SPM Journal Club: More realistic approaches to Evolution with IPMs

Integral projection models (IPMs) have become a popular tool to assess questions relating to eco-evolutionary dynamics. Within IPMs, change in a continuous trait of interest (body length, leaf area, horn size etc.) are modelled both within generations (growth) and across generations (inheritance). However, current methods of estimating growth and inheritance inherently fail to properly estimate phenotypic evolution.

We discuss a paper released last month that proposes a new take to the construction of growth and inheritance functions:




Integral projection models (IPMs) are extremely flexible tools for ecological and evolutionary inference. IPMs track the distribution of phenotype in populations through time, using functions describing phenotype-dependent development, inheritance, survival and fecundity. For evolutionary inference, two important features of any model are the ability to (i) characterize relationships among traits (including values of the same traits across ages) within individuals, and (ii) characterize similarity between individuals and their descendants. In IPM analyses, the former depends on regressions of observed trait values at each age on values at the previous age (development functions), and the latter on regressions of offspring values at birth on parent values as adults (inheritance functions). We show analytically that development functions, characterized this way, will typically underestimate covariances of trait values across ages, due to compounding of regression to the mean across projection steps. Similarly, we show that inheritance, characterized this way, is inconsistent with a modern understanding of inheritance, and underestimates the degree to which relatives are phenotypically similar. Additionally, we show that the use of a constant biometric inheritance function, particularly with a constant intercept, is incompatible with evolution. Consequently, current implementations of IPMs will predict little or no phenotypic evolution, purely as artifacts of their construction. We present alternative approaches to constructing development and inheritance functions, based on a quantitative genetic approach, and show analytically and through an empirical example on a population of bighorn sheep how they can potentially recover patterns that are critical to evolutionary inference.



Published Oct. 31, 2016 11:19 AM - Last modified Nov. 10, 2016 11:23 AM