Besøksadresse
Fakultetsadministrasjonen
Fysikkbygningen øst (kart)
Sem Sælands vei 24
0371
OSLO
Cardiac related disease is the number one cause of death in the Western world, including Norway. Echocardiography is the most important imaging tool for the cardiologist to assess cardiac function. An echo examination of the heart is real time, cost effective and can be performed without discomfort to the patient and without harmful radiation. These are great advantages compared to other medical imaging modalities.
In this ongoing cross-disciplinary collaboration, researchers in Language Technology (LT) and Political Science (PS) are applying supervised and unsupervised machine learning methods to data from the Norwegian parliament in order to gather knowledge spanning across different dimensions.
Obstructive sleep apnea (OSA) is a common but severely under-diagnosed sleep disorder that affects the natural breathing cycle during sleep with the periods of reduced respiration or no airflow at all. It is our long-term goal to increase the percentage of diagnosed OSA cases, reduce the time to diagnosis, and support long term monitoring of patients with user friendly and cost-efficient tools for sleep analysis at home. Core elements are mobile computing platforms (e.g., smartphones), consumer electronics sensors, and machine learning for OSA detection.
The use of lexical semantic information for the task of syntactic parsing has seen varied success. Recently, however, the use of lexical semantic clusters derived from large corpora has been shown to improve parsing performance. It is still unclear, however, how different properties of these clusters affect results. This project aims to investigate the use of different types of clusters during syntactic parsing.
More precisely the idea is to use word clusters as a source for features in a statistical disambiguation model for a dependency parser. Generally, the clusters will group together words with similar distributional properties. The exact nature of these similarity relations, however, will vary depending on the types of context features that are used when performing the clustering. For this project we will basically be doing an extrinsic form of cluster evaluation then; investigating how different clustering parameters in turn affect the performance of a statistical parser.
Signal processing, image analysis, and machine learning for applications in medical imaging, sonar, seismics, and remote sensing.