New publication: Vision using multiple distinct rod opsins in deep-sea fishes

By Zuzana Musilova, Fabio Cortesi, Michael Matschiner*, Wayne I. L. Davies, Jagdish Suresh Patel, Sara M. Stieb, Fanny de Busserolles, Martin Malmstrøm*, Ole K. Tørresen*, Celeste J. Brown, Jessica K. Mountford, Reinhold Hanel, Deborah L. Stenkamp, Kjetill S. Jakobsen*, Karen L. Carleton, Sissel Jentoft*, Justin Marshall, Walter Salzburger* in Science


Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin–based vision in vertebrates.

10 May 2019: Vol. 364, Issue 6440, pp. 588-592
DOI: 10.1126/science.aav4632
Publication webpage.

* Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
See the publication webpage for full author information.

Tags: Science
Published May 10, 2019 3:36 PM - Last modified May 10, 2019 5:17 PM