Besøksadresse
Fakultetsadministrasjonen
Fysikkbygningen øst (kart)
Sem Sælands vei 24
0371
OSLO
Lidar point clouds provide excellent and quite accurate points in space, including the quite large rooms of factories or ships. Although they are much more accurate than point clouds derived by other means such as regular cameras or structure light systems, the problem remains that it is really difficult to correctly guess and reconstruct the surfaces from which these points have been sampled. It is typical to first guess and construct meshes from the point clouds, giving a potentially quite uneven structure where a flat wall or round pillar is supposed to be. Guessing whether such unevenness is true or an artifact of an inaccuracy is not impossible because there is a branch of computer vision called photogrammetry, which estimates surface curvature from color gradients. However, this still leaves the problem of cleanly terminating every surface by its edges, which may be sharp, rounded or ragged. Edge detection for sharp edges can be implemented by a well-known computer vision algorithm called the Hough Transform. By putting all these pieces together, a human can receive a lot of help in creating a CAD model from some images and a point cloud.
Schneider Electric Norway AS has proposed master projects that will be co-supervised by them and will involve real and challenging ICT problems in their organisation. Part of the work will be done at their offices at Ryen.
The SANT project aims to create training data and machine-learned models for Sentiment Analysis for Norwegian Text. While coordinated by the Language Technology Group at IFI/UiO, collaborating partners include NRK, Schibsted and Aller Media.