You should always check what a macro does before you overwrite it with
. In some cases it is enough to simply call the macro to figure

out what it does. However, you can also use for the precise definition.
For instance, consider the command from the mathtools package.
Typing

\meaning\coloneqq

produces the following output:
macro:->\vcentcolon \mathrel {\mkern -1.2mu}=

We see that consists of a vertically centred colon and an equal sign
that are moved slightly closer together. For correct spacing, the combination of
these two symbols is then classified as a relation symbol.

The syntax for is as follows:

\newcommand{\<macro name>}[<number of arguments>]{<definition>}

If the macro takes arguments, then the n-th argument is accessed by #n. Here
is an example that takes one argument and prints it in bold red.

\newcommand{\red}[1]{\textbf{\textcolor{red}{#1}}}

If the macro is shorthand for some mathematical symbol, then you may consider
adding to the definition. That way you may use the macro in
normal text as well. Here is an example:

\newcommand{\R}{\ensuremath{\mathbb{R}}}

Now produces R.

By default, a macro with no arguments will remove any space following it.
This is for good reason; you may want to append to the output. Assume that
you have defined the following;:

\newcommand{\angstrom}{{\aa}ngstr\"om}

Suppose that you need to use the plural form “angstroms” at some point in the

writing. You cannot type “ s”, since you have not defined a command

. However, “ s” produces the correct result. To use

the command for the singular form, you can write or
to stop the removal of space.

The package xspace provides the command, which is a clever

space. It is used for macros that you will never append to. If is

followed by a letter, then it will insert a space, but it will not do anything if it
is followed by a punctuation mark.

What about removing space in front of the macro? The following defines a
command that removes space in order to insert a comma after the last word
preceding “i.e.”:

\newcommand{\ie}{\leavevmode\unskip, i.e.,\xspace}

8.1 Special Syntax

While you can use for any macro, there are tools designed to
make it easier to define certain types of commands. Here are some of them:

ensures that mathematical operators are written in
an upright font. Unlike a text font, the operator is upright when placed
in an italics environment, such as a theorem. It also adds a small space
after the operator; this makes the difference between sinz and sinx.
The starred version ensures that subscripts are
placed under the operator in display style mode instead of to the right of
the operator. See the difference:

lim =z, vS. lim,, o0 Tn,
n— o0

To use , you need the package amsopn, which is
automatically loaded by the package mathtools.

from mathtools defines flexible commands for
delimiters. Say you have defined

\DeclarePairedDelimiter{\abs}{\1lvert}{\rvert}

Then is equivalent to

\lvert x \rvert

While corresponds to

\left\lvert x \right\rvert

You can also add specific size commands, such as . This
is equal to

\big\lvert x \big\rvert

is a special version of . It is introduced
by thmtools, which extends amsthm. Both packages must be imported.
The command provides an easy syntax for theorem-like environments.

In addition to taking care of the formatting, keeps
track of numbering and makes it possible to make cross-references to the
theorems. It is accompanied by the command , which

makes a list of theorems akin to the table of contents.

9 Memoir

While not an organising tool, the document class memoir deserves mention
for taking care of so much that it will undoubtedly make your life easier. Its
purpose is book design and it is therefore very flexible.

The idea behind memoir is to provide a unified solution to layout, rather
than having to use a different package for each task. The class imports — or
has code equivalent to — the following packages:

abstract appendix array booktabs
ccaption chngcntr chngpage dcolumn
delarray enumerate epigraph fontenc
framed ifmtarg ifpdf index
lmodern makeidx moreverb needspace
newfile nextpage parskip patchcmd

setspace shortvrb showidx tabularx
titleref titling tocbibind tocloft
verbatim verse

The packages lmodern and fontenc are only imported if the class option
extrafontsizes is in use.

By default, memoir will look like the document class book, but with minor
changes, such as blank pages being actually blank. It can easily emulate the
other common document classes. For example, this guide is typeset using:

\documentclass[article, oneside]{memoir}

However, the argument for using memoir is not that it can look like existing
classes, but that it is highly customisable. It comes with an array of different
pre-defined styles that you may choose from. Click here to see the built-in
chapter styles. The class is also equipped with many easy-to-use tools for
defining your own layout and design. The class provides too much to cover here,
but we demonstrate some of the possibilities.

A common mistake is thinking that the width of margins matters in itself.
For legibility, the average number of characters per line is what matters. The
margins in BTEX are optimal for the default fontsize. However, many people
make the margins smaller without increasing the fontsize to compensate. This
issue is taken care of by memoir. If you change the fontsize, then memoir will
calculate new, optimal margins for you.

Say that you are writing a doctoral dissertation that is to be printed on
A4 stock paper and cut to 240 mm x 170 mm pages. It is of course possible to
create an ordinary A4 document and let the press shrink the contents before
printing. However, it is cumbersome to imagine how legible the text and figures
will be when shrunk. More worryingly, the press decides where to cut, possibly
not giving the margins the proportions you wanted.

You have complete control over the layout with memoir. Assuming that the
class option showtrims is enabled, then the following code will display trim
marks for 240 mm x 170 mm pages:

\stockaiv
\settrimmedsize{240mm}{170mm}{*}
\settrims{28.5mm}{20mm}

http://ctan.uib.no/info/latex-samples/MemoirChapStyles/MemoirChapStyles.pdf

\setlrmarginsandblock{20mm}{30mm}{*}
\setulmarginsandblock{25mm}{25mm}{*}
\checkandfixthelayout

The first line defines the stock paper to be A4. The third line of code is not
strictly necessary; it centres the trimmed page on the stock paper. The next two
lines define the inner and outer margins to be 20 mm and 30 mm, respectively,
and the upper and lower margins to 25 mm.

10 Non-TEXnical Tips

We finish with some tools that are not specific to INTEX.

10.1 Editor

It is much easier to stay organised if you have a decent editor. It can take
care of automatic indentation — making the code more structured — let you
comment out blocks of text with a single macro, collapse sections that you are
not working on, auto-complete commands and labels, highlight missing “&” in
tables and much more.

There is a myriad of available editors and you should get one that you are
comfortable with. Here is a discussion about editors with support for INTEX.

10.2 Version Control

Version control is a system that records changes to a file or set of files over
time so that you can recall specific versions later. Not only is this useful as a
backup for yourself, but it is also very effective for keeping track of the different
contributions when you are collaborating with another author.

As mentioned, the package changes allows you to display changes in the
PDF file. However, an external tools such as git is easier to use, since it
automatically keeps tracks of the changes and lets you revert to an earlier
version.

10

http://tex.stackexchange.com/questions/339/latex-editors-ides

	File Management
	Create Your Own Package or Class
	Include and Input
	Standalone
	Graphicspath

	Draft and Final Options
	Todonotes
	Cross References
	Label Keys

	Showkeys
	Comment
	Changes
	User-defined Commands
	Special Syntax

	Memoir
	Non-TeXnical Tips
	Editor
	Version Control

