The NOAO Packages
IRAF Version 2.10

- **noao:**
  - artdata - Artificial data generation package [up]
  - astrometry - Astrometry package [up]
  - astutil - Astronomical utilities package [up]
  - digiphot - Digital stellar photometry package [up]
  - focas - Faint object classification and analysis package [up]
  - imred - Image reductions package [up]
  - mltlocal - Magtape i/o for special NOAO format tapes [up]
  - nobsolete - Obsolete tasks to be phased out in a future release [up]
  - nproto - Prototype (temporary, contributed) tasks [up]
  - observatory - Examine and define observatory parameters [up]
  - onedspec - One dimensional spectral red & analysis package [up]
  - rv - Radial velocity analysis package [up]
  - surfphot - Galaxy isophotal analysis package
  - twodspec - Two dimensional spectral red & analysis package [up]

- **noao.artdata:**
  - gallist - Make an artificial galaxies list
  - mk1dspec - Make/add artificial 1D spectra
  - mk2dspec - Make/add artificial 2D spectra using 1D spectra templates
  - mkechelle - Make artificial 1D and 2D echelle spectra
  - mkexamples - Make artificial data examples
  - mkheader - Append/replace header parameters
  - mknoise - Make/add noise and cosmic rays to 1D/2D images
  - mkobjects - Make/add artificial stars and galaxies to 2D images
  - mkpattern - Make/add patterns to images
  - starlist - Make an artificial star list

- **noao.astutil:**
  - airmass - Compute the airmass at a given elevation above the horizon
  - asttimes - Compute UT, Julian day, epoch, and sidereal time
  - ccdtime - Compute time required to observe star of given magnitude
  - galactic - Convert ra, dec to galactic coordinates
  - gratings - Compute and print grating parameters
  - pdm - Find periods in light curves by Phase Dispersion Minimization
  - precess - Precess a list of astronomical coordinates
  - rvcorrect - Compute radial velocity corrections
  - setairmass - Compute effective airmass and middle UT for an exposure
  - setjd - Compute and set Julian dates in images

- **noao.digiphot:**
  - apphot - Aperture Photometry Package
  - daophot - Dao Crowded-Field Photometry Package
  - photcal - Photometric Calibration Package
  - ptools - Photometry Tools Package
• noao.digiphon.apphot:
  apetest - Run basic tests on the apphot package tasks
  center - Compute accurate centers for a list of objects
  centerpars - Edit the centering parameters
  daofind - Find stars in an image using the DAO algorithm
  datapars - Edit the data dependent parameters
  fitspsf - Model the stellar psf with an analytic function
  fitsky - Compute sky values in a list of annular or circular regions
  fitskypars - Edit the sky fitting parameters
  phot - Measure magnitudes for a list of stars
  photpars - Edit the photometry parameters
  polymark - Create polygon lists for polyphot
  polyphot - Measure magnitudes inside a list of polygonal regions
  polypars - Edit the polyphot parameters
  qphot - Measure quick magnitudes for a list of stars
  radprof - Compute the stellar radial profile of a list of stars
  wphot - Measure magnitudes for a list of stars with weighting

  lintran - Linearly transform a coordinate list
  pexamine - Interactively examine or edit an apphot output file
  txdump - Dump select fields from an apphot output file

• noao.digiphon.daophot:
  addstar - Add artificial stars to an image using the computed psf
  allstar - Group and fit psf to multiple stars simultaneously
  centerpars - Edit the centering algorithm parameters
  daofind - Find stars in an image using the DAO algorithm
  daopars - Edit the daophot algorithms parameter set
  daotest - Run basic tests on the daophot package tasks
  datapars - Edit the data dependent parameters
  fitskypars - Edit the sky fitting algorithm parameters
  group - Group stars based on positional overlap and signal/noise
  nstar - Fit the psf to groups of stars simultaneously
  peak - Fit the psf to single stars
  phot - Compute sky values and initial magnitudes for a list of stars
  photpars - Edit the photometry parameters
  psf - Fit the point spread function
  seepsf - Compute an image of the point spread function
  substar - Subtract the fitted stars from the original image

  pappend - Concatenate a list of daophot databases
  pconvert - Convert a text database to a tables database
  pdump - Print selected fields from a list of daophot databases
  grpselect - Select groups of a specified size from a daophot database
  pexamine - Interactively examine and edit a daophot database
  prenumber - Renumber stars in a daophot database
  pselect - Select records from a daophot database
  psort - Sort a daophot database

• noao.digiphon.ptools:
  istable - Is a file a table or text database file?
  pappend - Concatenate a list of apphot/daophot databases
pconvert - Convert from an apphot/daophot text to tables database
pdump - Print selected columns of a list of daophot/apphot databases
prenumber - Renumber a list of apphot/daophot databases
pexamine - Interactively examine and edit an apphot/daophot database
pselect - Select records from a list of apphot/daophot databases
psort - Sort a list of apphot/daophot databases
pttest - Run basic tests on the ptools package tasks

tappend - Concatenate a list of apphot/daophot tables databases
tbdump - Print selected columns of a list of tables databases
tbrenumber - Renumber a list of apphot/daophot tables databases
tbselect - Select records from a list of apphot/daophot tables databases
tbsort - Sort a list of apphot/daophot tables databases

txappend - Concatenate a list of apphot/daophot text databases
txdump - Print selected columns of a list of apphot/daophot text databases
txrenumber - Renumber a list of apphot/daophot text databases
txselect - Select records from a list of apphot/daophot text databases
txsort - Sort a list of apphot/daophot text databases

• noao.imred:

  argus - CTIO ARGUS reduction package
  bias - General bias subtraction tools
  ccedred - Generic CCD reductions
  ctioslit - CTIO spectrophotometric reduction package
  dtot - Density to Intensity reductions for photographic plates
  echelle - Echelle spectra reductions (slit and FOE)
  generic - Generic image reductions tools
  hydra - KPNO HYDRA (and NESSIE) reduction package
  iids - KPNO IIDS spectral reductions
  irred - KPNO IR camera reductions
  irs - KPNO IRS spectral reductions
  kpnocoude - KPNO coude reduction package (slit and 3 fiber)
  kpnoslit - KPNO low/moderate dispersion slits (Goldcam, RCspec, Whitecam)
  specred - Generic slit and fiber spectral reduction package
  vtel - Solar vacuum telescope image reductions

• noao.imred.argus:

  apall - Extract 1D spectra (all parameters in one task)
  apdefault - Set the default aperture parameters
  apedit - Edit apertures interactively
  apfind - Automatically find spectra and define apertures
  aprecenter - Recenter apertures
  apresize - Resize apertures
  apsum - Extract 1D spectra
  atrace - Trace positions of spectra
  bplot - Batch plots of spectra
  continuum - Fit the continuum in spectra
  dispcor - Dispersion correct spectra
  dopcor - Doppler correct spectra
  identify - Identify features in spectrum for dispersion solution
msresp1d - Create 1D response spectra from flat field and sky spectra
refspectra - Assign wavelength reference spectra to other spectra
reidentify - Automatically identify features in spectra
sapertures - Set or change aperture header information
sarith - Spectrum arithmetic
scombine - Combine spectra having different wavelength ranges
scopy - Select and copy apertures in different spectral formats
setairmass - Compute effective airmass and middle UT for an exposure
setjd - Compute and set Julian dates in images
slist - List spectrum header parameters
specplot - Stack and plot multiple spectra
splot - Preliminary spectral plot/analysis
doargus - Process ARGUS spectra
demos - Demonstrations and tests

- noao.imred.bias:

colbias - Fit and subtract an average column bias
linebias - Fit and subtract an average line bias

- noao.imred.ccdred:

  badpiximage - Create a bad pixel mask image from a bad pixel file
  ccdgroups - Group CCD images into image lists
  ccdhedit - CCD image header editor
  ccdinstrument - Review and edit instrument translation files
  ccdlist - List CCD processing information
  ccdproc - Process CCD images
  ccdtest - CCD test and demonstration package
  combine - Combine CCD images
  cosmicrays - Detect and replace cosmic rays
  darkcombine - Combine and process dark count images
  flatcombine - Combine and process flat field images
  mkfringecor - Make fringe correction images from sky images
  mkillumcor - Make flat field illumination correction images
  mkillumflat - Make illumination corrected flat fields
  mkskycor - Make sky illumination correction images
  mkskyflat - Make sky corrected flat field images
  setinstrument - Set instrument parameters
  zerocombine - Combine and process zero level images

**ADDITIONAL HELP TOPICS**

ccdgeometry - Discussion of CCD coordinate/geometry keywords
ccdtypes - Description of the CCD image types
flatfields - Discussion of CCD flat field calibrations
guide - Introductory guide to using the CCDRED package
instruments - Instrument specific data files
package - CCD image reduction package
subsets - Description of CCD subsets
- noao.imred.ccdred.ccdtest:
  - artobs: Create an artificial CCD observation
  - demo: Run a demonstration of the CCD reduction package
  - mkimage: Make or modify an image with simple values
  - subsection: Create an artificial subsection CCD observation

- noao.imred.ctioslit:
  - apall: Extract 1D spectra (all parameters in one task)
  - apdefault: Set the default aperture parameters
  - apedit: Edit apertures interactively
  - apfind: Automatically find spectra and define apertures
  - aprecenter: Recenter apertures
  - apresize: Resize apertures
  - apsum: Extract 1D spectra
  - aptrace: Trace positions of spectra
  - bplot: Batch plot of spectra with SPLOT
  - calibrate: Apply extinction and flux calibrations to spectra
  - continuum: Fit and normalize the continuum of multispec spectra
  - deredden: Apply interstellar extinction corrections
  - dispcor: Dispersion correct spectra
  - dopcor: Doppler correct spectra
  - identify: Identify arc lines and determine a dispersion function
  - refspectra: Assign reference spectra to object spectra
  - reidentify: Reidentify arc lines and determine new dispersion functions
  - sarith: Spectrum arithmetic
  - scombine: Combine spectra
  - scopy: Copy spectra including aperture selection and format changes
  - sensfunc: Create sensitivity function
  - setairmass: Compute effective airmass and middle UT for an exposure
  - setjd: Compute and set Julian dates in images
  - slist: List spectral header elements
  - specplot: Stack and plot multiple spectra
  - splot: Plot and analysis spectra
  - standard: Identify standard stars to be used in sensitivity calc
  - doslit: Process CTIO slit spectra
  - demos: Demonstrations and tests

- noao.imred.dtoi:
  - dematch: Match a list of density values to exposure values
  - hdfit: Fit a curve to density, log exposure values
  - hdshift: Align related HD curves
  - hdtoi: Apply DTOI transformation to density image
  - selftest: Self test program to check DTOI transformation
  - spotlist: Generate a list of calibration spot values

- noao.imred.echelle:
  - apall: Extract 1D spectra (all parameters in one task)
  - apdefault: Set the default aperture parameters and apidtable
  - apedit: Edit apertures interactively
### apfind
- Automatically find spectra and define apertures

### apfit
- Fit 2D spectra and output the fit, difference, or ratio

### apflatten
- Remove overall spectral and profile shapes from flat fields

### apmask
- Create an IRAF pixel list mask of the apertures

### apnormalize
- Normalize 2D apertures by 1D functions

### aprecenter
- Recenter apertures

### apresize
- Resize apertures

### apscatter
- Fit and subtract scattered light

### apsum
- Extract 1D spectra

### aprace
- Trace positions of spectra

### bplot
- Batch plots of spectra

### calibrate
- Apply extinction and flux calibrations to spectra

### continuum
- Fit the continuum in spectra

### deredden
- Apply interstellar extinction corrections

### dispcor
- Dispersion correct spectra

### dopcor
- Doppler correct spectra

### ecidentify
- Identify features in spectrum for dispersion solution

### ecreeidentify
- Automatically reidentify features in spectra

### refspectra
- Assign wavelength reference spectra to other spectra

### salth
- Spectrum arithmetic

### scombine
- Combine spectra

### scopy
- Select and copy apertures in different spectral formats

### sensfunc
- Compute sensitivity function

### setairmass
- Compute effective airmass and middle UT for an exposure

### setjd
- Compute and set Julian dates in images

### slist
- List spectrum header parameters

### specplot
- Stack and plot multiple spectra

### splot
- Preliminary spectral plot/analysis

### standard
- Identify standard stars to be used in sensitivity calc

### doecslit
- Process Echelle slit spectra

### dofoe
- Process Fiber Optic Echelle (FOE) spectra

### demos
- Demonstrations and tests

#### noao.imred.generic:

- **background**
  - Fit and subtract a line or column background

- **cosmicrays**
  - Detect and replace cosmic rays

- **darksab**
  - Scale and subtract a dark count image

- **flat1d**
  - Make flat field by fitting a 1D func. to the lines or columns

- **flatten**
  - Flatten images using a flat field

- **normalize**
  - Normalize images

- **normflat**
  - Create a flat field by normalizing and replacing low values

#### noao.imred.hydra:

- **apall**
  - Extract 1D spectra (all parameters in one task)

- **apdefault**
  - Set the default aperture parameters

- **apedit**
  - Edit apertures interactively

- **apfind**
  - Automatically find spectra and define apertures

- **aprecenter**
  - Recenter apertures

- **apresize**
  - Resize apertures

- **apscatter**
  - Fit and remove scattered light
apsum - Extract 1D spectra
aptrace - Trace positions of spectra
bplot - Batch plots of spectra
continuum - Fit the continuum in spectra
dispcor - Dispersion correct spectra
dopcor - Doppler correct spectra
identify - Identify features in spectrum for dispersion solution
msresp1d - Create 1D response spectra from flat field and sky spectra
refspectra - Assign wavelength reference spectra to other spectra
reidentify - Automatically identify features in spectra
sapers - Set or change aperture header information
sartheta - Spectrum arithmetic
scombine - Combine spectra having different wavelength ranges
scopy - Select and copy apertures in different spectral formats
setairmass - Compute effective airmass and middle UT for an exposure
setjd - Compute and set Julian dates in images
slist - List spectrum header parameters
specplot - Stack and plot multiple spectra
spplot - Preliminary spectral plot/analysis
dohydra - Process HYDRA spectra
demos - Demonstrations and tests

- noao.imred.iids:

addsets - Add subsets of strings of spectra
batchred - Batch processing of IIDS/IRS spectra
bplot - Batch plots of spectra
bswitch - Beam-switch strings of spectra to make obj-sky pairs
calibrate - Apply sensitivity correction to spectra
coeffs - Extract mtn reduced coefficients from near scans
coincor - Correct spectra for detector count rates
continuum - Fit the continuum in spectra
deredden - Apply interstellar extinction corrections
dispcor - Dispersion correct spectra
dopcor - Doppler correct spectra
extinct - Use BSWITCH for extinction correction
flatdiv - Divide spectra by flat field
flatfit - Sum and normalize flat field spectra
identify - Identify features in spectrum for dispersion solution
lcalib - List calibration file data
mkspec - Generate an artificial spectrum
names - Generate a list of image names from a string
powercor - Apply power law correction to mountain reduced spectra
process - A task generated by BATCHRED
refspectra - Assign reference spectra to object spectra
reidentify - Automatically identify features in spectra
scombine - Combine spectra having different wavelength ranges
sensfunc - Create sensitivity function
setairmass - Compute effective airmass and middle UT for an exposure
setjd - Compute and set Julian dates in images
sinterp - Interpolate a table of x,y pairs to create a spectrum
slist1d - List spectral header elements
specplot - Stack and plot multiple spectra
splot - Preliminary spectral plot/analysis
standard - Identify standard stars to be used in sensitivity calc
subsets - Subtract pairs in strings of spectra
sums - Generate sums of object and sky spectra by aperture

• noao.imred.irred:
  center - Compute accurate centers for a list of objects
centerpars - Edit the centering parameters
datapars - Edit the data dependent parameters
flatten - Flatten images using a flat field
iralign - Align the image produced by irmosaic
irmatch1d - Align and intensity match the image produced by irmosaic (1D)
irmatch2d - Align and intensity match the image produced by irmosaic (2D)
irmosaic - Mosaic an ordered list of images onto a grid
mosproc - Prepare images for quick look mosaicing
txdump - Select fields from the center task output text file

• noao.imred.irs:
  addsets - Add subsets of strings of spectra
batchred - Batch processing of IIDS/IRS spectra
bplot - Batch plots of spectra
bswitch - Beam-switch strings of spectra to make obj-sky pairs
calibrate - Apply sensitivity correction to spectra
coeefs - Extract mtn reduced coefficients from hnear scans
continuum - Fit the continuum in spectra
deredden - Apply interstellar extinction corrections
dispcor - Dispersion correct spectra
dopcor - Doppler correct spectra
extinct - Use BSWITCH for extinction correction
flatdiv - Divide spectra by flat field
flatfit - Sum and normalize flat field spectra
identify - Identify features in spectrum for dispersion solution
lcalib - List calibration file data
mkspec - Generate an artificial spectrum
names - Generate a list of image names from a string
process - A task generated by BATCHRED
refspectra - Assign reference spectra to object spectra
reidentify - Automatically identify features in spectra
scombine - Combine spectra having different wavelength ranges
sensfunc - Create sensitivity function
setairmass - Compute effective airmass and middle UT for an exposure
setjd - Compute and set Julian dates in images
sinterp - Interpolate a table of x,y pairs to create a spectrum
slist1d - List spectral header elements
specplot - Stack and plot multiple spectra
splot - Preliminary spectral plot/analysis
standard - Identify standard stars to be used in sensitivity calc
subsets - Subtract pairs in strings of spectra
sums - Generate sums of object and sky spectra by aperture
- noao.imred.kpnocoude:

  apall  -  Extract 1D spectra (all parameters in one task)
  apdefault - Set the default aperture parameters
  apedit  -  Edit apertures interactively
  apfind  -  Automatically find spectra and define apertures
  aprecenter - Recenter apertures
  apresize  -  Resize apertures
  apsum   -  Extract 1D spectra
  aptrace  -  Trace positions of spectra
  bplot   -  Batch plot of spectra with SPLOT
  calibrate - Apply extinction and flux calibrations to spectra
  continuum -  Fit and normalize the continuum of multispec spectra
  deredden - Apply interstellar extinction corrections
  dispcor  -  Dispersion correct spectra
  dopcor   -  Doppler correct spectra
  identify - Identify arc lines and determine a dispersion function
  msrespld - Create fiber response spectra from flat field and sky spectra
  refspectra - Assign reference spectra to observations
  reidentify - Reidentify arc lines and determine new dispersion functions
  sapertures - Set or change aperture header information
  sarith   -  Spectrum arithmetic
  scombine - Combine spectra
  scopy    -  Copy spectra including aperture selection and format changes
  sensfunc - Create sensitivity function
  setairmass - Compute effective airmass and middle UT for an exposure
  setjd    -  Compute and set Julian dates in images
  slist    -  List spectrum headers
  specplot - Stack and plot multiple spectra
  splot    -  Plot and analyze spectra
  standard - Identify standard stars to be used in sensitivity calc
  do3fiber - Process KPNO coude three fiber spectra
  doslit   -  Process KPNO coude slit spectra
  demos    -  Demonstrations and tests

- noao.imred.kpnoslit:

  apall  -  Extract 1D spectra (all parameters in one task)
  apdefault - Set the default aperture parameters
  apedit  -  Edit apertures interactively
  apfind  -  Automatically find spectra and define apertures
  aprecenter - Recenter apertures
  apresize  -  Resize apertures
  apsum   -  Extract 1D spectra
  aptrace  -  Trace positions of spectra
  bplot   -  Batch plot of spectra with SPLOT
  calibrate - Apply extinction and flux calibrations to spectra
  continuum -  Fit and normalize the continuum of multispec spectra
  deredden - Apply interstellar extinction corrections
  dispcor  -  Dispersion correct spectra
  dopcor   -  Doppler correct spectra
  identify - Identify arc lines and determine a dispersion function
refspectra - Assign reference spectra to observations
reidentify - Reidentify arc lines and determine new dispersion functions
sarith - Spectrum arithmetic
scombine - Combine spectra
scopy - Copy spectra including aperture selection and format changes
sensfunc - Create sensitivity function
setairmass - Compute effective airmass and middle UT for an exposure
setjd - Compute and set Julian dates in images
slist - List spectrum headers
specplot - Stack and plot multiple spectra
splot - Plot and analyze spectra
standard - Identify standard stars to be used in sensitivity calc
doslit - Process slit spectra
demos - Demonstrations and tests

- **noao.imred.specred:**
apall - Extract 1D spectra (all parameters in one task)
apdefault - Set the default aperture parameters and apidtable
apedit - Edit apertures interactively
afind - Automatically find spectra and define apertures
afit - Fit 2D spectra and output the fit, difference, or ratio
aplatten - Remove overall spectral and profile shapes from flat fields
apmask - Create and IRAF pixel list mask of the apertures
apnormalize - Normalize 2D apertures by 1D functions
aprecenter - Recenter apertures
apresize - Resize apertures
apscatter - Fit and subtract scattered light
apsum - Extract 1D spectra
aptrace - Trace positions of spectra
bplot - Batch plot of spectra with SPLOT
calibrate - Extinction and flux calibrate spectra
continuum - Fit the continuum in spectra
deredden - Apply interstellar extinction correction
dispcor - Dispersion correct spectra
dopcor - Doppler correct spectra
fitprofs - Fit gaussian profiles
identify - Identify features in spectrum for dispersion solution
msrespld - Create 1D response spectra from flat field and sky spectra
refspectra - Assign wavelength reference spectra to other spectra
reidentify - Automatically reidentify features in spectra
sapertures - Set or change aperture header information
sarith - Spectrum arithmetic
scombine - Combine spectra
scopy - Select and copy apertures in different spectral formats
sensfunc - Compute instrumental sensitivity from standard stars
setairmass - Compute effective airmass and middle UT for an exposure
setjd - Compute and set Julian dates in images
sfit - Fit spectra and output fit, ratio, or difference
skysub - Sky subtract extracted multispec spectra
slist - List spectrum header parameters
specplot - Scale, stack, and plot multiple spectra
- Preliminary spectral plot/analysis
- Tabulate standard star counts and fluxes
- Process fiber spectra
- Process slit spectra

**noao.imred.vtel:**
- destreak - Destreak He 10830 grams.
- destreak5 - First pass processing CL script for 10830 grams.
- dicoplot - Make dicomed plots of carrington maps.
- fitslogr - Make a log of certain header parameters from a FITS tape.
- getsqib - Extract the squibby brightness image from a full disk scan.
- makehelium - CL script for processing destreaked 10830 grams(second pass).
- makeimages - CL script for processing magnetograms into projected maps
- merge - Merge daily grams into a Carrington map.
- mroto - Log some header parameters from a FITS rotation map tape.
- mscan - Read all sector scans on a tape and put them into images.
- pimtext - Put text directly into images using a pixel font.
- putsqib - Merge a squibby brightness image into a full disk image.
- quickfit - Fit an ellipse to the solar limb.
- readvt - Read a full disk tape and produce an IRAF image.
- rmap - Map a full disk image into a 180 by 180 flat image.
- syndico - Make dicomed print of daily grams 18 cm across.
- tcopy - Tape to tape copy routine.
- trim - Set all pixels outside the limb to 0.0 (use sqib for limb).
- unwrap - Remove effects of data wraparound on continuum scans.
- vtblink - Blink daily grams on the IIS to check for registration.
- vtext - Examine a vacuum telescope tape, print headers and profile.
- writetape - CL script to write 5 full disk grams to tape.

**noao.mtlocal:**
- ldumpf - List the permanent files on a Cyber DUMPF tape
- r2df - Convert a CTIO 2-d frutti image into an IRAF image
- rcamera - Convert a CAMERA image into an IRAF image
- rdumpf - Convert IPPS rasters from a DUMPF tape to IRAF images
- ridsfile - Convert IDSFILES from a DUMPF tape to IRAF images
- ridsmt - Convert mountain format IDS/IRS data to IRAF images
- ridsout - Convert a text file in IDSOUT format to IRAF images
- rpds - Convert a PDS image into an IRAF image
- rrcopy - Convert IPPS rasters from an RCOPY tape to IRAF images
- widstape - Convert ONEDSPEC spectra to IDSOUT text format

**noao.nproto:**
- binpairs - Bin pairs of (x,y) points in log separation
- findgain - Estimate the gain and readnoise of a CCD
- findthresh - Estimate a CCD’s sky noise from the gain and readnoise
- iralign - Align the mosaiced image produced by irmosaic
- irmatch1d - Align and intensity match image produced by irmosaic (1D)
- irmatch2d - Align and intensity match image produced by irmosaic (2D)
- irmosaic - Mosaic an ordered list of images onto a grid
linpol - Calculate polarization frames and Stoke’s parameters
slitpic - Generate IRAF image of aperture slit mask

- **noao.onedspec:**
  - bplot - Batch plots of spectra
  - calibrate - Apply extinction and flux calibrations to spectra
  - continuum - Fit the continuum in spectra
  - deredden - Apply interstellar extinction correction
  - dispaxis - Dispersion axis parameters for 2D images
  - dispcor - Dispersion correct spectra
  - dopcor - Apply doppler corrections
  - fitprofs - Fit gaussian profiles
  - identify - Identify features in spectrum for dispersion solution
  - lcalib - List calibration file data
  - mkspec - Generate an artificial spectrum
  - names - Generate a list of image names from a string
  - ndprep - Make neutral density filter calibration image
  - refspectra - Assign wavelength reference spectra to other spectra
  - reidentify - Automatically identify features in spectra
  - sapertures - Set or change aperture header information
  - sarith - Spectrum arithmetic
  - scombine - Combine spectra having different wavelength ranges
  - scopy - Select and copy apertures in different spectral formats
  - sensfunc - Create sensitivity function
  - setairmass - Compute effective airmass and middle UT for an exposure
  - setjd - Compute and set Julian dates in images
  - sfit - Fit spectra and output fit, ratio, or difference
  - sinterp - Interpolate a table of x,y pairs to create a spectrum
  - slist - List spectrum header parameters
  - specplot - Stack and plot multiple spectra
  - splot - Preliminary spectral plot/analysis
  - standard - Identify standard stars to be used in sensitivity calc

- **ADDITIONAL HELP TOPICS**
  - package - Discussion and overview of package including sections on:
    - spectral formats, dispersion coordinates, and units

- **noao.rv:**
  - continpars - Edit continuum subtraction parameters
  - filtpars - Edit the filter function parameters
  - fxcor - Radial velocities via Fourier cross correlation
  - keywpars - Translate the image header keywords used in RV package
  - rvcorrect - Compute radial velocity corrections

- **noao.twodspec:**
  - apextract - Aperture Extraction Package
  - longslit - Longslit Package
- 13 -

**noao.twodspec.apextract:**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apall</td>
<td>Extract 1D spectra (all parameters in one task)</td>
</tr>
<tr>
<td>apdefault</td>
<td>Set the default aperture parameters and apidtable</td>
</tr>
<tr>
<td>apdemos</td>
<td>Various tutorial demonstrations</td>
</tr>
<tr>
<td>apedit</td>
<td>Edit apertures interactively</td>
</tr>
<tr>
<td>apfind</td>
<td>Automatically find spectra and define apertures</td>
</tr>
<tr>
<td>apfit</td>
<td>Fit 2D spectra and output the fit, difference, or ratio</td>
</tr>
<tr>
<td>apflatten</td>
<td>Remove overall spectral and profile shapes from flat fields</td>
</tr>
<tr>
<td>apmask</td>
<td>Create and IRAF pixel list mask of the apertures</td>
</tr>
<tr>
<td>apnormalize</td>
<td>Normalize 2D apertures by 1D functions</td>
</tr>
<tr>
<td>aprecenter</td>
<td>Recenter apertures</td>
</tr>
<tr>
<td>apresize</td>
<td>Resize apertures</td>
</tr>
<tr>
<td>apscatter</td>
<td>Fit and subtract scattered light</td>
</tr>
<tr>
<td>apsum</td>
<td>Extract 1D spectra</td>
</tr>
<tr>
<td>aptrace</td>
<td>Trace positions of spectra</td>
</tr>
</tbody>
</table>

**ADDITIONAL HELP TOPICS**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apbackground</td>
<td>Background subtraction algorithms</td>
</tr>
<tr>
<td>approfiles</td>
<td>Profile determination algorithms</td>
</tr>
<tr>
<td>apvariance</td>
<td>Extractions, variance weighting, cleaning, and noise model</td>
</tr>
<tr>
<td>package</td>
<td>Package parameters and general description of package</td>
</tr>
</tbody>
</table>

**noao.twodspec.longslit:**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>background</td>
<td>Fit and subtract a line or column background</td>
</tr>
<tr>
<td>extinction</td>
<td>Apply atmospheric extinction corrections to images</td>
</tr>
<tr>
<td>fitcoords</td>
<td>Fit user coordinates to image coordinates</td>
</tr>
<tr>
<td>fluxcalib</td>
<td>Apply flux calibration to images</td>
</tr>
<tr>
<td>identify</td>
<td>Identify features</td>
</tr>
<tr>
<td>illumination</td>
<td>Determine illumination calibration</td>
</tr>
<tr>
<td>reidentify</td>
<td>Reidentify features</td>
</tr>
<tr>
<td>response</td>
<td>Determine response calibration</td>
</tr>
<tr>
<td>setairmass</td>
<td>Compute effective airmass and middle UT for an exposure</td>
</tr>
<tr>
<td>setjd</td>
<td>Compute and set Julian dates in images</td>
</tr>
<tr>
<td>transform</td>
<td>Transform longslit images to user coordinates</td>
</tr>
</tbody>
</table>

Many of the tasks in the NOAO packages are visible in several different packages. Although these are the same tasks and provide the same functionality, the default parameters are often set differently to account for different instruments or uses.