CO₂ CHEMISTRY The combustion of fossil fuels and organic substances produces CO₂. Such combustion also happens within our bodies. We emit CO₂ with the air we exhale. CO₂ in the air is an important greenhouse gas. $$C_6H_{12}O_6$$ (solid) + $6O_2$ (gas) \rightarrow $6CO_2$ (gas) + $6H_2O$ (water) + energy ## CO₂ IN WATER If CO₂ is dissolved in water it forms carbonic acid (H₂CO₃). $$CO_2$$ (gas) \longleftrightarrow CO_2 (dissolved) CO_2 (dissolved) \longleftrightarrow H_2CO_3 (dissolved) Increased absorbtion of CO₂ in the oceans accounts for around one-quarter of human-made CO₂ emissions. H₂CO₃ is an acid that releases protons. $$H_2CO_3$$ (dissolved) \longleftrightarrow HCO_3^- (dissolved) $+$ H^+ (dissolved) This causes the water to become more acidic (lower pH) and we get ocean acidification. ## CO₂ IN SOILS The concentration of CO₂ is much higher in soils than in the air. This causes the weathering of stones (CaSiO₃). $$CaSiO_3$$ (solid) + $2CO_2$ (gas) + H_2O (water) \longleftrightarrow Ca^{2+} (dissolved) + $2HCO_3^-$ (dissolved) + $2SiO_2$ (dissolved) This process is important for regulating the CO₂ concentration in the air, but it is far too slow to have any significant effect on the increase of CO₂ concentration in the atmosphere. Limestone is easily dissolved and can be used to show the effect of increased CO₂ on weathering. $$CaCO_3$$ (solid) + CO_2 (gas) + H_2O (water) Ca^{2+} (dissolved) + $2HCO_3^-$ (dissolved) LAND CaSiO₃ + 2CO₂ + H₂O \rightarrow Ca²⁺ + 2HCO₃ + 2SiO₂ WEATHERING OCEAN $Ca^{2+} + 2HCO_3^- \rightarrow$ $CaCO_3 + 2CO_2 + H_2O$ SEDIMENTATION CaCO₃ + SiO₂ → CaSiO₃ + CO₂ CONVERSION