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1 Structure problems in the theory of manifolds.

Survey of results

We introduce here the general method of the structure theory of manifolds. The exposition
will be schematic without proofs. We consider the following four categories, which we will
try to treat in a unified way.

Diff = compact differentiable manifolds and differentiable maps.
PL = compact PL manifolds and PL maps.
Top = compact topological manifolds and maps.
G = Poincaré spaces and homotopy classes of maps.

In all cases one can consider objects with boundaries. But we exclude these in the
definitions above.

By a differentiable manifold we understand a second countable Hausdorff space M to-
gether with a maximal C∞-atlas on M . For elementary properties of differentiable manifolds
we refer to Munkres [1].

We define a piecewise linear space, briefly PL space, as a second countable Hausdorff
space X together with a maximal PL atlas on X. See Hudson [2] for details. Equivalently
a PL structure on X may be defined as a PL equivalence class of triagulations t : |K| → X
where K is a countable, locally finite simplicial complex. If X is an open subset of Rn, then
X has a standard PL structure, where the triangulations are linear on each simplex. A PL
manifold is a PL space locally PL homeomorphic with a fixed Euclidean space.

By a topological manifod we understand a second countable Hausdorff space locally
homeomorphic with a fixed Euclidean space. We note that it is still an open problem whether
each topological manifold is triangulable, and whether each triangulation of a topological
manifold defines a PL manifold. However, it is known that not every topological manifold
is homeomorphic to a PL manifold. We shall return to this point later.

A finite CW -complex X is called a Poincaré complex if there exists a class [X̃] ∈
HLF
n (X̃; Z) such that the cap product ∩[X̃] : Hq(X̃; Z)→ HLF

n−q(X̃; Z) is an isomorphism for

all q. HLF denotes homology with locally finite chains and X̃ the universal covering of X.
Then n is uniquely determined by X and is called the formal dimension of X. By a Poincaré
space we understand a topological space of the homotopy type of a Poincaré complex.

The isomorphisms of the categories Diff, PL, Top and G are the diffeomorhisms, PL
homeomorphisms, homeomorphisms and homotopy equivalences. We denote the sets of
isomorphism classes of objects in the categories by D̂iff, P̂L, T̂op and Ĝ.

Problem 1 Determine the cardinalities of D̂iff, P̂L, T̂op and Ĝ

All these sets are infinite. Clearly P̂L is countable since there are only countably many
finite simplicial complexes up to simplicial isomorphism. According to J.H.C. Whitehead [3]
each finite CW–complex has the homotopy type of a finite simplicial complex. Hence G is
countable. There is an elementary argument of Kister [4] to prove that T̂op is countable.

Finally the countability of P̂L and structure theory will imply that D̂iff is countable.
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There are maps
D̂iff → P̂L→ T̂op→ Ĝ (1)

D̂iff → P̂L is given by the result of J.H.C. Whitehead [5] that each differentiable manifold has
PL structure, unique up to PL homeomorphism, compatible with its differentiable structure.
P̂L → T̂op is defined in the obvious way by forgetting the PL structure. Kirby [6] proves
that each compact topological manifold has the homotopy type of a finite CW -complex. It
follows then from the Poincaré duality theorem that a compact topological manifold is a
Poincaré space. Therefore we have a map T̂op→ Ĝ.

Problem 2 Give counter examples to injectivity and surjectivity of the maps in diagram (1)

Some beautiful counter examples can be found for all cases. References are Milnor [7],
[8], Kervaire [9], Kirby [6] and Gitler, Stasheff [10].

Diagram (1) gives rise to the structure problems of classifying differentiable manifolds
within a PL homeomorphism class, etc. The basic method for attacking these structure
problems is a procedure which can be divided in the following five steps

a) introduce a fibration concept for each category.

b) define a tangent fibration of an object.

c) construct classifying spaces for the fibrations.

d) transform the structure problems to lifting problems.

e) study the lifting problems by obstruction theory.

We use the following types of fibrations in the different cases

Diff : orthogonal bundles.
PL : PL bundles.
Top : topological bundles.
G : spherical fibrations.

An orthogonal bundle is a fiber bundle in the sense of Steenrod [11], where the base is a
topological space, the fiber is Rn and the structure group is On, the orthogonal group over
Rn. Bundles are always assumed to be numerable in the sense of Dold [12].

A topological bundle is similarly a fiber bundle, but with the larger structure group Topn
of all homeomorphisms (Rn, 0)←↩, in the compact-open topology.

A PL bundle is defined by a projection p : E → B, which is assumed to be a PL
map between PL spaces, and local trivializations Φα : p−1(Uα) → Uα × Rn which are PL
homeomorphisms.

A spherical fibration is a Hurewicz fibration with base a topological space and fibers of
the homotopy type of a fixed sphere.

The equivalence concept of these fibrations is as follows. For bundles we use bundle
equivalence over the identity map at the base, and for spherical fibrations we use fiber
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homotopy equivalence. Thus in all cases an equivalence between the two fibrations p : E → B
and p′ : E ′ → B means the existence of a commutative diagram

E

p
��@@@@@@@

f //
E ′g

oo

p′~~}}}}}}}

B

such that in the different cases f and g are mutually inverse fiberwise orthogonal homeo-
morphisms, PL homeomorphisms, homeomorphisms or fiber homotopy equivalences. For
the cases PL and Top it is also useful to work with microbundles, as introduced by Milnor
[13], [14]. By the microbundle representation theorems of Kuiper, Lashof [15] and Holm [16],
equivalence classes of microbundles are in bijective correspondence with equivalence classes
of bundles.

Let X be a topological space. We denote by k0(n)(X) the set of equivalence classes of
orthogonal bundles with fiber Rn and base X. If f : X → Y is a map and ξ → Y an
orthogonal bundle, there is a pullback f ∗ξ → X, and the equivalence class of f ∗ξ depends
only on the equivalence class ξ and the homotopy class of f . Hence we get an induced
map f ∗ : k0(n)(Y ) → k0(n)(X) depending only on the homotopy class of f . This gives a
contravariant functor

k0(n) : T̂ → S

where T̂ denotes the category of topological spaces and homotopy classes of maps, and S
denotes the category of sets. In a similar way we obtain contravariant functors kPL(n), kTop(n)

and kG(n). We have kPL(n) originally defined on the category of PL spaces and PL homotopy
classes of PL maps. However, any map between PL spaces is homotopic to a PL map,
and if two PL maps are homotopic, they are PL homotopic. Therefore the PL homotopy
classes of PL maps are the same as homotopy classes of maps between PL spaces. By
J.H.C. Whitehead [3] each countable CW -complex is homotopy equivalent to a countable,
locally finite simplicial complex, hence to a PL space. Therefore we can extend kPL(n) to a

contravariant functor over the category Ĉd of spaces having the homotopy type of a countable
CW -complex and homotopy classes of maps, where the extension is unique up to natural
equivalence of functors.

Whitney sum with a trivial line bundle defines a natural transformation k0(n) → k0(n+1).
We define a functor

k0 = lim−→
n

k0(n)

Thus k0(X) is the set of stable equivalence classes of orthogonal bundles over X. Similarly
we define the functors kPL, kTop and kG. In the last case the natural transformations kG(n) →
kG(n+1) are defined by means of Whitney join with a trivial zero-sphere fibration.

There are natural transformations of functors

k0(n) → kPL(n) → kTop(n) → kG(n) (2)
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Here we need a triangulation theorem for orthogonal bundles to define k0(n) → kPL(n) like
that of Lashof, Rothenberg [17], while kPL(n) → kTop(n) is defined by forgetting the PL
structure, and kTop(n) → kG(n) by removing the zero-section of a topological bundle. Passing
to the limit with diagram (2) we get the diagram

k0 → kPL → kTop → kG (3)

Problem 3 Let M be a differentiable, PL or topological n-manifold or a Poincaré n-space.
Define a tangent fibration τM in k0(n)(M), kPL(n)(M), kTop(n)(M) or kG(n)(M).

If M is a differentiable manifold there is a tangent vector bundle τM which has an orthog-
onal reduction unique up to equivalence, hence we get a well defined element τM ∈ k0(n)(M).
If M is a PL or topological manifold there is a PL or topological tangent microbundle
τM , and by the micorbundle representation theorems we get a well defined element τM of
kPL(n)(M) or kTop(n)(M).

If M is a Poincaré n-space, the stable tangent fibration τM ∈ kG(M) is well defined by
Spivak [18]. According to Wall (unpublished) it is also possible to define τM ∈ kG(n)(M), see
Dupont [19].

Let Ĉ be the category of spaces having the homotopy type of a CW -complex and ho-
motopy classes of maps. By Browns representation theorem the functor k0(n) : Ĝ → S can
be represented by a classifying space BO(n) and a universal bundle γn over BO(n). This
means there is a bijection

k0(n)(X) = [X,BO(n)]

where the right side denotes the set of free homotopy classes of maps f : X → BO(n), and the
bijection is given by [f ]→ f ∗γn. Similarly one obtains classifying spaces BPL(n), BTop(n)

and BG(n) for the functors kPL(n), kTop(n) and kG(n), where kPL(n) is extended to Ĉ in the
process. For this application of Brown’s theorem see Siebenmann [20]. The classifying
spaces are uniquely defined up to homotopy type by their classifying property. The natural
transformation k0(n) → k0(n+1) defines a map BO(n)→ BO(n+1) uniquely up to homotopy.
We define the space BO = lim−→

n

BO(n) by the telescope construction, and B0 is also unique

up to homotopy type. The natural map

k0(X)→ [X,BO]

is bijective if X has the homotopy type of a finite CW -complex, but not in general. See for
instance Siebenmann [20]. Similarly one defines the spaces BPL,BTop and BG.

Problem 4 Determine the connectivity of the maps BO(n)→ BO(n+ 1),
BPL(n)→ BPL(n+ 1), etc.

This problem is of significance for the stability properties of fibrations and the structure of
the stable classifying spaces. One can prove that the maps are n-connected, assuming n ≥ 5
in the topological case. For the orthogonal case n-connectivity follows from the fibration
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Sn → BO(n)→ BO(n + 1), for the PL case it is proved by Haefliger, Wall [21] . Kirby [6]
gives the result in the topological case. For the case of spherical fibrations see for instance
Milnor [22].

If A is a topological group, there exists a classifying space BA for principal A-bundles.
It can be constructed by Brown’s theorem or by the infinite join as in Milnor [23]. There is a
universal principal A-bundle A → EA → BA, where EA is a contractible space, Dold [12].
Comparing this bundle with the path fibration over BA we get A = ΩBA up to homotopy
type. If A′ is a closed topological subgroup of A with local cross-sections, then there is an
A-bundle A/A′ → BA′ → BA.

Therefore we introduce the following notation.
If BA is any of the previously considered classifying spaces, we define A = ΩBA. If

BA′ → BA is any of the natural maps between classifying spaces, we make it into a fibration
and call the fiber A/A′. We get then an infinite fiber sequence

. . .→ Ω(A/A′)→ A′ → A→ A/A′ → BA′ → BA

uniquely defined only up to homotopy types of spaces and homotopy of maps.
For the orthogonal group we have BOn = BO(n) and hence On = O(n), because principal

On-bundles correspond bijectively to orthogonal bundles with fiber Rn. Similarly BTopn =
BTop(n) and Topn = Top(n). There is a subgroup PLn of the PL homeomorphisms in
Topn. But it is an open question whether PLn can be given the structure of a topological
group in such a way that BPLn = BPL(n) and hence PLn = PL(n).

We let Gn be the space of homotopy equivalences of Sn−1 with itself in the compact-
open topology. Then Gn = G(n). This follows for example from the existence of a fibration
Gn → EGn → BGn given in Dold, Lashof [24] together with the fact that EGn is contractible
and BGn = BG(n), which is a consequence of Stasheff [25].

The preliminary distinction between On and O(n), etc. has no further significance, once
the identifications above have been made. The important point is that we have got additional
information about the fibers O(n),Top(n) and G(n), although not about PL(n).

Diagram (2) induces maps between classifying spaces

BO(n)→ BPL(n)→ BTop(n)→ BG(n) (4)

uniquely defined up to homotopy. Passing to the limit with the telescope construction we
obtain maps

BO → BPL→ BTop→ BG (5)

The restrictions of these maps to any unstable classifying space BO(n), BPL(n), etc. are
unique up to homotopy. This does not determine the maps of diagram (5) up to homotopy,
because of the phantom phenomenon. See Siebenmann [20] for a discussion of this point.
However the induced maps between homotopy groups are unique. Also the fibers of the
maps are well defined up to homotopy type. We have PL/O = lim−→

n

PL(n)/O(n), etc.
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Let M be a PL n-manifold. If M is PL homeomorphic to a differentiable manifold, then
there exists a lifting in the diagram

BO(n)

��
M

;;v
v

v
v

v

τM
// BPL(n)

This follows immediately from the invariance properties of the tangent fibration. The similar
statement holds for the other cases. In other words a lifting of structure gives a lifting of
the tangent fibration.

Problem 5 When is a lifting of the tangent fibration sufficient for the corresponding lifting
of structure?

In general the condition is not sufficient. However in several cases only the assumption
that there is a lifting of the stable tangent fibration is enough. Milnor [13] showed that a
PL manifold M is PL homeomorphic with a differentiable manifold if there is a lifting in

BO

��
M

;;x
x

x
x

τM
// BPL

The result follows quickly from the Cairns-Hirsch smoothing theorem, see Hirsch [26].
A topological n-manifold M with n ≥ 5 is homeomorphic to a PL manifold if there is a

lifting in

BPL

��
M

;;x
x

x
x

x

τM
// BTop

See Kirby [6].
If X is a simply connected Poincaré n-space with n ≥ 5, then X is homotopy equivalent

with a PL manifold if there is a lifting in

BPL

��
X

<<x
x

x
x
τM

// BG

This is proved by PL surgery. The result is due to Browder, Hirsch [27].
In connection with problem 5 there is also the problem of obtaining a lifted structure

whose tangent fibration is actually the given lifting in the diagram. Furthermore we have
also a uniqueness problem, namely in which sense different liftings of the tangent fibration
correspond to different liftings of structure. To attack the lifting problems we need informa-
tion about the classifying spaces and the maps between them. In particular the following
problem is of primary interest.
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Problem 6 Determine the cohomology of the classifying spaces and the homotopy of the
fibers.

We give some of the known results in the stable case only. For rational cohomology we
have

H∗(BO; Q) = H∗(BPL; Q) = H∗(BTop; Q) = Q[p1, p2, . . .] H̃∗(BG; Q) = 0

where pi is the universal Pontrjagin class in degree 4i. For BO the Pontrjagin classes
are integral, i.e. images of integral classes under the coefficient homomorphism induced by
Z→ Q. For BPL and BTop however, this is not true. For the problem of describing integral
classes in H∗(BPL; Q) see Brumfiel [28]. The computation of H∗(BO; Q) is classical. Then
the rest follows from the fact that PL/O,Top/PL and G have only finite homotopy groups.

For Z2-cohomology we have the classical result

H∗(BO; Z2) = Z2[w1, w2, . . .]

where wi is the universal Stiefel-Whitney class in degree i. From Milgram [29]

H∗(BG; Z2) = Z2[w1, w2, . . .]⊗ Z2〈e01, e11, . . .〉

where in general eI indexed by I = (i0, i1, . . . , ir) with 0 ≤ i0 ≤ . . . ≤ ir and r ≥ 1, is
as universal exotic class in degree 1 + i0 + 2i1 + . . . + 2rir. The index I satisfies only the
condition that if i0 = 0 then r = 1 and i1 > 0. The precise structure of H∗(BPL; Z2) and
H∗(BTop; Z2) is not known.

For Zp-cohomology, where p is an odd prime, the classical result is

H∗(BO; Zp) = Zp[p1, p2, . . .]

where pi is the universal mod p Pontrjagin class in degree 4i. About the homotopy groups
of the fibers the following is known.

πnTop/PL =

{
Z2 n = 3

0 n 6= 3

Kirby [6].

πnG/PL =


Z n = 0 mod 4

Z2 n = 2 mod 4

0 n odd

Sullivan [30]. The groups
πnPL/O = Γn
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are finite for all n and in general very complicated. The unknown part of Γn is essentially
the cokernel of the stable J-homomorphism J : πOn → πn. The groups Γn are known for
n ≤ 19.

Γ0 = 0 Γ5 = 0 Γ10 = Z6 Γ15 = Z8128 + Z2

Γ1 = 0 Γ6 = 0 Γ11 = Z922 Γ16 = Z2

Γ2 = 0 Γ7 = Z 28 Γ12 = 0 Γ17 = 4Z2

Γ3 = 0 Γ8 = Z2 Γ13 = Z3 Γ18 = Z8 + Z2

Γ4 = 0 Γ9 = 3Z2 Γ14 = Z2 Γ19 = Z261632 + Z2

Kervaire, Milnor [31], Brumfiel [32], Cerf [33], Smale [34].
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2 Microbundles and bundles

Microbundles were invented by Milnor [1] to provide topological and PL analogues of the
tangent and the normal bundle of a manifold in the topological and the PL-case. A mi-
crobundle is a diagram of maps and spaces

X
s // E

p // X

whose composite is the identity such that the following condition is satisfied:

(Local Triviality) There is a family of homeomorphisms ϕi : Vi ≈ Ui × Rn (called local
trivializations), where Ui and Vi are open sets of X and E such that sUi ⊂ Vi and pVi ⊂ Ui
making the following diagrams commutative

Vi
ϕi≈ Ui × Rn

Ui

s

OO

×0

77nnnnnnnnnnnnnnnn

Vi

p

��

ϕi≈ Ui × Rn

pr

wwnnnnnnnnnnnnnnnn

Ui

The family {Ui} covers X.
Thus s : Ui → Vi corresponds under ϕi to the zero-section x→ (x, 0) and p : Vi → Ui to

the projection (x, v) → x. By abuse of language we refer quite generally to s : X → E as
the zero-section and p : E → X as the projection of the microbundle. E is called the total
space and X the base space. The integer n ≥ 0 is the fibre dimension. Microbundles will be
labelled by small greek letters µ, ν, . . .

Remark. The zero-section s imbeds X as a subspace of E. If the fibre dimension n is zero,
then s is an open imbedding. If n > 0, then sX is never open in E and in general not closed
either. However, sX is always closed in some neighborhood in E.

We exhibit some important examples.

Examples. (a) The standard trivial Rn-bundle given by the diagram

εn : X
×0−→X × Rn pr−→X

(b) Any Rn-bundle, i.e. any fibre bundle p : E → X with fibre Rn and Topn structure
group. Such a bundle has a canonical zero-section s : X → E and so defines a microbundle

X
s−→E

p−→X

(c) The tangent microbundle of a topological manifold Mm

τM : M
d−→M ×M pr1−→M
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Here d is the diagonal map and pr1 the projection to the first factor. Certainly pr1 ◦ d is the
identity map on M . To see that the local triviality condition is satisfied choose an open set
U ⊂M homeomorphic to Rm and set V = U ×U . Take a homeomorphism f : U ≈ Rm and
define h : V → U × Rm by h(p, v) = (p, f(v) − f(p)). Then h is a homeomorphism which
carries d : U → V into the zero-section U → U × Rm and pr1 : V → U into the projection
U × Rm → U .

(d) A microbundle neighborhood of a submanifold M ⊂ N is a neighborhood U of M in N
which admits a retraction r : U →M such that the diagram

M ⊂ U
r−→M

constitutes a microbundle. Such a microbundle is called a normal microbundle of M in
N . It is known that normal microbundles do not always exist, even if M is a locally flat
submanifold of N , [2]. As an example of a case where it exists, consider the diagonal
∆ ⊂M ×M , ∆ = dM , and its normal microbundle

ν∆ : ∆ ⊂M ×M
d◦pr1
−−→∆

After identification of ∆ with M by the diagonal map ν∆ coincides with the tangent mi-
crobundle τM of M . In short, the tangent microbundle of M equals the normal microbundle
of M in M ×M , when imbedded as the diagonal. We remark that in general normal mi-
crobundles of M in N , even when they exist, are not known to be isomorphic (cf. next).

Two microbundles µ : X
s−→E

p−→X and ν : X
t−→F

q−→X over the same base are
isomorphic, written µ ∼= ν, if there are neighborhoods E ′ and F ′ of sX and tX in E and
F , respectively, and a homeomorphism E ′ ≈ F ′ which commutes with zero-sections and
projections. A microbundle is trivial if it is isomorphic to some standard trivial Rn-bundle.

Most of the important general constructions from bundle theory can be carried directly
over to microbundles, e.g. pullbacks, products and Whitney sums. To define the proper
notion of a microbundle map note that a microbundle does not essentially depend on its
total space E, but only on the germ of E at the zero-section. Given microbundles µ :

X
s−→E

p−→X and ν : Y
t−→F

q−→Y of the same fibre dimension a mapgerm ϕ : (E, sX) =⇒
(F, tY ) is called a bundle mapgerm or simply a mapgerm if the following is true: There is
a neighborhood E ′ of sX in E and a representative Φ of ϕ on E ′ such that Φ maps each
fibre in E ′ injectively into some fibre in F . Clearly a mapgerm ϕ : µ ⇒ ν covers a map
ϕ|X : X → Y on the base level, and we have ϕ|X = Φ|X for any representative Φ of ϕ. If
X = Y and ϕ covers the identity map, then ϕ is called an isogerm. If moreover µ = ν, ϕ
is an autogerm. For each integer n ≥ 0 there is a category of n-microbundles and isogerms
over the space X. It is known that every isogerm has an inverse so that all morphisms are
isomorphisms in these categories, [1], lemma 6.4. Clearly two microbundles µ, ν over X are
isomorphic if and only if there is an isogerm µ ⇒ ν. Here are some results which help to
justify the definitions, cf. [1].
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Theorem 1 Let M be a differentiable manifold with tangent bundle TM and tangent mi-
crobundle τM . Then TM is microbundle isomorphic to τM .

Conversely

Theorem 2 Let M be a topological manifold and suppose τM ⊕ εp ∼= ξ ⊕ εq for some vec-
torbundle ξ on M . Then M × Rr can be given a smooth structure for sufficiently large
r.

In short M is stably smoothable if and only if its tangent microbundle is stably isomorphic
to a vector bundle.

As remarked above M ⊂ N need not always have a microbundle neighborhood in N .
However M always has a microbundle neighborhood in N ×Rr for sufficiently large r. And
although the resulting normal microbundle ν need not be unique, its stable isomorphism
class is uniquely determined, [1], thms 4.3, 5.9 and 5.10.

A microbundle is of finite type if it admits finite trivializing covers on the base.

Theorem 3 Let µ be a microbundle of finite type over a paracompact (Hausdorff) base space
X. Then there is a microbundle µ′ over X such that µ⊕ µ′ is trivial.

Theorem 3 was proved by Milnor for X a finite dimensional simplicial complex (in which
case every microbundle over X is of finite type). Proof of the theorem in the above generality
is due to Kister, [3].

Remark. Over a compact (Hausdorff) space every microbundle is obviously of finite type.
But also over a manifold or a finite dimensional CW -complex every microbundle is of finite
type. In fact over a finite dimensional paracompact space or even a retract of such a space
every microbundle is of finite type.

Denote by ktop(n)(X) the set of isomorphism classes of n-microbundles over X and by
ktop(X) the set of stable isomorphism classes of microbundles over X. Then ktop(n)(X) and
ktop(X) are pointed sets, the base points being the class of εn and the stable class of ε,
respectively. Furthermore, there are pairings ktop(m)(X)×ktop(n)(X)→ ktop(m+n)(X) defined
by the Whitney sum operation (µ, ν)→ µ⊕ ν, which induce a pairing ktop(X)× ktop(X)→
ktop(X). With this operation ktop(X) becomes an abelian semigroup with zero-element [ε]
(the stable class of ε). By theorem 3 and its following remark this semigroup is actually
a group if X is compact or finite dimensional paracompact. The pullback construction
makes ktop(n) and ktop topological functors with values in the categories of pointed sets and
semigroups, respectively. (Or for ktop suitably restricted even with values in the category of
groups.) As in the case of vector bundles these functors are in fact homotopy functors, at
least over all paracompact spaces. This follows from the next result.

Theorem 4 Let µ be a microbundle over a paracompact base space X and f, g : Y → X
homotopic maps. Then f ∗µ ∼= g∗µ.
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As usual the proof is in [1].

Although microbundles in many ways resemble bundles we can never directly appeal
to bundle theory for a result, a microbundle not actually being a bundle. This is rather
awkward in the long run. Even worse, there are important constructions for Rn-bundles
that have no immediate counterpart for microbundles, such as the Thom space construction
or the associated spherical fibration. The latter construction is for instance the one we need
to define a natural transformation ktop(n) → kG(n).

The main purpose of this section is to establish the following result which removes all
these inconveniences.

Theorem 5 Over a CW -complex every n-microbundle is isomorphic to an Rn-bundle, uniquely
determined up to bundle isomorphism.

Remark. Actually it would be convenient to have theorem 5 even for microbundles over
spaces of homotopy type of CW -complexes. Such spaces are not necessarily paracompact.
This leads one to consider a class of microbundles called numerable microbundles, [4], [5].

It is a fact that theorem 5 is true for numerable microbundles without any conditions on
the base X, see again [4]. This general result would more than suffice for our applications,
however, its proof is more complicated.

Theorem 5 was proved independently by several people, namely Kister [6] (X finite
dimensional), Mazur (unpublished), and later Kuiper/Lashof [7] and Hirsch/Mazur (unpub-
lished) covering also the PL-case. The proof we give below is in the last stage based on
an expansion process for open imbeddings of Euclidean spaces, invented by Mazur, and is
presumably quite close to Mazur’s own proof.

We turn to the proof of theorem 5. This will be carried out by a closer study of the
homotopy functor ktop(n). A technical inconvenience (at least) of ktop(n) is that it is defined on
a category of spaces and maps rather than on a category of pointed spaces and pointed maps.
We first adjust this. Let X be a pointed space with basepoint x0. A rooted microbundle
over X is a microbundle

X
s−→E

p−→X

together with a specific isogerm (rooting)

x0
s−→ p−1x0

p−→ x0 =⇒ x0
s0−→Rn −→ x0,

where n is the fibre dimension. Two rooted microbundles ξ and ξ′ over X are isomorphic
if there exists an isogerm ξ ⇒ ξ′ commuting with the rootings. Let k̃top(n)(X) be the
set of isomorphism classes of rooted n-microbundles over X. The pull-back construction
establishes k̃top(n) as a functor on the category of pointed spaces, and of course k̃top(n) is a
homotopy functor on the smaller category of pointed paracompact spaces. This is because
of the homotopy theorem for rooted microbundles, [1], lemma 7.1:

Lemma 6 Let µ be a rooted microbundle over a paracompact (pointed) space X. Let f, g :
Y → X be homotopic pointed maps. Then f ∗µ ∼= g∗µ as rooted microbundles.
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There are of course also analogous functors kTop(n) and k̃Top(n) based on bundles rather
than on microbundles. These are somewhat more familiar objects. In particular it is well-
known that kTop(n) and k̃Top(n) are representable over the categories of CW -complexes and

pointed CW -complexes, respectively, [8], [9]. For k̃Top(n) this means there is pointed CW -

complexes B̃Top(n) and a natural equivalence of pointed homotopy functors

k̃Top(n)
∼= [ , B̃Top(n)].

It is a less accessible fact that the same is true for the microbundle funtors k̃top(n). The proof
of this is based on E.H. Brown’s representability theorem. Thus we have

Lemma 7 k̃Top(n) and k̃top(n) are representable functors on the homotopy category of pointed
CW -complexes.

Since every Rn bundle is a microbundle, and since isomorphic bundles are isomorphic as
microbundles, there is a canonical natural transformation

τ∗ : kTop(n) → ktop(n).

By the first part of theorem 5 this transformation is surjective and by the second part it is
injective. Conversely, if τ∗ is surjective, every microbundle is isomorphic to a bundle, and
if τ∗ is injective, two microisomorphic bundles are isomorphic (as bundles). Hence, to prove
theorem 5 it suffices to prove that τ∗ is a natural equivalence. Now there is also an analogous
natural transformation τ̃∗ : k̃Top(n) → k̃top(n), which is a natural equivalence if and only if the
rooted analogue of theorem 5 holds. Moreover, it suffices to look at τ̃∗ because of

Lemma 8 If τ̃∗ is a natural equivalence, so is τ∗.

Proof. Let X be a CW -complex and let X+ be X with an isolated base point x0 adjoined.
To each n-microbundle (Rn-bundle) µ over X there is a rooted microbundle (Rn-bundle) µ+

over X+, whose fibre over x0 is Rn and whose rooting is the identity 1Rn . This gives bijections
ktop(n)(X) ∼= k̃top(n)(X+) and kTop(n)(X) ∼= k̃Top(n)(X+), and a commutative diagram

kTop(n)(X)

τ∗

��

∼= k̃Top(n)(X+)

τ̃∗
��

ktop(n)(X) ∼= k̃top(n)(X+)

Hence the assertion.

By lemma 7 there exist CW -complexes B̃top(n) and B̃Top(n) as well as natural equiva-
lences

k̃Top(n)
∼= [ , B̃Top(n)]
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and
k̃top(n)

∼= [ , B̃top(n)]

Under these identifications the natural transformation τ̃∗ sends the identity map 1B̃Top(n) to a

map τ̃ : B̃Top(n)→ B̃top(n), well determined up to homotopy. Hence we get a commutative
diagram of functors and natural equivalences

k̃Top(n)

τ̃∗
��

∼= [ , B̃Top(n)]∗

[τ̃ ]◦
��

k̃top(n)
∼= [ , B̃top(n)]∗

where [τ̃ ]◦ means composition with [τ̃ ]. It follows that τ̃∗ is a natural equivalence if (and
only if) τ̃ : B̃Top(n) → B̃top(n) is a homotopy equivalence. By Whitehead’s theorem this
is true if and only if τ̃ induces isomorphisms between homotopy groups

τ̃∗ : πi(B̃Top(n)→ πi(B̃top(n))

for i = 0, 1, . . .
Or equivalently, if and only if

τ̃∗ : k̃Top(n)(S
i)→ k̃top(n)(S

i)

are isomorphisms, i = 0, 1, . . .

Conclusion. To show that τ̃∗ : k̃Top(n) → k̃top(n) is a natural equivalence and hence to
prove theorem 5 it suffices to show that the homomorphisms

τ̃∗ : k̃Top(n)(S
i)→ k̃top(n)(S

i), i = 0, 1, . . .

are isomorphisms. Equivalently, it suffices to show that over Si every rooted n-microbundle
is isomorphic to a rooted Rn-bundle, and every rooted Rn-bundle which is trivial as rooted
microbundle is trivial as rooted bundle, i = 0, 1, . . .

For this we shall need the following germ extension theorem.

Lemma 9 Let ϕ be an autogerm of the trivial bundle εn over a disk D, and Φ′ an automor-
phism of εn over ∂D whose germ is ϕ|∂D. Then there is an automorphism Φ of εn over D
whose germ is ϕ, such that Φ|∂D = Φ′.

Proof. We first treat the case where D is of dimension 0. Then D is a point and ∂D is
empty. In this case ϕ is simply a homeomorphism germ

ϕ : (Rn, 0) =⇒ (Rn, 0).

Clearly ϕ can be represented by an open imbedding

Φ0 : (Rn, 0) −→ (Rn, 0),

17



because if Φ : (U, 0)→ (Rn, 0) is an arbitrary representative of ϕ and θ : (Rn, 0) ≈ (V (ε), 0)
is a homeomorphism onto a small ε-neighborhood V (ε) of the origin which is the identity on
V (ε/2), then Φ0 = Φ ◦ θ is defined and is an open imedding whose germ at 0 is ϕ.

We now alter Φ0 by stages. Set Φ0V (1) = W and choose ε > 0 so that V (ε) ⊂ W . Let
θ′ : (Rn, 0) ≈ (Rn, 0) be a homeomorphism such that θ′ maps V (ε) onto V (2) and is the
identity on V (ε/2). Then Φ1 = θ′ ◦ Φ0 is an open imbedding of (Rn, 0) whose germ is ϕ
with the property that Φ1V (1) ⊃ V (2). Now construct inductively imbeddings Φ2,Φ3, . . . :
(Rn, 0)→ (Rn, 0) such that

(a) ΦiV (i) ⊃ V (i+ 1), i = 2, 3, . . .

(b) Φi|V (i− 1) = Φi−1|V (i− 1), i = 2, 3, . . .

Then define Φ : (Rn, 0) → (Rn, 0) by Φ|V (i) = Φi|V (i), i = 1, 2, . . . Obviously Φ is an
imbedding. Moreover Φ is surjective by (a) and germ Φ = germ Φ1 = ϕ by (b). This
completes the proof in the case where D is 0-dimensional.

Next assume D of dimension > 0. Disregarding the ”boundary condition” Φ′ the case
runs as above, the neighborhoods V (ε) now meaning ε disk bundle neighborhoods of D × 0
in D×Rn. (They form a fundamental system of neighborhoods of D×0.) It follows that we
may assume ϕ to be the identity autogerm on εn. Otherwise replace ϕ with ϕ ◦ Φ−1

1 and Φ′

with Φ′ ◦Φ−1
1 (over ∂D), where Φ1 is any automorphism of εn over D whose germ is ϕ. Now

choose a small open disk V ⊂ D and set D′ = D − V . Extend Φ′ to an automorphism of εn

over D′, also denoted Φ′. (That is possible since ∂D is a retract of D′.) Let λ : D → [0, 1]
be a function which is 0 on a closed neighborhood of V and 1 on ∂D. There is then a map
Π : D × Rn → D × Rn given by

Π(x, y) = (x, λ(x)v)

which is obviously an automorphism of εn over λ−1(0, 1]. Define Φ : D × Rn → D × Rn by

Φ =

{
Π−1 ◦ Φ′ ◦ Π over λ−1(0, 1]

Identity outside

Then Φ is an automorphism of εn over D whose germ is the identity, which restricts to Φ′

over ∂D.

Remark. a) The limit extension process that gives lemma 9 is due to Mazur. The method
itself also yields other important results and has been formalized under the name of ”The
method of infinite repetition in pure topology”, [10], [11]. (However, it is hard to recognize.)
b) There is a rooted version of lemma 9 as well, when (D, ∂D) is considered a pointed pair
with base point x0 ∈ ∂D ⊂ D (dimD > 0). However, this version follows trivially from
lemma 9, since over ∂D the automorphism is already determined.

We can now finish the proof of theorem 5 by showing
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Lemma 10 Let µ be a rooted microbundle over a sphere S. Then there is a rooted Rn-bundle
ξ isomorphic to µ. If ϕ : ξ ⇒ εn is an isogerm to the rooted standard trivial bundle, there is
an isomorphism Φ : ξ ∼= εn whose germ is ϕ.

Proof. Let dimS = 0. Then the claim is partly trivial and follows partly from lemma 9
(the case dimD = 0). Assume next that the claim has been proved for spheres of dimension
≤ n − 1 and let S be an n-sphere, n ≥ 1. Then S admits a decomposition into halfspheres
D+, D− with intersection S ′, a sphere of dimension n− 1, and the base point x0 in S ′. Since
D+ and D− are contractible relx0, µ is trivial as rooted microbundle over D+ and over D−;
let ϕ−, ϕ+

εn(D−)
ϕ− +3 µ ε(D+)

ϕ+
ks

be two ”microtrivializations”. Over S ′ this gives an autogerm ϕ′ = (ϕ+)−1◦ϕ− of εn. By our
induction assumption there is an automorphism Φ′ of εn over S ′ whose germ is ϕ′. From the
bundle ξ = εn(D−)∪Φ′ ε

n(D+). Then ξ is isomorphic to µ. Finally suppose ξ is any Rn-bundle
over S with an isogerm ϕ : ξ ⇒ εn. Over S ′ there is an isomorphism Φ′ : ξ | S ′ ∼= εn(S ′)
whose germ is ϕ | S ′. Since ξ | D+ is trivial, lemma 9 applies to the pair (ϕ,Φ′) over D+ and
gives a trivalization Φ+ : ξ | D+ ∼= εn(D+) whose germ is ϕ | D+, such that Φ+ | S ′ = Φ′.
Similarly there is a trivialization Φ− : ξ | D− ∼= εn(D−). Together with Φ+ this map gives a
trivialization Φ : ξ ∼= εn with germ ϕ. This completes the induction.

Remark. There is also a PL-version of theorem 5 in which only PL-microbundles and
PL-bundles enter. The proof given above for the topological case can be modified to give
the PL-case. Some extra care is required to remain within the smaller PL-category when
performing the necessary constructions, cf. [7]. Also the application of Brown’s theorem is
less direct.
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3 The fiber sequence of a map, and interpretations

In this chapter a morphism between two maps f : X → Y and g : U → V will be a pair of
maps α : X → U and β : Y → V such that the diagram

X
α //

f

��

U

g

��
Y

β
// V

is homotopy commutative. The morphism will be called a homotopy equivalence if α and β
are homotopy equivalences.

We start by proving the basic fact that any map f : X → Y is a fibration up to homotopy
equivalence. Then we show that f generates an infinite sequence

. . . Ωj // ΩE(f) Ωi // ΩX
Ωf // ΩY

j // E(f) i // X
f // Y

such that each two consecutive maps form the diagram of a fibration, up to homotopy
equivalence. Finally we shall consider the homotopy set [X,G/H], where G is a topological
group and H a closed subgroup with local cross sections in G, and interpret this set in terms
of bundles.

Let f : X → Y be a map of topological spaces. We make f into a fibration as follows.
Define the space

T (f) = {(x, λ) ∈ X × Y I : f(x) = λ(0)}
with the compact-open topology, and f ′ : T (f)→ Y by f ′(x, λ) = λ(1).

Proposition 1 f ′ : T (f) → Y is a fibration, and is homotopy equivalent to the map f :
X → Y .

Proof. Let ht : A → Y be a homotopy and g0 : A → T (f) a lifting of h0. We can write
g0(a) = (x0(a), λ0(a)) where f(x0(a)) = λ0(a)(0) and λ0(a)(1) = h0(a). Let gt : A → T (f)
be defined by gt(a) = (x0(a), λt(a)) where

λt(a)(s) =

{
λ0(a)

(
2s

2−t

)
0 ≤ s ≤ 1− t

2

h2s+t−2(a) 1− t
2
≤ s ≤ 1

Then gt is a homotopy from g0, and f ′gt(a) = ht(a). This proves that f ′ : T (f) → Y is a
fibration.

Let ϕ : X → T (f) and ψ : T (f)→ X be defined by ϕ(x) = (x, εf(x)), where εf(x) denote
the constant path at f(x), and ψ(x, λ) = x. Then ψϕ = 1 and ϕψ is homotopic to 1 under
the deformation κt : T (f) → T (f) defined by κt(x, λ) = (x, λt), where λt(s) = λ(st). This
shows that ϕ : X → T (f) is a homotopy equivalence. There is a commutative diagram

X

ϕ
��

f

))SSSSSSS

Y

T (f) f ′

66llllll
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which proves the proposition.

Proposition 2 If f : X → Y is a fibration, it is fiber homotopy equivalent to f ′ : T (f)→ Y .

Proof. Consider the homotopy Ft : T (f) → Y defined by Ft(x, λ) = λ(t). Then ψ :
T (f) → X given as before by ψ(x, λ) = x, is a lifting of F0. Hence there is a homotopy
Gt : T (f) → X such that G0 = ψ and fGt = Ft. Let µ : T (f) → XI be defined by
µ(x, λ)(t) = Gt(x, λ). Then µ(x, λ)(0) = x and fµ(x, λ) = λ. This is the construction of
the path lifting function for a fibration. We define ψ′ : T (f) → X by ψ′(x, λ) = µ(x, λ)(1).
There is then a commutative diagram

X

ϕ

��

f

((PPPPPPP

Y

T (f)

ψ′

OO

f ′

77oooooo

We have to prove the existence of fiber homotopies κt : 1 ∼ ψ′ϕ and Kt : 1 ∼ ϕψ′. Therefore
let κt(x) = µ(x, εf(x))(t) and Kt(x, λ) = (µ(x, λ)(t), λt) where λt(s) = λ(s(1 − t) + t). This
proves the proposition.

If f : X → Y is a map of pointed spaces, we take (∗, ε∗) as base point in T (f). Then
f ′ : T (f)→ Y is base point preserving, and has the fiber

E(f) = {(x, λ) ∈ X × Y I : f(x) = λ(0), λ(1) = ∗}

which we call the fiber of f . Also ϕ : X → T (f) is base point preserving.
If we start with a map f : X → Y of pointed spaces, we can make it into a fibration,

consider the inclusion map g : E(f) → T (f) of the fiber in the total space, make that into
a fibration, and so on. This leads to an infinite commutative diagram as follows, where the
rows are fibrations and the vertical maps are homotopy equivalences

X
f //

ϕ
��

Y

E(f)
g //

ϕ
��

T (f)
f ′

// Y

E(g) h //

ϕ
��

T (g)
g′

// T (f)

E(h) k //

��

T (h)
h′

// T (g)

(1)

Suppose F
i // E

p // B is a fibration. We have the path lifting function µ : T (p)→ EI

defined as in the proof of proposition 2. Let ξ : EI → EI be defined by ξ(λ) = µ(λ(0), pλ).
Then
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Lemma 3 ξ : EI → EI is fiber homotopic to the identity in the fibration p : EI → BI .

Proof. Let A ⊆ I × I be given by A = İ × I ∪ I × 0. Consider H : EI × I × I → B
defined by H(λ, s, t) = pλ(t) and let K : EI × A→ E be defined by

K(λ, 0, t) = µ(λ(0), pλ)(t)

K(λ, 1, t) = λ(t)

K(λ, s, 0) = λ(0)

Then pK = H on EI × A. Hence K can be extended to a lifting of H. Let Ks : EI → EI

be defined by Ks(λ)(t) = K(λ, s, t). Then Ks is a fiber homotopy from ξ to id.

Let π : E(i)→ ΩB be defined by π(x, λ) = pλ. Then

Proposition 4 π : E(i)→ ΩB is a homotopy equivalence.

Proof. We define ι : ΩB → E(i) by ι(ω) = (ω̃(0), ω̃) where ω̃ = µ(∗, ω−1)−1. Then πι = 1
and ιπ is homotopic to 1 by the lemma.

Consider the following diagram where the vertical maps are homotopy equivalences

F
i //

ϕ
��

E
p // B

E(i)
j

//

ϕ
��

T (i)
i′

// E

E(j)
k

//

��

T (j)
j′

// T (i)

Then we have

Proposition 5 The diagram below is homotopy commutative, where T is loop reversal

ΩE
Ωp // ΩB

ΩE

T

OO

E(i)

π

OO

E(j)

π

OO

k
// T (j)

ψ

OO

Proof. An element w ∈ E(j) can be written w = (v, ν) ∈ E(i) × T (i)I where ν(0) = v,
ν(1) = ∗. Then v = (x, λ) ∈ F ×EI where λ(0) = x, λ(1) = ∗, and ν(t) = (xt, λt) ∈ F ×EI

where λt(0) = xt. This gives x0 = x, λ0 = λ, x1 = ∗, λ1 = ε∗.
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Going around the diagram the two ways gives (Ωp)Tπ(w)(t) = pλ1−t(1) and πψk(w)(s) =
pλ(s). We define F : E(j)× I × I → B by F (w, s, t) = pλt(s). Then F (w, s, 0)=pλ(s) and
F (w, 1, 1− t)=pλ1−t(1). Also F (w, 0, t)=F (w, s, 1)=∗.

By sweeping the square I × I with a segment rotating around the corner (1, 0) we get a
map H : E(j)× I × I → B satisfying H(w, s, 0) = H(w, s, 1) = ∗, H(w, 0, t) = pλ1−t(1) and
H(w, 1, t) = pλ(t). This gives a homotopyHs : E(j)→ ΩB defined byHs(w)(t) = H(w, s, t),
and we have H0 = (Ωp)Tπ, H1 = πψk. This proves the proposition.

Theorem 6 If f : X → Y is a map of pointed spaces, there is an infinite sequence of pointed
spaces and maps

. . . −→ Ω2Y
Ωj−→ΩE(f)

Ωi−→ΩX
Ωf−→ΩY

j−→E(f)
i−→X

f−→Y

such that any two consecutive maps in the sequence give a diagram which is homotopy equiv-
alent to a fibration, by a homotopy equivalence preserving base points,

Proof. This follows from diagram (1) together with propositions 4 and 5.

Corollary 7 Let F
i→E

p→B be a fibration. Then there is an infinite sequence of pointed
spaces and maps

. . . −→ Ω2B
Ωj−→ΩF

Ωi−→ΩE
Ωp−→ΩB

j−→F
i−→E

p−→B

where any two consecutive maps in the sequence give a diagram which is homotopy equivalent
to a fibration by a homotopy equivalence preserving base points.

Proof. This follows from the theorem using proposition 2.

Let [X, Y ] be the set of free homotopy classes of maps from X to Y . If Y has a base
point, we get a natural base point in [X, Y ]. Then [ , Y ] is a contravariant functor from the
category of pointed topological spaces to the category of pointed sets.

Suppose F
i→E

p→B is a fibration. Then

[ , F ]
i∗−→[ , E]

p∗−→[ , B]

is an exact sequence of functors. This gives

Corollary 8 If f : X → Y is a map of pointed spaces, there is an exact sequence of functors

. . . // [ ,ΩE(f)
(Ωi)∗ // [ ,ΩX]

(Ωf)∗ // [ ,ΩY ]
j∗ // [ , E(f)]

i∗ // [ , X]
f∗ // [ , Y ]

Corollary 9 If F
i→E

p→B is a fibration, there is an exact sequence of functors

. . . // [ ,ΩF ]
(Ωi)∗ // [ ,ΩE]

(Ωp)∗ // [ ,ΩB]
j∗ // [ , F ]

i∗ // [ , E]
p∗ // [ , B]
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Let p : E → B be a fibration with path lifting function µ. Let pB : PB → B be the path
fibration over B. We define a map β : PB → E by β(ω) = µ(∗, ω)(1). Then β is a fiber
map.

Proposition 10 β : PB → E is a fiber homotopy equivalence if E is contractible.

Proof. Assume E contractible. Then the path fibration pE : PE → E has a section
σ : E → PE. Define α : E → PB by α = pσ. We get αβ(ω) = pσpEµ(∗, ω). From the next
lemma σpE : PE → PE is fiber homotopic to 1 over E. Therefore αβ : PB → PB is fiber
homotopic to 1 over B. We have βα(x) = µ(∗, pσ(x))(1) = pEξσ(x), where ξ is defined as
in lemma 3. Since ξ is fiber homotopic to 1 over BI by that lemma, βα : E → E is fiber
homotopic to 1 over B. This proves the proposition.

Lemma 11 Let E be a contractible space and pE : PE → E the path fibration over E with
a section σ : E → PE. Then σpE : PE → PE is fiber homotopic to 1 over E.

Proof. Let A = İ×I∪I×İ. Then (I×I, A) is a cofibered pair, hence (PE×I×I, PE×A)
is a cofibered pair. We define H : PE×A→ E by H(λ, s, 0) = λ(s), H(λ, s, 1) = σ(λ(1))(s),
H(λ, 0, t) = ∗ and H(λ, 1, t) = λ(1). Since E is contractible we get an extension H :
PE × I × I → E. Let κt : PE → PE be defined by κt(λ)(s) = H(λ, s, t). Then κt is a fiber
homotopy from 1 to σpE.

Let G be a topological group. There is then a universal fibration G → EG
pG−→BG,

where EG is a contractible space. Hence it follows from proposition 10 that EG is fiber
homotopy equivalent to PBG over BG, and by adjusting β : ΩBG→ G so that it preserves
base points we have

Corollary 12 There is a homotopy equivalence β : ΩBG→ G, preserving base points.

Let H be a closed subgroup of G with local sections. There is then a fibration G/H →
BH

ρ→BG, and we have

Proposition 13 There is a homotopy commutative diagram

ΩBG

T

��

β // G

q

��
ΩBG

j
// G/H

where q is the projection and the other maps as before.
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Proof. Consider the commutative diagram

EG
pH //

pG ��>>>>>>> BH

ρ
���������

BG

G is imbedded as the fiber of pG, G/H is imbedded as the fiber of ρ, and pH = q on the fiber.
Let µ be a path lifting function for pG and µ′ one for ρ. Then we have jT (ω) = µ′(∗, ω)(1)
and qβ(ω) = pHµ(∗, ω)(1). It is clear that the two sections µ′(∗, ) and pHµ(∗, ) in the

fibration PBH
ρ→PBG are fiber homotopic. This implies that jT and qβ are homotopic.

Proposition 14 There is a homotopy commutative diagram

ΩBH

Ωρ

��

β // H

i
��

ΩBG
β

// G

where i is the inclusion map, and the other maps as before.

Proof. We use the diagram in the previous proof. Let µ′′ be a path lifting function
for pH . Then we have iβ(ω) = µ′′(∗, ω)(1) and β(Ωρ)(ω) = µ(∗, ρω)(1). Because the two
maps µ′′(∗, ) and µ(∗, ρ) are fiber homotopic over PBG it follows that β(Ωρ) and iβ are
homotopic.

Theorem 15 Let G be a topological group and H a closed subgroup with local sections. Then
there is an infinite sequence of pointed spaces and maps, ending with the canonical maps,

. . .→ ΩH
Ωj−→ΩG

Ωq−→Ω(G/H)
k−→H

j−→G
q−→G/H

i−→BH
ρ−→BG

such that each two consequtive maps define a diagram which is homotopy equivalent to a
fibration, by homotopy equivalences preserving base points.

Corollary 16 There is an infinite exact sequence of functors

. . .→ [ , H]
j∗−→[ , G]

q∗−→[ , G/H]
i∗−→[ , BH]

ρ∗−→[ , BG]

We can interprete the terms of this sequence by means of bundles. [X,BG] is the set
of isomorphism classes of principal G-bundles over X, similarly [X,BH]. ρ∗ is defined by
extension of the structure group.

Proposition 17 If X is a space with a non degenerate base point, then

[SX,BG] = π0(G) \ [X,G]/π0(G),

where π0(G) operates on [X,G] by left and right multiplication.
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Proof. Since BG is path connected, we have canonical isomorphisms

[SX,BG] = [SX,BG]∗/π1(BG) = [X,ΩBG]∗/π1(BG)

= [X,G]∗/π0(G) = π0(G) \ [X,G]/π0(G)

Here π1(BG) operates on the right of [ , BG]∗ as usual. We use the homotopy equivalence
β : ΩBG→ G of corollary 12 and the boundary isomorphism π1(BG)→ π0(G) of the homo-
topy sequence of the fibration G → EG → BG for identifications. Then π0(G) operates on
the right of [ , G]∗ by conjugation. We have [X,G]∗ = π0(G) \ [X,G], where π0(G) operates
on the left of [ , G] by multiplication. This gives the result.

Hence [X,G] modulo the given action of π0(G) is the set of isomorphism classes of
principal G-bundles over SX, similarly for [X,H]. j∗ is then defined by extension of the
structure group.

Next we interpret [X,G/H] by means of bundles. Let p : E → X be an H-bundle with
fiber G, where H acts on G from the left by multiplication. By extending the structure
group we can consider E also as principal G-bundle over X. Therefore in particular G acts
on E from the right.

By a G-trivialization of the given H-bundle E over X we understand a bundle isomor-
phism t̄ : E → X×G from the principal G-bundle E over X to the trivial principal G-bundle
X × G over X. Equivalently t̄ is a map commuting with the right action of G. There is
a bijective correspondence between G-trivializations of E and maps t : E → G commuting
with the right action of G. The correspondence is given by t̄ = (p, t).

A (G,H)-bundle over X is by definition an H-bundle p : E → X with fiber G together
with a G-trivialization t : E → G. A morphism f : E → E ′ between (G,H)-bundles over X
is defined to be a map between H-bundles such that t′f and t are homotopic through maps
commuting with the right action of G. Then each morphism is an isomorphism.

More generally if E and E ′ are (G,H)-bundles over X and X ′ a map f : E → E ′ between
(G,H)-bundles is a map of H-bundles such that t′f and t are homotopic as before. Then a
morphism in the previous sense is just a map between (G,H)-bundles, covering the identity
map.

If E is a (G,H)-bundle over X with G-trivialization t : E → G, and if f : X∗ → X is a
map, then the pullback E∗ = f ∗E is a (G,H)-bundle over X∗ with G-trivialization t∗ = tf .
A special case is a pullback by an inclusion map which gives a restriction of a (G,H)-bundle
over X to a (G,H)-bundle over a subspace X∗ of X.

Two (G,H)-bundles E0 and E1 over X are called concordant if there exists a (G,H)-
bundle Ẽ over X×I such that i∗0Ẽ ≈ E0 and i∗1Ẽ ≈ E1, where i0, i1 : X → X×I are defined
by i0(x) = (x, 0) and i1(x) = (x, 1).

Theorem 18 Two (G,H)-bundles over X are concordant if and only if they are isomorphic.
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Proof. Let Ẽ be a (G,H)-bundle over X × I with a G-trivialization t̃ : Ẽ → G. As an
H-bundle Ẽ is isomorphic with E × I for some H-bundle E over X. Transfering t̃ by the
isomorphism we get a G-trivialization t : E× I → G. Then i∗0Ẽ is isomorphic to the (G,H)-
bundle E with G-trivialization t0 = ti0, and similarly i∗1Ẽ is isomorphic to the (G,H)-bundle
E with G-trivialization t1 = ti1. But t0 and t1 are homotopic through maps commuting with
the right action of G. Hence i∗0Ẽ ≈ i∗1Ẽ. This proves that concordant (G,H)-bundles over
X are isomorphic.

The other way is trivial.

Corollary 19 Let E be a (G,H)-bundle over X, and f0, f1 : X∗ → X homotopic. Then
f ∗0E ≈ f ∗1E.

Proof. If F : X∗ × I → X is a homotopy from f0 to f1, we have f0 = Fi0 and f1 = Fi1.
Then F ∗E is a (G,H)-bundle over X∗ × I, and we have f ∗0E ≈ i∗0F

∗E and f ∗1E ≈ i∗1F
∗E.

Therefore f ∗0E and f ∗1E are concordant, hence isomorphic.

We let B(X) denote the set of isomorphism classes of (G,H)-bundles over X. Then B
is a contravariant functor from the category of topological spaces and homotopy classes of
maps.

Let p : G → G/H be the projection. Since we assume H a closed subgroup of G with
local sections, G is a principal H-bundle over G/H. The associated H-bundle with fiber
G has a total space G ×H G, where the elements are of the form (g, g′) with g, g′ ∈ G and
the identification (gh, h−1g′) = (g, g′) for h ∈ H. The projection q : G ×H G → G/H of
this bundle is given by q(g, g′) = p(g), and the right action of G on the total space G×H G
is given by (g, g′)g′′ = (g, g′g′′). We have a G-trivialization t : G ×H G → G defined by
t(g, g′) = gg′. Therefore G ×H G is a (G,H)-bundle over G/H. We call it the universal
(G,H)-bundle.

We define a natural transformation T : [ , G/H] → B of contravariant functors by
Tf = f ∗(G×H G).

Theorem 20 T : [ , G/H]→ B is a natural equivalence.

Proof. Let X be a space. We have a map T : [X,G/H] → B(X), and define a map
S : B(X) → [X,G/H] as follows. Let E be a (G,H)-bundle over X with G-trivialization
t : E → G. We choose a local trivialization ΦU : U × G → E of the H-bundle E over X,
and define fU : U → G/H by fU(x) = ptΦU(x, 1). If ΦV : U ×G→ E is another such local
trivialization, there is a corresponding coordinate transformation hV U : U ∩ V → H and we
have Φ−1

V,xΦU,x(g) = hV U(x)g for x ∈ U ∩ V and g ∈ G. Therefore

fU(x) = ptΦU(x, 1) = ptΦU,x(1) = ptΦV,xhV U(x)

= ptΦV (x, hV U(x)) = pt(ΦV (x, 1)hV U(x)) = p(tΦV (x, 1))hV U(x) = fV (x)
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Hence we get a well defined map f : X → G/H such that f/U = fU for every trivializing
neighborhood U .

Assume E and E ′ are isomorphic (G,H)-bundles over X with G-trivializations t : E → G
and t′ : E ′ → G. Let f̄ : E → E ′ be an isomorphism. If ΦU : U × G → E is a local
trivialization of the H-bundle E, then Φ′U = f̄ΦU : U×G→ E ′ is a local trivialization of the
H-bundle E ′. Therefore we have f ′(x) = pt′Φ′U(x, 1) = pt′f̄ΦU(x, 1) and f(x) = ptΦU(x, 1)
for x ∈ U . But t′f̄ and t are homotopic through maps commuting with the right action of G.
Therefore by using the calculation above, we get that f and f ′ are homotopic. This proves
that S(E) = f gives a well defined map S : B(X) → [X,G/H]. We must prove that S is
inverse to T .

Assume E is a given (G,H)-bundle over X as before. Let S(E) = f be the map con-
structed as above. If e ∈ E we choose a local trivialization ΦU : U × G → E around
e and define fU(x) = (tΦU,x(1),Φ−1

U,x(e)) ∈ G ×H G where x = pE(e). This gives a map

fU : p−1
E (U)→ G×H G. Suppose that ΦV : V ×G→ E is another local trivialization. Then

we have

fV (e) = (tΦV,x(1),Φ−1
V,x(e)) = (t(ΦU,x(1)hUV (x)), hV U(x)Φ−1

U,x(e))

= ((tΦU,x(1))hUV (x), hUV (x)−1Φ−1
U,x(e)) = (tΦU,x(1),Φ−1

U,x(e)) = fU(e)

Hence we get a well defined map f : E → G ×H G such that f/p−1
E (U) = fU for each

local trivialization. The diagram

E
f //

p
E

��

G×H G
q

��
X

f
// G/H

commutes, since we have

qfU(e) = q(tΦU,x(1),Φ−1
U,x(e)) = ptΦU,x(1) = f(x) = fp

E
(e)

Also f is a map of H-bundles. The H-bundle structure of G ×H G over G/H is given as
follows. Let si : Ui → G be a local section of p : G → G/H. Then a local trivialization
Φi : Ui ×G→ G×H G is defined by Φi(x, g) = (si(x), g) with inverse fi : q−1(Ui)→ Ui ×G
given by fi(g, g

′) = (p(g), (sip(g))−1gg′). Then

Φ−1
i,f(x)fΦU,x(g) = prGfifΦU(x, g) = prGfi(tΦU,x(1), g)

= (siptΦU,x(1))−1tΦU,x(1)g = (sif(x))−1tΦU,x(1)g
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So Φ−1
i,f(x)fΦU,x : G→ G is left multiplication by (sif(x))−1tΦU,x(1) which belongs to H,

because applying p we get

p((sif(x))−1tΦU,x(1)) = (sif(x))−1ptΦU,x(1) = (sif(x))−1f(x)

= (sif(x))−1psif(x) = p((sif(x))−1sif(x)) = p(1)

Hence f is a map of H-bundles. Finally

tf(e) = tfU(e) = tΦU,x(1)Φ−1
U,x(e) = t(e)

so that f is a map of (G,H)-bundles. This proves that we have an isomorphism of (G,H)-
bundles E ≈ f ∗(G×H G). So TS = 1.

Assume on the other hand f : X → G/H is given. Let E∗ = f ∗(G ×H G) be the
(G,H)-bundle over X defined by pullback. If si : Ui → G is a local section defining a local
trivialization of G×H G as before, let U∗i = f−1(Ui). Then we have a local trivialization of
E∗, namely Φ∗i : U∗i ×G→ E∗ defined by Φ∗i (x, g) = (x,Φi(f(x), g)). Using this we get back
a map fU∗i : U∗i → G/H and

fU∗i (x) = pt∗Φ∗i (x, 1) = ptfΦ∗i (x, 1) = ptΦi(f(x), 1) = f(x)

This shows ST = 1, and the theorem is proved.

Consequently [X,G/H] can be interpreted geometrically as the isomorphism classes of

(G,H)-bundles over X. Then the map [ , G/H]
i∗−→[ , BH] in corollary 16 is described by

passing from a (G,H)-bundle to its underlying H-bundle. We remark that the projection

p : G→ G/H classifies the trivial bundle G×G
pr1−→G over G with G-trivialization t(g, g′) =

gg′, because it is evident that this (G,H)-bundle by the previous construction S gives back
the map p.
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4 Homotopy invariance of fibers and cofibers

If we have given an arbitrary map f : X → Y , we can make f into a fibration or cofibration
and construct the fibers and the cofiber pair respectively. We want to prove that these
constructions are homotopy invariant.

We consider first the case of fibers and refer back to chapter 3 for notation and some
results. We have then a commutative diagram

X

ϕ

��

f

&&MMMMMMMM

Y

T (f)
f ′

88rrrrrr

where ϕ is a homotopy equivalence and f ′ is a fibration. For each base point ∗ of Y we
call E(f) = f ′−1(∗) a fiber of f . The homotopy type of E(f) depends only on the path
component of ∗ in Y , not on the actual choice of base point. In particular if Y is path
connected, E(f) is uniquely determined up to homotopy type.

If the map f : X → Y is already a fibration, then ϕ is a fiber homotopy equivalence, and
the fibers of f in the sense defined above coincides up to homotopy type with the ordinary
fibers f−1(∗) of f .

Theorem 1 Let

E

p
��666666
f // E ′

p′���������

B

be a commutative diagram where p and p′ are fibrations and f is a homotopy equivalence.
Then f is a fiber homotopy equivalence.

Proof. (Dold [1]) Let g : E ′ → E be a homotopy inverse to f and ht : fg ∼ idE′ a
homotopy. We get a homotopy p′ht : pg ∼ p′ which may be lifted to a homotopy kt : g ∼ g′.
Then pkt = p′ht and pg′ = p′. We define a homotopy lt : fg′ ∼ idE′ by

lt =

{
fk1−2t 0 ≤ t ≤ 1

2

h2t−1
1
2
≤ t ≤ 1

Then we get a homotopy p′lt : p′ ∼ p′, and we have

p′lt =

{
p′h1−2t 0 ≤ t ≤ 1

2

p′h2t−1
1
2
≤ t ≤ 1

which gives the symmetry p′l1−t. Now we define m : E ′ × I × I → B by

mtu =


p′ t ≤ u/2 or t ≥ 1− u/2
p′lt−u/2 u/2 ≤ t ≤ 1

2

p′lt+u/2
1
2
≤ t ≤ 1− u/2
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and there exists a lifting n : E ′ × I × I → E ′ of m such that nt0 = lt, n0u = fg′ and
n1u = idE′ . Then nt1 : fg′ ∼ idE′ is a fiber homotopy. Thus we have proved fg′ ∼B idE′ , i.e.
f has a right fiber homotopy inverse. The same argument applied to g′ gives f ′ such that
g′f ′ ∼B idE. Then we get

g′f ∼B (g′f)(g′f ′) = g′(fg′)f ′ ∼B g′f ′ ∼B idE

Hence g′ is a fiber homotopy inverse to f , and the theorem is proved.

We introduce the category where the objects are maps between topological spaces, and
a morphism from f : X → Y to g : U → V is a pair of maps α : X → U and β : Y → V
such that the diagram

X
α //

f

��

U

g

��
Y

β
// V

commutes. We denote the morphism by (α, β) : f → g. A homotopy between two morphisms
(α0, β0), (α1, β1) : f → g is a family of morphisms (αt, βt) : f → g such that αt and βt are
homotopies. (α, β) is called a homotopy equivalence if it has a homotopy inverse in the
category.

Theorem 2 Let

E
f̃ //

p

��

E ′

p′

��
B

f
// B′

be a commutative diagram, where p and p′ are fibrations, f̃ and f homotopy equivalences.
Then (f̃ , f) : p→ p′ is a homotopy equivalence.

Thus for morphisms between fibrations the concepts of a homotopy equivalence in the
strong sense above and in the weak sense of chapter 3 actually coincide.

Proof. Let g̃ : E ′ → E and g : B′ → B be homotopy inverses to f̃ and f . Then the
diagram

E

p

��

E ′
g̃oo

p′

��
B B′g

oo

is homotopy commutative. Changing g̃ by a homotopy we may assume the diagram is
actually commutative and we have got a morphism (g̃, g) : p′ → p. The homotopy gf ∼ 1
lifts to a homotopy g̃f̃ ∼ ã, where ã : E → E is a map over idB and a homotopy equivalence,
hence a fiber homotopy equivalence by theorem 1. Therefore (ã, 1) : p → p is a homotopy
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equivalence. Since (g̃, g)(f̃ , f) = (g̃f̃ , gf) ∼ (ã, 1), it follows that (g̃, g)(f̃ , f) is a homotopy
equivalence. By symmetry (f̃ , f)(g̃, g) is a homotopy equivalence. Hence (f̃ , f) is a homotopy
equivalence.

Theorem 3 Let

f ∗E
f̃ //

p∗

��

E

p

��
B∗

f
// B

be a pullback diagram where p is a fibration and f is a homotopy equivalence. Then (f̃ , f) :
p∗ → p is a homotopy equivalence.

Proof. Let g : B → B∗ be a homotopy inverse to f . We construct the diagram

f ∗g∗f ∗E
g̃f̃

yyttttttttt

p∗∗∗

��

f̃ // g∗f ∗E
g̃

ssggggggggggggggggggggggggggggg

f̃ g̃||yyyyyyyyy

p∗∗

��

f ∗E
f̃ //

p∗ %%KKKKKKKKKK E

p

##FFFFFFFFF

B∗
f

// B
goo

where the maps g̃f̃ and f̃ g̃ are homotopy equivalences by Spanier [2], p. 102. Hence f̃ :
f ∗E → E is a homotopy equivalence and we get the result by theorem 2.

Theorem 4 Let

E
f̃ //

p

��

E ′

p′

��
B

f
// B′

be a commutative diagram where p and p′ are fibrations, f and f̃ homotopy equivalences.
Then f̃ : F → F ′ is a homotopy equivalence for each pair of fibers F = p−1(x) and F ′ =
p′−1(f(x)).

Proof. We get a commutative diagram

F

��

i **UUUUUUUUUUUUU
f̃ // F ′

��
F ′

��

=

44jjjjjjjjjjj

E

p

��666666666

i **UUUUUUUUUUUU
f̃ // E ′

��

f ∗E ′

p∗xxqqqqq
f̃

55jjjjjjjjjj

B
f

// B′
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f̃ : f ∗E ′ → E ′ is a homotopy equivalence by theorem 3, hence i : E → f ∗E ′ is a homotopy
equivalence, i.e. by theorem 1 a fiber homotopy equivalence. Therefore i : F → F ′, and
hence f̃ : F → F ′ is a homotopy equivalence.

We can now prove the homotopy invariance of fibers as follows.

Theorem 5 Let

X1
f1 //

α

��

Y1

β

��
X2 f2

// Y2

be a homotopy commutative diagram where α and β are homotopy equivalences. Then the
fibers E(f1) and E(f2) of base points y1 ∈ Y1 and β(y1) ∈ Y2 are homotopy equivalent.

Proof. Let ht : f2α ∼ βf1 be a homotopy. Define α′ : T (f1)→ T (f2) by

α′(x, λ) = (α(x), µ)

µ(t) =

{
h2t(x) 0 ≤ t ≤ 1

2

βλ(2t− 1) 1
2
≤ t ≤ 1

Then the diagram

X1
ϕ1 //

α

��

T (f1)

α′

��
X2 ϕ2

// T (f2)

is homotopy commutative. Hence α′ is a homotopy equivalence. The diagram

T (f1)
f ′1 //

α′

��

Y1

β

��
T (f2)

f ′2

// Y2

is commutative, and by theorem 4 the restriction α′ : E(f1)→ E(f2) is a homotopy equiva-
lence.

Next we consider the case of cofibers, where we only have to dualize the previous argu-
ments.

Starting again with a map f : X → Y we have a commutative diagram

Y

X

f 99rrrrrrr

f ′ %%JJJJJJ

Zf

π

OO
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where π is a homotopy equivalence and f ′ is a cofibration. As usual Zf denotes the mapping
cylinder of f . We call (Zf , X) the cofiber pair of f .

Theorem 6 Let

A
i

���������
i′

��9999999

X
f

// X ′

be a commutative diagram where i and i′ are cofibrations and f is a homotopy equivalence.
Then f is a cofiber homotopy equivalence.

Remark. This means of course that there is a map g : X ′ → X such that gi′ = i, and
homotopies ht : gf ∼ idX and kt : fg ∼ idX′ , such that hti = i and kti

′ = i′ for all t. The
proof of the theorem is dual to that of theorem 1.

Theorem 7 Let

A

i
��

f // A′

i′

��
X

f̂

// X ′

be a commutative diagram, where i and i′ are cofibrations, f and f̂ homotopy equivalences.
Then (f, f̂) : i→ i′ is a homotopy equivalence.

Remark. The proof is dual to that of theorem 2.

The homotopy invariance of the cofiber pair is the following result.

Theorem 8 Let

X1
f1 //

α

��

Y1

β

��
X2 f2

// Y2

be a homotopy commutative diagram where α and β are homotopy equivalences. Then the
cofiber pairs (Zf1 , X1) and (Zf2 , X2) are homotopy equivalent.

Proof. Let ht : f2α ∼ βf1 be a homotopy. Define β′ : (Zf1 , X1)→ (Zf2 , X2) by

β′(x, t) =

{
(α(x), 2t) 0 ≤ t ≤ 1

2

h2t−1(x) 1
2
≤ t ≤ 1

β′(y) = β(y)
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The diagram

Zf1

β′

��

π1 // Y1

β

��
Zf2 π2

// Y2

is homotopy commutative, therefore β′ is a homotopy equivalence. The diagram

X1

f ′1 //

α

��

Zf1

β′

��
X2

f ′2

// Zf2

is commutative, hence by theorem 7 the map β′ : (Zf1 , X1) → (Zf2 , X2) is a homotopy
equivalence.

For a broad treatment of homotopy properties of maps see Dieck, e.a. [3].
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5 Poincaré duality for topological manifolds

The Poincaré duality theorem in its most common form states that if M is a compact,
orientable topological n-manifold, then there is an isomorpism

Hq(M) ≈ Hn−q(M)

for all q (integer coefficients understood), given by cap multiplication with a fundamental
class [M ] ∈ Hn(M).

For orientable topological n-manifolds in general the result is clearly not true, since any
contractible manifold of dimension > 0 is a counter example. However, there is a duality
isomorphism if we use cohomology with compact support or homology with locally finite
chains.

The first generalization is given in Spanier [1]. We consider here the second, i.e. gener-
alization to locally finite chains. The complex of locally finite chains may be obtained as an
inverse limit of ordinary chain complexes. Therefore we determine first the homology of an
inverse limit of chain complexes. Then we prove the Poincaré duality for locally finite chains
by passing to inverse limits. We prove also the relative form.

Homology and inverse limits

In general if {Ai, fij} is a projective system of abelian groups Ai and homomorphisms fij :
Aj → Ai indexed by a partially ordered set I we may define the inverse limit of the system
by

lim←−Ai = {{ai} ∈
∏

Ai : fij(aj) = ai for i ≤ j}

If I ′ ⊆ I there is a canonical homomorphism

lim←−
I′

Ai → lim←−
I

Ai

which is an isomorphism if I ′ is cofinal in I.
In particular suppose {An, fn}N is a projective system of abelian groups An and homo-

morphisms fn : An+1 → An, indexed by the natural numbers N = {0, 1, 2, . . .}. We define a
homomorphism

f :
∏

An →
∏

An

f{an} = {an − fn(an+1)}

Then we get

lim←−An = ker f

lim←−
′An = coker f
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where the second equation is taken as a definition of lim←−
′ for simplicity. It is easy to verify

that also lim←−
′ is unchanged up to isomorphism if we pass to a cofinal indexing set. lim←− and

lim←−
′ are covariant functors from the category of projective systems of abelian groups to the

category of abelian groups. By natural extension they can therefore also be considered as
functors from the category of projective systems of chain complexes of abelian groups to the
category of chain complexes of abelian groups.

Theorem 1 Let {Cn, fn}N be a projective system of chain complexes Cn of abelian groups
and surjective chain homomorphisms fn : Cn+1 → Cn. Then there is a functorial short exact
sequence

0→ lim←−
n

′Hp+1(Cn)→ Hp

(
lim←−
n

Cn
)
→ lim←−

n

Hp(C
n)→ 0

Proof. Let
∏
Cn be the product chain complex. Define a chain homomorphism f :∏

Cn →
∏
Cn by f{cn} = {cn − fn(cn+1)} in each degree. Then f is surjective because we

can solve the equations cn − fn(cn+1) = dn inductively with respect to cn+1. Therefore we
get a short exact sequence of chain complexes

0→ lim←−
n

Cn →
∏
n

Cn f−→
∏
n

Cn → 0

and hence an exact homology sequence

· · · →
∏
n

Hp+1(Cn)
f∗−→
∏
n

Hp+1(Cn)
∂−→Hp

(
lim←−
n

Cn
)
→
∏
n

Hp(C
n)

f∗−→
∏
n

Hp(C
n)→ · · ·

This gives a short exact sequence

0→ coker f∗ → Hp

(
lim←−
n

Cn
)
→ ker f∗ → 0

which is identical with that of the theorem.

Corollary 2 Let {Cn, fn}N be a projective system of cochain complexes Cn of abelian groups
and surjective cochain homomorphisms fn : Cn+1 → Cn. Then there is a functorial short
exact sequence

0→ lim←−
n

′Hp−1(Cn)→ Hp
(

lim←−
n

Cn

)
→ lim←−

n

Hp(Cn)→ 0
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Homology with locally finite chains

If X is a topological space, we define a locally finite singular p-chain in X as a formal linear
combination

c =
∑
σ

m(σ)σ

where σ runs through all singular p-simplices of X, m(σ) ∈ Z and each compact subset of
X meets only finitely many σ such that m(σ) 6= 0.

We let CLF
p (X) denote the abelian group of locally finite singular p-chains in X. Then

there is a boundary homomorphism ∂ : CLF
p (X)→ CLF

p−1(X) defined by

∂c =
∑
σ

m(σ)∂σ

where the right hand side is obviously a locally finite chain. We get therefore a chain complex
CLF
∗ (X).

When we want to define induced chain homomorphisms we have the problem that the
image of a locally finite chain is in general not locally finite. We must therefore restrict
attention to a special class of maps. A map f : X → Y between topological spaces is called
proper if f−1(K) is compact for each compact subset K of Y . If f is proper we define

f#c =
∑
σ

m(σ)fσ

and get a chain homomorphism f# : CLF
∗ (X)→ CLF

∗ (Y ).
If A is a closed subspace of X, the inclusion map A → X is proper. We get therefore a

functor CLF
∗ from the category of closed topological pairs and proper maps to the category

of chain complexes of abelian groups. Composition with homology gives the functor HLF
∗ ,

singular homology with locally finite chains. It is clear that HLF
∗ coincides with ordinary

singular homology on closed pairs (X,A) where X − A is relatively compact. In general
H∗(X,A)→ HLF

∗ (X,A).
The homology theory HLF

∗ satisfies the Eilenberg-Steenrod axioms. The homotopy and
excision axioms have the following form.

The homotopy axiom. If two proper maps f, g : (X,A) → (Y,B) between closed topo-
logical pairs are properly homotopic, then the induced homomorphisms f∗, g∗ : HLF

∗ (X,A)→
HLF
∗ (Y,B) are identical.

The excision axiom. If (X,A) is a closed topological pair and U is an open subset of
X such that clU ⊆ intA, then the excision map e : (X − U,A − U) → (X,A) induces an
isomorphism e∗ : HLF

∗ (X − U,A− U)≈→HLF
∗ (X,A).

The proofs for ordinary singular homology given in Spanier [1], are valid also for the
locally finite case.
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We define a cap product Cq(X)⊗ CLF
p (X)→ CLF

p−q(X) by the formula

u ∩ c =
∑
σ

m(σ)〈u, σq〉p−qσ (1)

where σq denotes the back q-face and p−qσ the front (p− q)-face of σ. By computation

∂(u ∩ c) = u ∩ ∂c+ (−1)p−qδu ∩ c (2)

for u ∈ Cq(X) and c ∈ CLF
p (X). Therefore we obtain an induced cap product Hq(X) ⊗

HLF
p (X)→ HLF

p−q(X).
More generally we can define a relative cap product. Let {A1, A2} be an excisive couple

of closed subsets in X, i.e. CLF
∗ (A1) + CLF

∗ (A2) → CLF
∗ (A1 ∪ A2) induces an isomorphism

in homology. Then the canonical map CLF
∗ (X)/(CLF

∗ (A1) + CLF
∗ (A2)) → CLF

∗ (X,A1 ∪ A2)
induces an isomorphism in homology. Formula (1) gives a well defined cap product

Cq(X,A1)⊗ (CLF
p (X)/(CLF

p (A1) + CLF
p (A2)))→ CLF

p−q(X,A2)

satisfying (2). Passing to homology we obtain a cap product

Hq(X,A1)⊗HLF
p (X,A1 ∪ A2)→ HLF

p−q(X,A2)

The cap product is compatible with that of ordinary singular homology under the natural
transformation H∗ → HLF

∗ , since both cap products may be defined by formula (1). If
x ∈ Hp(X,A1), y ∈ Hq(X,A2) and z ∈ HLF

n (X,A1 ∪ A2 ∪ A3), then with the appropriate
excisiveness conditions satisfied one has in HLF

n−p−q(X,A3) the relation

(x ∪ y) ∩ z = x ∩ (y ∩ z)

Let K be a compact subset of X. We define a chain homomorphism

ρK : CLF
∗ (X)→ C∗(X,X −K)

ρK(c) =
∑
σ

mK(σ)σ

where

mK(σ) =

{
m(σ) if σ ∩K 6= ∅
0 if σ ∩K = ∅

We consider the induced chain homomorphism

ρ : CLF
∗ (X)→ lim←−

K

C∗(X,X −K)

where the inverse limit is taken over all compact subsets K of X.

Lemma 3 ρ is isomorphism.
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Proof. If ρ(c) = 0, then ρK(c) = 0 for each K, hence c = 0 because X is covered by
compact subsets. Thus ρ is injective. On the other hand suppose {cK} ∈ lim←−

K

C∗(X,X −K)

is given, where cK ∈ C∗(K) is determined up to chains in X −K. Let cK =
∑
σ

m(σ,K)σ.

If K ⊆ K ′ and σ ∩ K 6= ∅, then m(σ,K) = m(σ,K ′). Hence if σ ∩ K1, σ ∩ K2 6= ∅, then
m(σ,K1) = m(σ,K1 ∪K2) = m(σ,K2). Therefore m(σ) = m(σ,K) is independent of K as
long as σ ∩K 6= ∅. Now we have c =

∑
σ

m(σ)σ ∈ CLF
∗ (X) and ρK(c) = cK in C∗(X,X −K)

for each K. Therefore ρ(c) = {cK} in lim←−
K

C∗(X,X −K), and ρ is surjective.

Theorem 4 Let X be a space with a sequence {Ki} of compact subsets such that Ki ⊆
intKi+1 and UKi = X. Then there is a short exact sequence

0→ lim←−
i

′Hp+1(X,X −Ki)→ HLF
p (X)→ lim←−

i

Hp(X,X −Ki)→ 0

Proof. The sequence {Ki} is cofinal in the family of compact subsets of X. Therefore
there is a chain isomorphism

ρ : CLF
∗ (X)≈→ lim←−

i

C∗(X,X −Ki)

by lemma 3. The natural homomorphisms C∗(X,X−Ki+1)→ C∗(X,X−Ki) are surjective.
Hence we get the short exact sequence of the theorem from theorem 1.

A short exact sequence for cohomology

If (A,B) is a pair of subsets in a space X, we define a cochain complex

~C∗(A,B) = lim−→C∗(U, V )

where the direct limit is taken over open pairs (U, V ) in X such that U ⊇ A and V ⊇ B.

Lemma 5 Suppose X is a space with a sequence {Ki} of compact subsets such that Ki ⊆
intKi+1 and UKi = X. Then the canonical cochain homomorphism

ρ : C∗(X)→ lim←−
i

~C∗(Ki)

is an isomorphism.

Proof. If ρ(u) = 0, then u/Ki = 0 for each i, hence u = 0, and ρ is injective. Assume

on the other hand an element {ui} ∈ lim←−
i

~C∗(Ki) is given, where ui ∈ C∗(Ui) for some open

neighborhood Ui of Ki. Then ui+1 = ui on a neighborhood of Ki. We define u ∈ C∗(X) by
u = ui on Ki. It follows that u = ui on a neighborhood of Ki. Therefore ρ(u) = {ui} in

lim←−
i

~C∗(Ki) and ρ is surjective.
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Theorem 6 Let X be a space with a sequence {Ki} of compact subsets such that Ki ⊆
intKi+1 and UKi = X. Then there is a short exact sequence

0→ lim←−
i

′ ~Hp−1(Ki)→ Hp(X)→ lim←−
i

~Hp(Ki)→ 0

Proof. The canonical homomorphisms ~C∗(Ki+1) → ~C∗(Ki) are surjective. Therefore we
get the theorem from lemma 5 together with corollary 2.

Note. Since homology commutes with direct limits we have in general H(~C∗(A,B)) =

lim−→H∗(U, V ), and this limit is denoted by ~H∗(A,B).

The Poincaré duality theorem

Let M be an oriented topological n-manifold. By definition we assume M has a countable
basis. Therefore M is countable at infinity, and theorem 4 gives a short exact sequence

0→ lim←−
i

′Hp+1(M,M −Ki)→ HLF
p (M)→ lim←−

i

Hp(M,M −Ki)→ 0 (3)

By Spanier [1] we have Hq(M,M −K) = 0 for q > n, so there is an isomorphism

ρ : HLF
n (M)≈→ lim←−

K

Hn(M,M −K)

Again by Spanier [1] the orientation of M defines a fundamental family
{zK} ∈ lim←−

K

Hn(M,M − K). We get a correspsonding fundamental class [M ] ∈ HLF
n (M)

given by [M ] = ρ−1{zK}. Then we have the theorem announced in the title, as follows

Theorem 7 ∩[M ] : Hq(M)→ HLF
n−q(M) is an isomorphism for all q.

Let U be an open neighborhood of a compact setK inM and e : (U,U−K)→ (M,M−K)
the excision map. We define

k∗ : Hq(U)→ Hn−q(M,M −K)

by k∗(v) = e∗(v ∩ e−1
∗ zK). By passing to the direct limit over open neighborhoods U of K

we get the homomorphism

~k∗ : ~Hq(K)→ Hn−q(M,M −K)

Lemma 8 ~k∗ is an isomorphism.
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Proof. It is sufficient to prove the lemma for the case where K is contained in a coordinate
neighborhood of M , and then use Mayer-Vietoris sequences. We get commutative diagrams
of the form

· · · → ~Hq−1(K1 ∩K2) //

~k∗
��

~Hq(K1 ∪K2) //

~k∗
��

~Hq(K1)⊕ ~Hq(K2)→ · · ·

~k∗
��

· · · → Hn−q+1(M, M−K1∩K2) // Hn−q(M, M−K1∪K2) // Hn−q(M, M−K1)⊕Hn−q(M,M−K2)→ · · ·

as in Spanier [1] p. 291, and use the five lemma.
Thus by excision we may assume M = Rn. The family of compact polyhedral neigbor-

hoods is cofinal in the family of neighborhoods of K. Therefore we may assume that K is
a compact polyhedron. Then by using Mayer-Vietoris sequences as before we may assume
that K is a rectilinear complex. The lemma is now easy to establish.

Proof of theorem. Let {Ki} be a sequence of compact subsets of M with Ki ⊆ intKi+1

and UKi = M . Let c ∈ CLF
n (M) be a cycle representing the fundamental class [M ]. Replac-

ing c by a sufficiently fine subdivision we may assume that ρi−1c ∈ Cn(Ki) for all i, where
ρi−1 = ρKi−1

: CLF
n (M)→ Cn(M,M −Ki−1) is the chain homomorphism defined earlier.

If U is an open neighborhood of Ki we define the homomorphism

l : Cq(U)→ Cn−q(M,M −Ki−1)

by l(u) = u ∩ ρi−1c. Passing to the direct limit with U we get a homomorphism

~l : ~Cq(Ki)→ Cn−q(M,M −Ki−1)

and then by passing to the inverse limit with i we get

∩c : Cq(M)→ CLF
n−q(M)

There is a commutative diagram

Hn−q(M,M −Ki)

��

~Hq(Ki)
≈
~k∗ 33hhhhhhhhhh

~l∗
++VVVVVVVVVV

Hn−q(M,M −Ki−1)

Therefore the homomorphisms ~l∗ induce isomorphisms in lim←− and lim←−
′ and we get a commu-

tative diagram

0 −→ lim←−
i

′ ~Hq−1(K1) //

~l∗ ≈
��

Hq(M)

∩[M ]

��

// lim←−
i

~Hq(K1) −→ 0

~l∗≈
��

0 −→ lim←−
i

′Hn−1−q(M,M−Ki−1) // HLF
n−q(M) // lim←−

i

Hn−q(M,M −Ki−1) −→ 0
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The theorem then follows from the five lemma.

We establish next the Poincaré duality theorem for manifolds with boundary. Suppose
M is a topological n-manifold with boundary ∂M . Then

Lemma 9 There is an isomorphism

ι : HLF
∗ (M − ∂M)≈→HLF

∗ (M,∂M)

Proof. Let N = ∂M × [0, 1] be a collar on M , where ∂M is identified with ∂M × 0. Let
U = ∂M × [0, 1

2
〉. Then we have isomorphisms

HLF
∗ (M−∂M)

α

≈→H
LF
∗ (M−∂M,N−∂M)

β

≈←H
LF
∗ (M−U,N−U)

γ

≈→H
LF
∗ (M,N)

δ

≈←H
LF
∗ (M,∂M)

α is an isomorphism from the exact homology sequence of the pair (M−∂M,N−∂M) because
HLF
∗ (N − ∂M) = HLF

∗ (∂M × 〈0, 1]) = 0, from (3), β and γ are excision isomorphisms and
δ is an isomorphism since ∂M → N is a proper homotopy equivalence. We can now define
ι = δ−1γβ−1α.

AssumeM is orientable, i.e. M−∂M is orientable. To each fundamental class [M−∂M ] ∈
HLF
n (M − ∂M) we get a corresponding fundamental class [M ] ∈ HLF

n (M,∂M) defined by
[M ] = ι[M−∂M ]. Then we have the relative form of the Poincaré duality theorem as follows

Theorem 10
∩[M ] : Hq(M)→ HLF

n−q(M,∂M) (a)

∩[M ] : Hq(M,∂M)→ HLF
n−q(M) (b)

are isomorphisms for all q.

To prove that (a) is an isomorphism it is sufficient to cosider the commutative diagram

Hq(M − ∂M)

≈∩[M−∂M ]
��

Hq(M)
≈
j∗

oo

∩[M ]
��

HLF
n−q(M − ∂M) ι

≈ // HLF
n−q(M,∂M)

where j : M − ∂M →M is a homotopy equivalence.
To prove that (b) is an isomorphism we need the following

Lemma 11 ∂ : HLF
n (M,∂M)→ HLF

n−1(∂M) maps [M ] to a fundamental class of ∂M .

Proof. We can define a homomorphism τ by the commutative diagram

HLF
∗ (M−∂M)

τ //

��

HLF
∗ (∂M×〈0, 1〉)

≈ ι

��
HLF
∗ (M−∂M,M−∂M×[0, 1〉) HLF

∗ (∂M×〈0, 1], ∂M×1)≈
oo
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By theorem 4 and the characterization of fundamental classes given in Spanier [1], p. 301
we see that τ [M − ∂M ] is a fundamental class of ∂M × 〈0, 1〉.

There is a commutative diagram

HLF
n (M − ∂M)

τ //

ι ≈
��

HLF
n (∂M × 〈0, 1〉)

≈ ∨
��

HLF
n (M,∂M)

∂
��

HLF
n (∂M × ([0, 1〉, 0))

≈ ∂
��

HLF
n−1(∂M) HLF

n−1(∂M)

Hence ∂[M ] = ∂[∂M × [0, 1〉]. Since it is clear that ∂[∂M × [0, 1〉] is a fundamental class of
∂M , the lemma follows.

By choice of orientation on ∂M we can therefore assume that ∂[M ] = [∂M ]. Then there
is a commutative diagram of exact sequence

· · · → Hq−1(∂M)

∩[∂M ] ≈
��

// Hq(M,∂M)

∩[M ]
��

// Hq(M)→ · · ·

≈ ∩[M ]
��

· · · → HLF
n−q(∂M) // HLF

n−q(M) // HLF
n−q(M,∂M)→ · · ·

and the five lemma implies that (b) is an isomorphism.
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6 S-type and S-duality

In this chapter we consider some properties of the stable homotopy category, in particular
the existence of duality maps and the construction of duals. We shall view S-duality as an
isomorphism of graded functors (A,B) → {X ∧ A,B}∗ and (A,B) → {A, Y ∧ B}∗. The
spaces X and Y are S-duals, and isomorphisms are provided by S-maps X ∧ Y → S0 or
S0 → Y ∧ X. We prove the classical result that in a sphere a full subcomplex K and
its supplement K− are S-duals. In chapter 7 we prove the Milnor-Spanier/Atiyah duality
theorem for spherical fibrations over Poincaré complexes. This contains all earlier versions
of the theorem.

The Spanier-Whitehead category SW∗ is an additive category whose objects are finite
pointed CW -complexes and whose morphisms are limits of homotopy classes. Denote by
{X, Y }∗ = HomSW∗(X, Y ) the graded abelian group

{X, Y }n = lim−→[X ∧ Sn+k, Y ∧ Sk], n ∈ Z

The fact that this limit set is an abelian group is a basic homotopy property of the suspension
operation, cf. Spanier [1], p. 44.

A morphism X → Y in SW∗ will be called an S-map. Note the following

Lemma 1 {X, Y }n = 0 for n < − dimX.

Proof. For k > −n we have dim(X ∧ Sn+k) < k and Y ∧ Sk is without cells in dimension
< k (except the base point). Hence [X ∧ Sn+k, Y ∧ Sk] = 0.

In SW∗ composition of morphisms gives a bilinear map

{X, Y }p × {Y, Z}q → {X,Z}p+q

Similarly, the smash product ϕ ∧ ψ of S-maps gives a bilinear map

{X, Y }m × {A,B}n → {X ∧ A, Y ∧B}m+n

Here ∧ is defined as the limit of the maps

∧pq : [X ∧ Sm+p, Y ∧ Sp]× [A ∧ Sn+q, B ∧ Sq]→ [X ∧ A ∧ Sm+n+p+q, Y ∧B ∧ Sp+q]

that fit in the commutative diagram

X ∧ A ∧ Sm+n+p+q
(−1)np∧pq(ϕ,ψ) // Y ∧B ∧ Sp+q

X ∧ A ∧ Sm+p ∧ Sn+q Y ∧B ∧ Sp ∧ Sq

X ∧ Sm+p ∧ A ∧ Sn+q

id∧τ∧id

OO

ϕ∧ψ // Y ∧ Sp ∧B ∧ Sq
id∧τ∧id

OO
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The sign (−1)np is included to make ∧pq commute with suspensions. τ is the flip-homeomorphism.
From the smash product we derive two slant products, denoted / and \. Namely,

{A ∧X,B}m × {K,X ∧ L}n
/ // {A ∧K,B ∧ L}m+n

and

{A,B ∧X}m × {X ∧K,L}n
\ // {A ∧K,B ∧ L}m+n

defined by

ϕ/ψ : A ∧K id∧ψ // A ∧X ∧ L
ϕ∧id // B ∧ L

f\g : A ∧K f∧id // B ∧X ∧K
id∧g // B ∧ L

These products are bilinear, and natural in the sense that for given S-maps A← A′, B → B′,
K ← K ′, L→ L′ the corresponding diagrams

{A ∧X,B}∗ × {K,X ∧ L}∗
/ //

��

{A ∧K,B ∧ L}∗

��
{A′ ∧X,B′}∗ × {K ′, X ∧ L′}∗

/ // {A′ ∧K ′, B′ ∧ L′}∗

{A,B ∧X}∗ × {X ∧K,L}∗
\ //

��

{A ∧K,B ∧ L}∗

��
{A′, B′ ∧X}∗ × {X ∧K ′, L′}∗

\ // {A′ ∧K ′, B′ ∧ L′}∗

commute. With the identifications X ∧ S0 = X = S0 ∧X we get out special slant products

{X ∧ Y, S0}∗ × {A, Y ∧B}∗
/ // {X ∧ A,B}∗

{S0, Y ∧X}∗ × {X ∧ A,B}∗
\ // {A, Y ∧B}∗

Definition 2 X and Y are called S-duals if {X ∧ −,−}∗ and {−, Y ∧ −}∗ are isomorphic
functors on SW∗ × SW∗.

Here we regard these functors as taking values in the category of graded abelian groups
and graded homomorphisms.

It follows from the pairings above that every S-map u : X ∧ Y → S0 defines a natural
transformation

{−, Y ∧ −}∗
u/ // {X ∧ −,−}∗

and every S-map z : S0 → Y ∧X a natural transformation

{X ∧ −,−}∗
z\ // {−, Y ∧ −}∗
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Theorem 3 The following statements about X and Y are equivalent

a) X and Y are S-duals.

b) Y and X are S-duals.

c) There exists z such that

z\ : {X,S0}∗ → {S0, Y }∗
is an isomorphism.

d) There exists z such that

/z : {Y, S0}∗ → {S0, X}∗
is an isomorphism.

e) There exists u such that

u/ : {S0, Y }∗ → {X,S0}∗
is an isomorphism.

f) There exists u such that

\u : {S0, X}∗ → {Y, S0}∗
is an isomorphism.

g) There exists u and z such that

u/z = idX and z\u = idY .

We will prove the implications b) ⇒ f) ⇒ g) ⇒ b). By symmetry in the proof this will
also yield the implications b) ⇒ d) ⇒ g) ⇒ b) and again by symmetry the implications a)
⇒ e) ⇒ g) ⇒ a) and a) ⇒ c) ⇒ g) ⇒ a).

We proceed via some lemmas.

Lemma 4 Every natural transformation

µ : {X ∧ −,−}∗ → {−, Y ∧ −}∗

is of the form µ(α) = z\α for unique z ∈ {S0, Y ∧X}∗, z = µ(idX).

Proof. Take any S-map α : X ∧ A→ B. We get a commutative diagram

{X ∧ A,B}∗
µ // {A, Y ∧B}∗

{X ∧ A,X ∧ A}∗

α∗

OO

µ // {A, Y ∧X ∧ A}∗

(id∧α)∗

OO

{X,X}∗

∧id

OO

µ // {S0, Y ∧X}∗

∧id

OO
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Hence

µ(α) = µ(α∗(idX∧A))

= (idY ∧ α)∗µ(idX∧A)

= (idY ∧ α)∗µ(idX ∧ idA)

= (idY ∧ α)∗(µ(idX) ∧ idA)

= (idY ∧ α) ◦ (µ(idX) ∧ idA)

= µ(idX)\α

In other words S-duality arises only from slant products with S-maps. Actually we only
need a simple form of lemma 4: If we fix the first variable as S0, all natural transformations

µ : {X,−} → {S0, Y ∧ −}

are of the form µ(α) = z\α.

Lemma 5 If a natural transformation µ : {X∧−,−}∗ → {−, Y ∧−}∗ yields an isomorphism
at (S0, S0), then µ is an isomorphism of functors.

Proof. Since S0 ∼= Sn in SW∗, we get µ(Sm, Sn) : {X ∧ Sm, Sn}∗ ∼= {Sm, Y ∧ Sn}∗. The
claim then follows for arbitrary µ(A,B) by induction on the number of cells in A and B
(and the 5 – lemma). As a corollary of lemmas 4 and 5 we get

Corollary 6 X and Y are S-duals if and only if there is an S-map z : S0 → Y ∧ X such
that

z\ : {X,S0}∗ → {S0, Y }∗
is an isomorphism.

We proceed with our proof of theorem 3.

Lemma 7 The following statements about z : S0 → Y ∧ X and u : X ∧ Y → S0 are
equivalent:

(i) u/z = idX

(ii) The composite {X∧A,B}∗
z\−→{A, Y ∧B}∗

u/−→{X∧A,B}∗ is the identity for all A,B.

(iii) The composite {A,B∧X}∗
\u−→{A ∧ Y,B}∗

/z−→{A,B∧X}∗ is the identity for all A,B.
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Proof. (i) ⇒ (iii): Given ϕ : A→ B ∧X there is a commutative diagram

A

ϕ

��

= A ∧ S0

ϕ∧id
��

id∧z // A ∧ Y ∧X
ϕ∧id∧id

��
B ∧X

id∧(u/z)

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT = B ∧X ∧ S0 id∧id∧z // B ∧X ∧ Y ∧X
id∧u∧id

��
B ∧ S0 ∧X

B ∧X

as u/z = (u ∧ idX) ◦ (idX ∧ z). We have

ϕ\u = (idB ∧ u) ◦ (ϕ ∧ idY )

and
β/z = (β ∧ idX) ◦ (idA ∧ z)

for β : A ∧ Y → B. Hence
(ϕ\u)/z = ((ϕ\u) ∧ idX) ◦ (idA ∧ z) = (idB ∧ u ∧ idX) ◦ (ϕ ∧ idY ∧ idX) ◦ (idA ∧ z).
From the diagram we now get

(ϕ\u)/z = (idB ∧ (u/z)) ◦ ϕ

Hence (i)⇒ (iii). For (iii)⇒ (i) we need only to choose A = X,B = S0 and ϕ = idX in the
formula above.

The equivalence (i) ⇔ (ii) is proved analogously, using the formula

u/(z\ψ) = ψ ◦ ((u/z) ∧ idA)

for S-maps X ∧ A→ B.

Lemma 8 The following statements about z and u are equivalent:

(i) z\u = idY

(ii) The composite {A, Y ∧B}∗
u/→ {X ∧ A,B}∗

z\→{A, Y ∧B}∗ is the identity for all A,B.

(iii) The composite {A ∧ Y,B}∗
/z→{A,B ∧X}∗

\u→{A ∧ Y,B}∗ is the identity for all A,B.

Proof as for lemma 7. We use the identities

z\(u/ϕ) = ((z\u) ∧ idB) ◦ ϕ

and
(ψ/z)\u = ψ ◦ (idA ∧ (z\u))

valid for arbitrary S-maps ϕ : A→ Y ∧B and ψ : A ∧ Y → B.
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Proof of theorem 3. We organize the proof as explained above.
b) ⇒ f): When Y and X are S-duals we have a functorial isomorphism {Y ∧ A,B}∗ ∼=

{A,X ∧B}∗, in particular
µ : {Y ∧ A, S0}∗ ∼= {A,X}∗

and
µ−1 : {A,X}∗ ∼= {Y ∧ A, S0}∗

with µ(α) = z\α, z = µ(idY ), and µ−1(β) = w/β, w = µ−1(idX) : Y ∧ X → S0 (lemma 4
and lemma 7). Set u = w ◦ t where t : X ∧ Y → Y ∧X is the flip map. Then, if s is the flip
s : Y ∧ A→ A ∧ Y , we get a commutative diagram

{A,X}∗
\u

��

{A,X}∗
w/

��
{A ∧ Y, S0}∗ s∗ // {Y ∧ A, S0}∗

as s∗(ϕ\u) = u ◦ (ϕ∧ idY ) ◦ s = w ◦ t ◦ (ϕ∧ idY ) ◦ s = w ◦ (idy ∧ϕ) = w/ϕ. Because w/ and
s∗ are isomorphisms, \u is also an isomorphism. Choosing A = S0 this gives f).

f) ⇒ g): From f) we get that the natural map

\u : {A,B ∧X}∗ → {A ∧ Y,B}∗

is an isomorphism for A = B = S0.
Consequently it is an isomorphism for all A,B by lemma 5. Choose then z : S0 → Y ∧X

such that z\u = idY (A = S0, B = Y ). From lemma 8 we have that the composite

{A ∧ Y,B}∗
/z−→ {A,B ∧X}∗

\u−→ {A ∧ Y,B}∗

is the identity. Now lemma 7 gives u/z = idX which completes g).
g) ⇒ b): We are given u and z such that z\u = idY and u/z = idX . Hence all maps

u/, \z, \u, /z occurring in the lemmas 7 and 8 are isomorphisms (as the composites u/ ◦ z\,
z\ ◦ u/, \u ◦ /z and /z ◦ \u are identity maps). In particular

\u : {A,B ∧X}∗ ∼= {A ∧ Y,B}∗

Thus we have natural isomorphisms of functors {Y ∧−,−}∗ ∼= {−∧Y,−}∗ ∼= {−,−∧X}∗ ∼=
{−, X ∧−}∗, i.e. Y and X are S-duals, and we have established b). By our earlier remarks
(following the statement of theorem 3) this suffices to give theorem 3.

Notice that by theorem 3 the relation ”S-duals” is symmetric; this was not immediate
from the definition.

Definition 9 An S-map z : S0 → Y ∧X or u : X ∧ Y → S0 giving rise to isomorphisms as
in theorem 3 will be called an S-duality.
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Corollary 10 If z (respectively u) is an S-duality, there is an S-duality u (respectively z)
such that z\u = idY , u/z = idX .

Proof. If u : {S0, X}∗ → {Y, S0}∗ is an isomorphism, the proof of theorem 3 (f) ⇒ g))
shows that there is a z as claimed. The other cases follow similarly.

Let X, Y,K,L be compact CW -complexes and u : X ∧ Y → S0, v : K ∧ L → S0 be
S-maps. Given S-maps f : X → K and g : L→ Y we may consider the diagram

K ∧ L
v

""EEEEEE

X ∧ L

f∧id
99ttttttt

id∧g %%JJJJJJJ S0

X ∧ Y
u

<<yyyyyy

Lemma 11 If u, v are S-dualities, the relation v ◦ (f ∧ idL) = u ◦ (idX ∧ g) determines an
isomorphism {X,K}∗ ∼= {L, Y }∗

Proof. We get isomorphisms {X,K}∗
\v−→{X ∧ L, S0}∗

u/←−{L, Y }∗. Now observe that
v ◦ (f ∧ id) = f\v and u ◦ (id ∧ g) = u/g.

Lemma 12 The following statements about u : X ∧ Y → S0, v : K ∧ L → S0, f : X → K
and g : L→ Y are equivalent:

(i) u ◦ (idX ∧ g) = v ◦ (f ∧ idL)

(ii) The diagram

{A, Y ∧B}∗
u/

��

{A,L ∧B}∗
g∗oo

v/
��

{X ∧ A,B}∗ {K ∧ A,B}∗
f∗oo

is commutative for all A,B.

(iii) The diagram

{A,B ∧X}∗
f∗ //

\u
��

{A,B ∧K}∗
\v

��
{A ∧ Y,B}∗

g∗ // {A ∧ L,B}∗
is commutative for all A,B.
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Proof. Given ϕ : A→ L ∧B we have

u/g∗(ϕ) = (u ◦ (idX ∧ g) ∧ idB) ◦ (idX ∧ ϕ)

and
f ∗(v/ϕ) = (v ◦ (f ∧ idL) ∧ idB) ◦ (idX ∧ ϕ)

Hence (i) implies (ii). Conversely, taking B = S0, A = L, ϕ = idL we get from (ii)
v ◦ (f ∧ idL) = f ∗(v/ϕ) = u/g∗(ϕ) = u ◦ (idX ∧ g). (i) ⇔ (iii) is proved similarly.

If (X,A) is any CW -pair (A ⊂ X), the S-map ∂ = ∂(X,A) ∈ {X/A,A}−1 is defined by
the commutative diagram

X ∪A CA
p //

q

��

X/A

∂
��

SA
∼= // A

where p and q are collapsings. Clearly ∂ is well defined as p is an isomorphism. If f :
(X,A)→ (Y,B) is a genuine continuous map, we have a commutative diagram

X/A
f̄ //

∂

��

Y/B

∂

��
A

f // B

in SW∗. The sequence

A
i→X

p→X/A
δ→A

is called a standard exact triangle. It gives rise to long exact sequences of groups (Puppe
sequences, cf chapters 3, 4)

→ {Q,A}k
i∗−→{Q,X}k

p∗−→{Q,X/A}k
∂∗−→{Q,A}k−1 →

→ {A,Q}k−1
∂∗−→{X/A,Q}k

p∗−→{X,Q}k
i∗−→{A,Q}k →

If g : L → Y is a genuine map, we can form Zg and Cg, the mapping cylinder and the
mapping cone, respectively. We define the S-map ∂ = ∂(g) = ∂(Zg, L) ∈ {Cg, L}−1. Then

L
g→Y

p→Cg
∂→L

is an exact triangle, giving rise to long exact sequences as above.
Consider S-dualities u : X ∧Y → S0 and v : K ∧L→ S0, and let f : X → K, g : L→ Y

be maps which are (u, v)-duals, i.e.

v ◦ (f ∧ idL) = u ◦ (idX ∧ g)
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in {X ∧ L, S0}∗ (cf lemma 11). Then there is an S-duality w : Cf ∧ Cg → S0 such that the
S-maps of the triangles

X
f→K

p→Cf
∂→X

and
Y

g←L
∂←Cg

p←Y

are pairwise (u, v)-duals, (v, w)-duals and (w, u)-duals. We express this briefly as

Theorem 13 S-duality preserves exact triangles.

Proof. We may suppose that f and g are inclusionsX ⊂ K and L ⊂ Y , so that Cf = K/X
and Cg = Y/L. Then (K ∧ L) ∩ (X ∧ Y ) = X ∧ L, and as the diagram

K ∧ L
v &&LLLLL

X ∧ L
⊂ 66nnnnn

⊂ ((PPPPP S0

X ∧ Y
u

88rrrrr

commutes, there is an S-map w′ : (K ∧ L) ∪ (X ∧ Y ) → S0 which restricts to u and v on
K ∧L and X ∧Y , respectively (Mayer-Vietoris gluing). Corresponding to the subcomplexes
K ∧ L, X ∧ Y and (K ∧ L) ∪ (X ∧ Y ) in K ∧ Y we then have the following commutative
diagram

K ∧ Y // K ∧ Y/L
p1∧id

��

id∧∂2 // K ∧ L v //

∩
��

S0

K ∧ Y // K/X ∧ Y/L ∂ // (K ∧ L) ∪ (X ∧ Y ) w′ // S0

K ∧ Y // K/X ∧ Y

id∧p2

OO

∂1∧id // X ∧ Y

∪

OO

u // S0

In fact the right side of the diagram commutes by definition of w′, and for the rest it suffices
to observe that

∂(K ∧ Y,K ∧ L) = idK ∧ ∂(Y, L) = idK ∧ ∂2, ∂(K ∧ Y,X ∧ Y ) = ∂1 ∧ idY

and that K ∧ Y/(K ∧ L) ∪ (X ∧ Y ) = K/X ∧ Y/L. We define

w = w′ ◦ ∂ : K/X ∧ Y/L→ S0

and get

w ◦ (p1 ∧ id) = v ◦ (id ∧ ∂2)

w ◦ (id ∧ p2) = u ◦ (∂1 ∧ id).
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Besides
v ◦ (f ∧ id) = u ◦ (id ∧ g).

From these three equations and lemma 12 we establish the following commutative diagram

{S0, X}∗
\u

��

f∗ // {S0, K}∗
\v

��

p1∗ // {S0, K/X}∗
\w

��

∂1∗ // {S0, X}∗
\u

��
{Y, S0}∗

g∗ // {L, S0}∗
∂∗2 // {Y/L, S0}∗

p∗2 // {Y, S0}∗ .

As the horizontals are exact triangles and \u and \v are isomorphisms, so is \w (by the
5-lemma). Hence w is an S-duality.

Theorem 14 Every finite CW -complex has an S-dual.

Proof. Obviously S0 ∧S0 ∼=−→S0 is an S-duality, so that any two spheres are S-duals (We
use that Sn ∼= S0). Suppose A has an S-dual B and that X ⊃ A is obtained from A by
attaching a cell. If ϕ : Sn → A is the attaching map, we have X = Cϕ. Eventually by
suspending B we may suppose there is a continuous ψ : B → Sm which is dual to ϕ with
respect to certain S-dualities A ∧ B → S0 and Sn ∧ Sm → S0. By theorem 13 Cψ is then
S-dual to X = Cϕ. It now follows that every connected finite CW -complex has an S-dual.
But for any X is X ∼= X ∧ S1, which is connected, and an S-dual of X ∧ S1 is an S-dual of
X.

We collect some useful observations. The proofs are left to the reader.

Lemma 15 Suppose X and Y are S-duals and X ′ and Y ′. Then X ∼= X ′ if and only if
Y ∼= Y ′.

(Strictly speaking we need this in the proof of theorem 14.)

Lemma 16 Suppose X and Y are S-duals and X ′ and Y ′. Then

(i) X ∧X ′ and Y ∧ Y ′ are S-duals

(ii) X ∨X ′ and Y ∨ Y ′ are S-duals.

Next an extremely useful result. First recall that by the suspension isomorphisms
Hi(X) ∼= Hi+1(SX) and H i(X) ∼= H i+1(SX) every S-map f : X → Y induces (graded)
isomorphisms f∗ : H∗(X)→ H∗(Y ) and f ∗ : H∗(Y )→ H∗(X).

Theorem 17 Let X and Y be finite CW -complexes and u : X ∧ Y → S0 an S-map. Then
u is an S-duality if and only if

\u : H̃∗(X)→ H̃∗(Y )

is an isomorphism. Corresponding statements hold for u/, /z and \z, given z : S0 → Y ∧X.
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Proof. We first show that \u : H̃∗(X) → H̃∗(Y ) is an isomorphism, given an S-duality
u : X∧Y → S0. It suffices to demonstrate this for some S-dual Y of X and some associated
S-duality as it then follows generally: If \u is an isomorphism and v : X∧Z → S0 is another
S-duality, we have an isomorphism of functors ε : {−, Z}∗ → {X ∧ −, S0}∗ defined by the
commutative diagram

{−, Z}∗
ε

��

v/ // {X ∧ −, S0}∗

{−, Y }∗
u/

77ooooooooooo

(as u/ is an isomorphism). Plugging in Z, we find ε = ϕ∗ for suitable ϕ : Z → Y . Hence
v = v/idZ = u/ϕ∗(idZ) = u/ϕ = u ◦ (idX ∧ ϕ). Hence the diagram

H̃∗(X)

\v $$IIIIIIIII

\u // H̃∗(Y )

∼= ϕ∗

��

H̃∗(Z)

commutes. Hence \v is in isomorphism (in homology) provided \u is.
This means that for each X it suffices to find one S-duality u : X ∧ Y → S0 (for some

Y ) such that \u : H̃∗(X) → H̃∗(Y ) is an isomorphism. Suppose such a u has been found
and consider a K ⊃ X, obtained from X by attaching a cell. By the theorems 13 and 14
there is an S-dual L to K with an S-duality v : K ∧ L → S0. We may also suppose that
the (u, v)-dual to f : X ⊂ K is an inclusion g : L ⊂ Y . By theorem 13 there is an S-duality
w : K/X ∧ Y/L→ S0 such that the S-maps of the exact triangles

X
f→K

p→K/X
∂→X

Y
g←L

∂′←Y/L
q←Y

are pairwise dual with respect to u, v and w, i.e.
w ◦ (p ∧ q) = v ◦ (id ∧ ∂′)
v ◦ (f ∧ id) = u ◦ (id ∧ g)

u ◦ (∂ ∧ id) = w ◦ (id ∧ q) .

Then the following diagram commutes

H̃∗(X)

\u
��

f∗ // H̃∗(K)

\v
��

p∗ // H̃∗(K/X)

\w
��

∂∗ // H̃∗(X)

\u
��

H̃∗(Y )
g∗ // H̃∗(L)

∂′∗ // H̃∗(Y/L)
q∗ // H̃∗(Y )
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But as K/X is a sphere, so is Y/L (up to isomorphism). Hence \w is an isomorphism. By
assumption \u is an isomorphism. Therefore the map \v is also an isomorphism.

We are now all set to prove our assertion by induction on the number of cells in X. It
remains to prove it for the case dimX = 0, which is straightforward.

The second half of the proof is now easy. Suppose u : X ∧ Y → S0 is such that \u :
H̃∗(X) → H̃∗(Y ) is an isomorphism. By theorem 14 Y has an S-dual Z with an S-duality
v : Z ∧ Y → S0. By an argument as above there is an S-map ψ : X → Z such that the
diagram

{−, X}∗
ψ∗

��

\u // {− ∧ Y, S0}∗

{−, Z}∗

∼=
\v

77ooooooooooo

commutes. This means that u = v ◦ (ψ ∧ idY ) and that

H̃∗(X)

ψ∗
��

\u
∼=

// H̃∗(Y )

H̃∗(Z)

\v

::ttttttttt

commutes. But by the first half of the proof \v is an isomorphism and by assumption \u
is an isomorphism. Hence ψ∗ is an isomorphism. Whitehead’s theorem then tells that ψ is
an S-isomorphism. But then \u is an isomorphism of functors {−, X}∗ and {− ∧ Y, S0}∗.
Hence u is an S-duality.

The next result will not be proved here as it is a consequence of the Milnor-Spanier/Atiyah
duality theorem to be proved in the next chapter (or rather of a ”relative” version which we
leave to the reader).

Theorem 18 Let M be a compact polyhedral manifold whose tangent microbundle is stably
fiber homotopy trivial. Let (K,X) and (Y, L) be pairs of subpolyhedra such that (Y, L) ⊂
(M − X,M −K) with H∗(Y, L) → H∗(M − X,M −K) an isomorphism. Then K/X and
Y/L are S-dual.

Corollary 19 (Classical S-duality) Let A,B be disjoint subpolyhedra of Sn such that B ⊂
Sn − A induces an isomorphism in homology. Then A and B are S-duals.

Proof. Apply theorem 18 to show that CA/A and CB/B are S-duals. E.g. choose
M = Rn+1 (or rather M = Sn+1 = Rn+1 ∪ {∞}, so as to have M compact) and with
Sn ⊂ Dn+1 ⊂ Rn+1 the standard inclusions (Sn = ∂Dn+1) set

L = B

Y = CB

X = ∂(2 ·Dn+1)

K = C(2 · A) ∪ ∂(2 ·Dn+1) .

Here the cone C( ) means the geometric cone with vertex at the origin in Rn+1.
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Remark. Theorem 18 actually holds for non-compact manifolds M provided (K,X) and
(Y/L, ∗) are compact pairs.
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7 Poincaré spaces and spherical fibrations

Definitions

At the moment there seems to be no canonically accepted definition of a Poincaré complex
X. The definition we shall use in this chapter is to assume X is finite and assume a Poincaré
duality property of its universal covering X̃. Since X̃ is in general non finite, we use homology
with locally finite chains for X̃. Thus let X be a finite, connected CW -complex with a simply
connected covering p : X̃ → X. We say that X is a Poincaré n-complex if there exists a
class [X̃] ∈ HLF

n (X̃), called a fundamental class of X̃, such that

∩[X̃] : Hq(X̃)→ HLF
n−q(X̃)

is an isomorphism for all q. It is then clear that n is uniquely determined by X, and the
fundamental class [X̃] is unique up to sign as a generator of HLF

n (X̃) = Z. We call n the
formal dimension of X. In general a finite CW -complex is called a Poincaré n-complex if
each connected component is a Poincaré n-complex.

With this definition of a Poincaré n-complex, the homotopy invariance of the concept
requires a verification. We use the following fact.

Lemma 1 Let

X̃

p

��

f̃ // Ỹ

q

��
X

f
// Y

be a commutative diagram, where the spaces are locally path connected, X̃ and Ỹ are simply
connected, p and q are coverings and f is a proper homotopy equivalence. Then f̃ is a proper
homotopy equivalence.

Proof. Let x ∈ X and y = f(x) ∈ Y . From the commutative diagram

π1(X, x)

f∗ ≈
��

≈
∂ // p−1(x)

f̃
��

π1(Y, y)
∂

≈ // q−1(y)

it follows that f̃ : p−1(x) → q−1(y) is bijective. In other words f̃ : X̃ → Ỹ is bijective on
fibers.

To prove that f̃ : X̃ → Ỹ is proper, let L̃ be a compact subset of Ỹ so small that
L̃ projects homeomorphically onto a compact subset L of Y , where L has an open, path
connected neighborhood V which is evenly covered by q. Let K = f−1(L) and U = f−1(V ).

Since f is proper, K is compact. We can write K =
n⋃
i=1

Ki where Ki is compact and
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has an open, path connected neighborhood Ui ⊆ U which is evenly covered by p. Then
p−1(Ki) =

⋃
α

K̃iα where each K̃iα projects homeomorphically onto Ki. Then for a fixed i we

have K̃iα ∩ f̃−1(L̃) 6= ∅ for exactly one α. Hence f̃−1(L̃) ⊆
⋃
iα

K̃iα and only finitely many

K̃iα meet f̃−1(L̃). Therefore f̃−1(L̃) is compact. It follows that f̃ is proper, because any
compact subset of Ỹ is a finite union of compact subsets L̃ of the form considered.

Thus any lifting of a proper homotopy equivalence is a proper map. Similarly any lifting
F̃ : X̃ × I → Ỹ of a proper homotopy of a proper homotopy equivalence is proper.

Let g : Y → X be a proper homotopy inverse to f . Since spaces are locally path
connected there is a lifting g̃ : Ỹ → X̃ of g, and g̃ is proper by the first part. Since gf is
properly homotopic to idX , g̃f̃ is properly homotopic to a covering transformation c̃ of X̃,
again by the first part. Therefore c̃−1g̃ is a left proper homotopy inverse to f̃ . By symmetry
we get a right inverse. Hence f̃ : X̃ → Ỹ is a proper homotopy equivalence.

Proposition 2 If X and Y are homotopy equivalent finite CW -complexes and X is a
Poincaré n-complex, then Y is a Poincaré n-complex.

Proof. Let f : X → Y be a homotopy equivalence and f̃ : X̃ → Ỹ a lifting to the
simply connected coverings. f̃ is a proper homotopy equivalence by lemma 1. Since X̃ has
a fundamental class [X̃] ∈ HLF

n (X̃), we get a fundamental class [Ỹ ] = f∗[X̃] ∈ HLF
n (Ỹ ), and

the proposition follows.

We define a Poincaré n-space to be a space which is homotopy equivalent to a Poincaré
n-complex.

Theorem 3 A compact topological n-manifold is a Poincaré n-space.

Proof. We have to use here the result, see Kirby [1], that if M is a compact topological
n-manifold, then there exists a homotopy equivalence f : M → X, where X is a finite
CW -complex. Then lemma 1 gives a proper homotopy equivalence f̃ : M̃ → X̃ between
the simply connected coverings. From the Poincaré duality theorem 7 of chapter 5 it follows
that X̃ has a fundamental class, so that X is a Poincaré n-complex, hence M a Poincaré
n-space.

The Thom isomorphism theorem for spherical fibrations

If p : E → B is a fibration in general, we define its Thom pair to be the cofiber pair (Zp, E)
and its Thom space to be the quotient Cp = Zp/E. The constructions are clearly functorial
from the category of fibrations.

The Thom pair has the following multiplicative property. Let

F1 −→ E1
p1−→B1

F2 −→ E2
p2−→B2
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be fibrations, and define their fiberwise join p = p1 ∗ p2 to be the fibration

F1 ∗ F2 −→ E
p−→B1 ×B2

where the total space is the quotient E = E1 × I × E2/∼ with

(e1, 0, e2) ∼ (e′1, 0, e2) if p1(e1) = p1(e′1)

(e1, 1, e2) ∼ (e1, 1, e
′
2) if p2(e2) = p2(e′2)

and p(e1, s, e2) = (p1(e1), p2(e2)). It is easy to verify that p is in fact a fibration, and the
fiber of p is clearly the join F1 ∗ F2.

Proposition 4 There is a homeomorphism (Zp, E) = (Zp1 , E1)× (Zp2 , E2).

Proof. There is a homeomorphism h : Zp → Zp1 × Zp2 defined by

h((e1, s, e2), t) =

{
((e1, 1− 2s(1− t)), (e2, t)) s ≤ 1

2

((e1, t), (e2, t+ (2s− 1)(1− t))) s ≥ 1
2

h(b1, b2) = (b1, b2)

and h maps E onto Zp1 × E2 ∪ E1 × Zp2 .

Corollary 5 There is a homeomorphism Cp = Cp1 ∧ Cp2.

Now we restrict attention to spherical fibrations. Suppose p : E → B is a (k−1)-spherical
fibration with fibers Fb = p−1(b). To each path ω from b to b′ in B there is a homotopy
equivalence h[ω] : Fb → Fb′ and hence also a homotopy equivalence h[ω] : (CFb, Fb) →
(CFb′ , Fb′). We get a local system of integers over B defined by

Op = {Hk(CFb, Fb)}b∈B

Clearly the fibration is orientable if and only if Op is constant. In general we call Op the
orientation system of p. By a Thom class of p we understand a class U ∈ Hk(Zp, E;Op)
whose restriction to each fiber is a canonical generator. Then we have the Thom isomorphism
theorem in the following form, where π : Zp → B denotes the projection.

Theorem 6 Let p : E → B be a (k − 1)-spherical fibration over a locally contractible space
B. Then p has a unique Thom class U ∈ Hk(Zp, E;Op). If S is any local system of integers
over B there are isomorphisms

Φ∗ : Hi(Zp, E; π∗S)≈→Hi−k(B;Op ⊗ S)

Φ∗ : H i(B;S)≈→H i+k(Zp, E; π∗(Op ⊗ S))

defined by Φ∗x = π∗(U ∩ x) and Φ∗u = π∗u ∪ U .
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Remark. With the assumption that B is locally contractible we have that p is locally fiber
homotopy trivial. The theorem can then be proved by Mayer-Vietoris sequences and a limit
argument just as in the case of bundles. Compare Holm [2]. If p is orientable and S is
constant, then we can drop the assumption on B, because from the theorem above we get
the general case by using a CW -approximation to B.

The following result, in the converse direction of the Thom isomorphism theorem, is
useful for recognizing spherical fibrations.

Theorem 7 Let F → E
p→B be a fibration where B and F are simply connected. Assume

that there exists a class U ∈ Hk(Zp, E) such that

Φ∗ : Hq(B)→ Hq+k(Zp, E)

defined by Φ∗u = π∗u ∪ U is an isomorphism for all q. Then p is (k − 1)-spherical.

Proof. We get H i(Zp, E) = 0 for i < k and Hk(Zp, E) = Z with generator U . By
universal coefficients Hi(Zp, E) = 0 for i < k, and hence by the relative Hurewicz theorem
πi−1F = πi(Zp, E) = 0 for i < k, since we may assume k ≥ 3. Thus F is (k − 2)-connected.

Now we consider the cohomology spectral sequences of the fibration CF → Zp
π→B and

the pair of fibrations (CF, F )→ (Zp, E)
π→B, together with the cup product pairing between

them. The E2-terms are zero except for ′E2
∗0 = H∗(B) and ′′E∗q2 = H∗(B) ⊗ Hq(CF, F )

with q ≥ k respectively.

We have Hk(CF, F ) = ′′E0k
2 = ′′E0k

∞ = Hk(Zp, E) = Z with generator U .

Therefore Φ∗ : ′E∗02 → ′′E∗k2 is an isomorphism. By assumption Φ∗ : ′E∗0∞ → ′′E∗∗∞ is an
isomorphism. This implies ′′E∗k2 = ′′E∗k∞ and ′′E∗q∞ = 0 for q 6= k. Hence Hq(CF, F ) = ′′E0q

2 = 0
for q 6= k. This proves that F is a cohomology (k− 1)-sphere, hence by universal coefficients
and the Whitehead theorem, a homotopy (k − 1)-sphere.

Normal fibrations of Poincaré polyhedra

Let X be a finite polyhedron with a PL imbedding X → Rn+k. We choose a regular
neighborhood N of X and let r : N → X be a homotopy inverse to the inclusion. Let
p : ∂N → X be the restriction of r. The map p made into a fibration is called a normal
fibration of X and is denoted by ν. Spivak [3].

62



Proposition 8 Up to homotopy type the Thom pair of ν is (N, ∂N), and the fibers of ν are
those of the inclusion map i : ∂N → N .

Proof. This follows from the fact that there is a homotopy commutative diagram

∂N
i

// N

r

��
∂N q

// X

By theorem 8 of chapter 4 we have that (Zq, ∂N) is homotopy equivalent to (Zi, ∂N) which
is homotopy equivalent to (N, ∂N) since the last pair is cofibered. For the fibers we use
theorem 5 of chapter 4.

Theorem 9 Assume that the imbedding X ↪→ Rn+k is of codimension ≥ 3. Then the normal
fibration ν is (k − 1)-spherical if and only if X is a Poincaré n-polyhedron.

Proof. Up to homotopy type we can write the normal fibration ν : F → ∂N ↪→ N . For
j = 0, 1 any map (Dj+1, Sj) → (N, ∂N) can be homotoped off X and hence into ∂N , and
we get πjF = πj+1(N, ∂N) = 0 Hence F is simply connected.

N is an oriented PL (n+ k)-manifold with boundary. We have a pullback diagram

Ñ

r̃
��

p̃ // N

r

��
X̃ p

// X

where p is the simply connected covering. Then p̃ is a simply connected covering, and the
fibers of the inclusion map ∂Ñ ↪→ Ñ are homeomorphic with those of ∂N ↪→ N . Up to
homotopy type we have therefore the fibration ν̃ : F → ∂Ñ ↪→ Ñ .

Assume now that ν is (k − 1)-spherical. By theorem 6 there is a class U ∈ Hk(Ñ , ∂Ñ)
such that ∪U : Hq(Ñ)→ Hq+k(Ñ , ∂Ñ) is an isomorphism. We get the commutative diagram

Hq(Ñ)
∪U //

∩µ ""EEEEEEEE
Hq+k(Ñ , ∂Ñ)

∩[Ñ ]

≈

yyssssssssss

HLF
n−q(Ñ)

where µ = U ∩ [Ñ ] ∈ HLF
n (Ñ). Hence ∩µ is an isomorphism for all q. Since r̃ : Ñ → X̃

is a proper homotopy equivalence by lemma 1, it follows that there is a fundamental class
[X̃] = r̃∗(µ) ∈ HLF

n (X̃). Hence X is a Poincaré n-polyhedron.
If we assume conversely that X is a Poincaré n-polyhedron, we can reverse the argument

to get the class U and then use theorem 7 to conclude that ν̃ is (k − 1)-spherical.

For a Poincaré polyhedron there is a duality theorem with local coefficients as follows.
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Theorem 10 Let X be a Poincaré n-polyhedron. Then there exists a local system OX of
integers over X with the following property. There exists a class [X] ∈ Hn(X;OX) such that

∩[X] : Hq(X;S)→ Hn−q(X;OX ⊗ S)

is an isomorphism for any local system S of integers over X and all q. OX is uniquely
determined up to isomorphism by this property.

Proof. The local system OX is given by OX = Oν where ν is any (k−1)-spherical normal
fibration of X. We have the commutative diagram

Hq(N ; q∗S) ∪U
≈

//

∩µ ))SSSSSSSSSSSSSS
Hq+k(N, ∂N ; q∗(Oν ⊗ S))

∩[N ]

≈

tthhhhhhhhhhhhhhhhhh

Hn−q(N ; q∗(Oν ⊗ S))

where µ = U ∩ [N ] ∈ Hn(N ; q∗Oν). ∪U is an isomorphism by theorem 6, and ∩[N ] from the
Poincaré duality theorem with local coefficients for the orientable PL (n + k)-manifold N ,
see Holm [2]. It follows that ∩µ is an isomorphism, and we define [X] = r∗µ ∈ Hn(X;Oν).
This proves the existence of the local system OX with the property of the theorem.

To prove uniqueness assume O′X is another such local system. We may assume X con-
nected without loss of generality. We have

H0(X;OX ⊗O′X) = Hn(X;OX) = H0(X;OX ⊗OX) = H0(X) = Z.

Thus OX ⊗O′X is constant, i.e. OX = O′X .

We call the local system OX the orientation system of X, and call X orientable if OX is
constant.

S-types of Thom spaces and uniqueness of the stable normal fibra-
tion

If ξ is a fibration over X, we use also the notation Xξ for the Thom space of ξ.
If the fibrations ξ and η over X are (k − 1)-spherical and (l − 1)-spherical respectively,

then ξ ∗ η over X × X is (k + l − 1)-spherical. The pullback ξ + η = ∆∗(ξ ∗ η), where
∆ : X → X ×X is the diagonal map, is by definition the Whitney join of ξ and η.

For spherical fibrations ξ and η over X and Y respectively we have ξ ∗ η = p∗1ξ + p∗2η,
where p1 : X × Y → X and p2 : X × Y → Y are the projections. Since the (l − 1)-spherical
fibration over a point has Thom space Sl we get from corollary 5 that Xξ+1 = Sl ∧Xξ. In
other words Whitney join with trivial spherical fibrations corresponds to suspension of the
Thom space. Therefore we get
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Proposition 11 If ξ and η are stably fiber homotopy equivalent spherical fibrations over X,
then Xξ and Xη are S-equivalent.

In other words the S-type of Xξ depends only on the class of ξ in kG(X).
We prove next the duality theorem of Atiyah [4], generalized to spherical fibrations, by

the method of Holm [2]. Note that if ξ is a spherical fibration over a space X which has the
homotopy type of a finite CW -complex, then it follows from Stasheff [5], proposition (O),
that the Thom space Xξ has the homotopy type of a finite CW -complex. Thus the S-duality
theory applies to these Thom spaces.

Theorem 12 Let ξ and η be spherical fibrations over a Poincaré polyhedron X. Assume
that ξ + η = ν is a normal fibration of X. Then the Thom spaces Xξ and Xη are S-dual.

Proof. Assume ξ is (k − 1)-spherical, η is (l − 1)-spherical and that X is a Poincaré
n-polyhedron. By proposition 4 we have a commutative diagram

Xν ∆̂ // Xξ ∧Xη

(Zν , Eν)

c

OO

∆̄ //

πν

��

(Zξ, Eξ)× (Zη, Eη)

πξ×πη
��

c

OO

X
∆

// X ×X

where ∆ is the diagonal map, c is collapsing, and ∆̄ and ∆̂ are the induced maps from ∆.
We have the composed map

f : Sn+k+l t−→Xν ∆̂−→Xξ ∧Xη

where t is the collapsing map as before. We let ι ∈ H̃n+k+l(S
n+k+l) denote the canonical

generator and define

α̂ = f∗(ι) ∈ H̃n+k+l(X
ξ ∧Xη)

α = c−1
∗ (α̂) ∈ Hn+k+l((Zξ, Eξ)× (Zη, Eη))

Then we have a commutative diagram

H̃ i(Xξ)
α̂/ //

c∗ ≈
��

H̃n+k+l−i(X
η)

H i(Zξ, Eξ)
α/

// Hn+k+l−i(Zη, Eη)

≈c∗

OO

65



We want to prove that f is a duality map, i.e. that α̂/ or equivalently α/ is an isomorphism.
Consider the diagram

Hq+k(Zξ, Eξ)
α/ // Hn−q+l(Zη, Eη)

≈ Φη∗

��
Hq(X;Oξ)

Φ∗ξ≈

OO

≈
∩[X]

// Hn−q(X;Oη)

It is easy to verify the commutativity of the diagram. For u ∈ Hq(X;Oξ) we get

u ∩ [X] = p2∗∆∗(u ∩ [X]) = p2∗(u× 1 ∩∆∗[X])

= p2∗(u× 1 ∩ (πξ × πη)∗(Uξ × Uη ∩ α))

= p2∗(πξ × πη)∗((πξ × πη)∗(u× 1) ∩ Uξ × Uη ∩ α)

= πη∗p2∗(((π
∗
ξu× 1) ∪ (Uξ × Uη)) ∩ α)

= πη∗p2∗((Φ
∗
ξu× Uη) ∩ α)

= πη∗((α/Φ
∗
ξu) ∪ Uη) = Φη∗(α/Φ

∗
ξu)

We can now prove the uniqueness of the stable normal fibration by copying the procedure
for bundles given in Atiyah [4].

A pointed space (Y, ∗) is called reducible if there is a map f : (Sn, ∗) → (Y, ∗) inducing
isomorphisms f∗ : Hp(S

n, ∗)≈→Hp(Y, ∗) for p ≥ n, and coreducible if there is a map
g : (Y, ∗)→ (Sn, ∗) iducing isomorphisms g∗ : Hq(Sn, ∗)→ Hq(Y, ∗) for q ≤ n. Similarly we
define (Y, ∗) to be S-reducible or S-coreducible if there are S-maps with the above properties.
It is clear that reducibility and coreducibility are properties of the homotopy type of (Y, ∗),
while S-reducibility and S-coreducibility are properties of the S-type.

Proposition 13 If ν is a normal fibration of a finite polyhedron X, then the Thom space
Xν is reducible.

Proof. We consider the imbedding N ↪→ Rn+k ↪→ Sn+k and the corresponding collapsing
map t : (Sn+k, ∗) → (N/∂N, ∗). Then t induces isomorphisms in homology in dimen-
sions ≥ n + k. The result follows since (Xν , ∗) is homotopy equivalent to (N/∂N, ∗) by
proposition 8.

Theorem 14 Let ξ : E → X be a spherical fibration over a connected, finite CW -complex
X. Then Xξ is S-coreducible if and only if ξ = 0 in kG(X).

Proof. From the Thom isomorphism theorem we see that if ξ is fiber homotopy trivial,
then Xξ is coreducible. Hence if ξ is stably fiber homotopy trivial, then Xξ is S-coreducible.
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Assume conversely Xξ is S-coreducible. Replacing ξ with a stably fiber homotopy equiv-
alent fibration we may assume that ξ is an (n− 1)-spherical fibration with n large, and that
Xξ is coreducible.

There is a commutative diagram of cohomotopy groups

πn−1(E) ≈
//

i∗

��

πn(Zξ, E)

j∗

��
πn−1(Fx)

≈ // πn(CFx, Fx)

where the horizontal maps are isomorphisms from the exact cohomotopy sequences of the
pairs, and the vertical maps are induced by inclusions.

Since Xξ is coreducible we have isomorphisms

Hn(Sn, ∗) g∗

≈
// Hn(Xξ, ∗) c∗

≈
// Hn(Zξ, E)

j∗

≈
// Hn(CFx, Fx)

It follows that j∗ : πn(Zξ, E) → πn(CFx, Fx) is surjective. Hence i∗ : πn−1(E) → πn−1(Fx)
is surjective, i.e. there exists a map t : E → Sn−1 whose restriction to Fx is a homotopy
equivalence. There is then a map of fibrations with t̄ = (ξ, t)

Fx //

t
��

E
ξ //

t̄
��

X

Sn−1 // X × Sn−1 // X

Hence t̄ is a weak homotopy equivalence, and therefore a homotopy equivalence, all spaces
being of the homotopy type of CW -complexes. By theorem 1 of chapter 3 we get that t̄ is
a fiber homotopy equivalence, i.e. ξ is fiber homotopy trivial. This proves the theorem.

Theorem 15 If X is a Poincaré space, there is a unique class in kG(X) whose Thom space
is S-reducible.

Proof. The elements of kG(X) have Thom spaces well defined up to S-type by propo-
sition 11. It is sufficient to consider the case where X is a Poincaré polyhedron. Let ν be
any normal fibration of X. Then Xν is S-reducible by proposition 13. To prove uniqueness,
suppose ξ is a spherical fibration over X such that Xξ is S-reducible. From theorem 12 we
know that Xξ and Xν−ξ are S-dual. Hence Xν−ξ is S-coreducible, and by theorem 14 we
get ξ = ν in kG(X), which proves the theorem.

The unique class kG(X) given by the theorem is called the stable normal fibration of
X, and is denoted by νX . It is clear that νX is invariant under homotopy equivalences of
Poincaré spaces. We get automatically a stable tangent fibration τX with the same property,
defined by τX = −νX in kG(X).
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