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WHAT IS ABSTRACTION?

• Considered fundamental for computer science (e.g. Dijkstra, 1972)

• Two points of view (Statter & Armoni, 2020)

• Changing the Resolution

• Black-box Interface (“what”) → Implementation (“how”)

• Experts move flexibly between levels of abstraction

• “Simultaneously seeing things ‘in the large’ and ‘in the small’” (Knuth, in 

Hartmanis, 2007)

• Part of generalising activity? (Ellis et al., 2022)



ABSTRACTION IS IMPORTANT

• Navigating complexity - “seeing the forest for the trees”

• Important for understanding (Wiggins & McTighe, 2005):

• Explaining

• Interpreting

• Applying

• Perspective

• In elementary mathematics, abstraction errors > math errors

(Rich,  Yadav & Zhu, 2019)



IT IS ALSO CHALLENGING

• Novices gravitate towards lower levels of abstraction (Hazzan & Zazkis, 2005)

• Get hung up on details, syntax…

• This particular case in itself (not as a representation of something more general)

• Unfamiliarity and discomfort increase these tendencies!

• Errors common when students shift between levels (Rich, Yadav, Zhu 2019)

• Meanwhile, experts may operate on several levels of abstraction at once

(Hazzan, 2003)

• Often unconscious behaviour!

• Almost never explicit



TEACHING ABSTRACTION TO NOVICES

• Armoni’s (2013) framework

• Explicit attention to levels of abstraction (language cues signify which level)

• Explicit attention to moves between levels

• Opportunities for students to reflect on their own abstraction processes

• Improved 7th grade CS students’ abstraction abilities (Statter & Armoni, 2020)

• Also improved their general CS performance



COMPUTING → MATHEMATICS?

• Abstraction is important both for computing and mathematics

• A simple print() in Python represents over 100 lines of code (written in C)!

• “and then it easily follows that…” → actually means 4 pages of calculations

• Example: Functions (mathematics, programming)

• Implementation (definition; how does the function do what it does)

• Interface (black-box application; what does the function do in this context)

• Challenging to master for novices in either discipline



PYTHON MAKES ABSTRACTION 
EXPLICIT



PYTHON MAKES ABSTRACTION 
EXPLICIT

• Loops / if-else blocks

• Indentation = abstraction level?

• Functions

• Interface: How to use the function / what it does

• Implementation: How the function works

• Classes (blueprint for objects)

• May inherit from more general base classes

• May create subclasses for specialised purposes



TEACHING DESIGN 

• Abstraction as a learning goal (in math/programming)

• Is it fundamental? Important? Or just a bonus?

• Proof of understanding abstraction

• How to probe abstraction specifically?

• What does understanding abstraction even mean?

• Learning activities

• Being explicit about abstraction (role model)

• Activities that not only require abstraction, but are about abstraction?



POSSIBLE RESEARCH QUESTIONS

• How do students think about/work with Python’s built-in levels of abstraction 

in a traditional teaching setting?

• What difference does explicit attention to levels of abstraction make for 

students’ learning in a scientific programming (computing) context?

• How do students who show proof of understanding abstraction approach 

complex problems compared to those who do not?

• How do students generalise a good understanding of abstraction in one 

context (such as programming) to other contexts (such as mathematics)?



WHAT ABOUT OTHER CONTEXTS?

• What does abstraction look like in physics?

• Applying a law/formula in a black-box fashion (interface)

• Deriving said law/formula and understanding why it works (implementation)

• Chemistry?

• Biology?
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DISCUSSION

Also, questions?


