Norwegian version of this page


Most ingredients in today's consumables and liquid fuels are produced in chemical processes where catalysts play a major role. A catalyst is a compound or material that increases the rate of a chemical reaction without itself being consumed. This means that the energy consumption in the processes is much less than it would have been without the use of a catalyst, and that the processes give less emissions.

About the project

A primary goal in the development of new and improved catalysts is that they should be selective, i.e. they should produce only the product we want and nothing else. One way to limit which molecules are formed is to place the catalytic "seat", that is, the place where the reaction occurs, within a cavity which is so small that only small molecules can f it and react. This cavity is what we call a "Nanoreactor".

The goal of this project is to elucidate which combination of cavity size and chemical environment around the catalytic seat, which is the best for some selected reactions. The knowledge we gain will be used to build a mathematical model. This model will help us to predict how future catalysts should be designed, atom by atom, so that future chemical processes become even cleaner than today.


Elucidate guiding principles for tailoring of zeolite and zeotype catalysts towards target reactions Secondary objectives: - Prepare a library of well-defined zeolite materials which map a predetermined parameter space; with pore size and acid strength as variables -Measure intrinsic kinetics for model reactions in zeolites by using new national infrastructure -Temporal Analysis of Products - Revise and further develop computational chemistry models and understanding by comparison with experimental data.



The project is financed by the Research Council of Norway

Logo Research council of Norway

Published Apr. 28, 2017 9:25 AM - Last modified Apr. 28, 2017 9:33 AM