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ABSTRACT: Classical Darwinian evolution processes involve a natural implementation of a mathematical optimization
process, in this case the maximization of a quantity called “fitness.” Like most optimization processes, evolution is subject
to some well recognized mathematical difficulties, particularly the problem of a system becoming “stuck” in a local
extremum of the fitness function instead of the global extremum. Recent developments in the mathematics of
optimization processes provide some insight into both the nature of this difficulty and possible means of avoiding the

problem.
* * * *

Mass extinctions have been the subject of much recent debate, and most of the discussion has naturally centered on
the causes of such extinctions. Here I wish to focus instead on the effects of the extinctions. It seems obvious that an
evolutionary process that contains a mechanism that produces episodic mass extinctions will have different effects than
one that lacks such a mechanism. Different ecosystems will be produced. But how will those ecosystems be different?
What are the overall effects of mass extinctions on the evolutionary process? A consideration of the behavior of some
simple but powerful mathematical algorithms may shed some light on these questions.

The broad class of mathematical algorithms that relate to this problem is the class that involves maximization or
minimization of a function’, particularly a function of many variables. Although there is a variety of methods available
for solving these problems, virtually all of them share a common critical difficulty, the inability to distinguish between a
local and a global extremum. If the function being explored has a large number of local extrema, then nearly all of these
algorithms will converge on one particular extremum and ignore all of the others. In these circumstances the “global”
extremum can be extremely difficult to locate. As Press et al., put it, “Virtually nothing is known about finding global
extrema in general.” (1987, p 274). Even very large and nearby extrema (that are not necessarily global extrema) can
be difficult to locate.

The problem of finding the extreme value of a function is of more than mathematical interest, because many of the
maximization algorithms have analogues in the real world, and an understanding of the behavior of the mathematical
algorithms can lend insight into the behavior of the analogous real systems, especially biological systems. The tendency
of a biological system evolving under Darwinian natural selection to get “stuck” in a local maximum of a distribution of
fitness values is a problem that has long been recognized. In a previous paper I addressed a variant of this problem, and
showed how feedback loops could create a mechanism by which an individual species could avoid being “stuck” in a local
maximum of the fitness curve (Robertson, 1991). This paper is concerned with a broader problem. Entire ecological
systems that contain a large ensemble of interacting species may also exhibit a tendency to become stuck in a local
maximum of an extremely complex objective function.

This objective function for an ecosystem should not be confused with the fitness function for individual species. It
is a far more complex entity, one that depends in a highly complex manner on the fitness functions for all of the species
present in the ecosystem. To clarify the distinction I will use the term “objective function” when referring to the quantity
that is optimized for an entire ecosystem, and the term “fitness function” only when referring to the evolutionary behavior
of an individual species.

A novel mathematical technique has recently been devised that deals with the problem of finding global extrema of
complex objective functions in a manner that is simple, somewhat counter-intuitive, and startlingly effective, although it
is not perfect. The algorithm goes by the name “simulated annealing” because it is a close analogue to solidifying and
crystallizing processes that commonly occur in physical chemistry; as we will see it may have analogues in biological
processes as well, analogues that are particularly helpful for understanding the effects of mass extinctions.

We can illustrate the working of the simulated annealing algorithm in two contexts, one mathematical, the other
physical. The mathematical context involves the famous Traveling Salesman Problem (TSP). The physical problem is

'There is no important difference between maximization and minimization problems--one can be converted into the
other by changing a sign. They will be used interchangeably through this text. The function whose extremum is sought
has a variety of names in different disciplines. In mathematics it is sometimes called the objective function; in economics
the cost function; in evolutionary biology the fitness function. These terms may be used interchangeably.
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as simple as a marble rolling on a complicated surface.

The TSP is easy to state. Given a set of points on a plane, find the shortest (closed) path that touches all of these
points at least once. The name of the problem derives from its usefulness to a traveller who must visit a number of cities,
who naturally wishes to expend the minimum possible time and effort.

The TSP has been called the most important unsolved simple problem in mathematics. Its solution would
immediately allow the solution of an amazing variety of similar problems, all classified under the mathematical rubric
of NP-complete problems (See Stewart, 1987, pp. 208-212 for a discussion of NP-complete problems). The TSP is
incredibly easy to state and to understand, and, paradoxically, it is simultaneously both trivial and impossible to solve.
1t is trivial in that its solution is easily understood by a small child. You simply tabulate all of the possible paths that
touch the given points, add up the length of each path, and select the shortest. But the problem is also impossible,
because the trivial solution generally cannot be finished even by the fastest theoretical computers operating for geologic
timescales. The difficulty is not solving the problem, but finding a solution in a reasonable amount of time.?

A simple algorithm for dealing with the TSP begins by taking any path that connects the points. The algorithm then
proceeds by trying “small” changes to the path®. If the trial path is shorter than the original then the change is kept,
and further changes are tested. This algorithm is simple and reasonably efficient, but it suffers from the classic problem
of optimization algorithms, the tendency to get stuck in a local minimum. If there is a shorter path that requires a major
change rather than a sequence of minor changes, this algorithm will never find it.

The simulated annealing algorithm provides a simple variation on this procedure that does a remarkably effective
job in avoiding the problem. The trick is to accept all of the shorter paths, and some of the longer paths. The key lies
in the decisions concerning which of the longer paths should be accepted. This is done randomly. The algorithm works
by starting with a fairly high probability of accepting a longer path; it then proceeds to decrease this probability gradually.
The details of the algorithm can be found in standard references (e.g., Press er al, 1987, pp. 326-334). The most
surprising thing about the algorithm is not so much that steps are needed in the “wrong” direction (this is a mathematical
consequence of the existence of local extrema) but that random steps in the “wrong” direction could be so effective in
searching for the global extremum.

Press gives examples that illustrate the effectiveness of the algorithm, and says that: “For practical purposes, it [the
algorithm] has effectively solved the famous traveling salesman problem . . .” (Press er al., 1987, p 326). As noted above,
the algorithm is called “simulated annealing” because the procedure of slowly decreasing the probability of accepting a
longer path is strongly analogous to the process of growing a crystal by slowly cooling a melt. The level of probability
of accepting a larger path is analogous to the temperature.

The second example that illustrates the functioning of an annealing algorithm involves a more physwal situation.
Consider a marble rolling on a surface. If the surface is smooth and shaped something like a bowl with only one
minimum then the marble is a simple and efficient mechanism that will always find the global minimum. All you need
is gravity, and a little friction. (Without friction, of course, the marble will never find the minimum.)

But suppose the surface is complicated. Particularly assume that the surface has a large number of dimples or holes
(extrema), of widely varying depth. A marble placed on such a surface will generally roll to some nearby local minimum
and stay there. There is no easy way to find a global minimum with a rolling marble. Again, as in the case of the TSP,
progress can only be made if we allow a certain number of “uphill” steps.

To see how a simulated annealing approach would work in this case, we begin by classifying the depth of each hole
according to the potential energy that would be released by the marble in dropping into the hole. The i*® hole would
correspond to a potential energy P, Now suppose we are able to give random kicks to the marble, each kick giving the
marble a constant kinetic energy AE. After a series of such kicks, the marble will generally not be trapped in any shallow
hole, that is, any hole such that P, < AE. But it will be trapped permanently in the first hole it encounters with P, >
AE. Now suppose the deepest hole has a potential P,,,. If we start by giving the marble a sequence of kicks such that
AE > P, the marble generally will not settle down anywhere. We then gradually decrease AE, and when it becomes

’To illustrate the difficulty, suppose you have 25 “cities” to visit, and you have a computer that can
calculate 1,000,000 possible paths in one second. Such a computer will exhaustively solve the problem in
only 20 billion years. Next suppose that you have a really fast computer, one that could solve the 25-city
problem in only one year. Such a computer could solve a 50-city problem in a mere 10% years. It thus
seems safe to assert that the most powerful computers, even in theory, cannot solve the general traveling
salesman problem by exhaustive search.

’It is not necessary to specify here what is meant by a “small” change. Different algorithms use
different choices. For a discussion, see Press et al., p 328.
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less than P, there will be a good probability that the marble will eventually become trapped in the deepest hole. Thus
the importance of decreasing AE slowly: the marble must have sufficient time to find the right hole at each energy level.
Further decreases in AE will allow the marble to “explore” lesser holes near the bottom of a deep hole, and thereby have
a good chance of finding the overall global minimum.

Notice that this procedure is not guaranteed to find the global extremum--only to have a certain probability of finding
it. But absolute mathematical guarantees are hard to come by in the real world. In practice, the annealing method is
found to work well on real problems, well enough that it is of great practical use in dealing with practical problems
similar to the TSP, such as the design of the interconnections among the circuit elements on integrated circuit chips®.

The relevance of this discussion to the evolution of a complex ecosystem lies in the fact that the ecosystem may also
have a tendency to stick in a local extremum of a complex objective function. Variation and natural selection by
themselves will tend to find such local extrema. Darwinian evolution may therefore be adequate to find the extremum
of a very simple and smooth objective function, but it may well have difficulty in finding the global extremum (or even
a large and nearby local extremum) of a very complex objective function. In pure Darwinian evolution there is no obvious
way around this difficulty, no ready analogue of the process of occasionally accepting a poorer solution in hope of finding
a different, (higher) maximum in the objective curve. In other words, individuals with low fitness values in a given
ecosystem will not be selected simply because there is a chance that in some other ecosystem they might have a very high
fitness value. Thus in order to explore a complicated objective function thoroughly and find global extrema (if they exist)
or even to locate the larger local extrema, we will need to have an analogue to the procedure of “kicking” the marble.

It may be possible to find such an analogue in processes that are esseatially external to the biological system. An
ecosystem may be disturbed by mass extinctions caused by such an external process, such as an asteroid impact or a major
climate or sea-level change, for example. The extinction process can provide the needed analogue to a random “kick”
(to an entire ecosystem) from outside the system. The organisms that survive following the extinction will generally evolve
toward some new and probably different maximum in the objective function. As with the simulated annealing algorithm,
there is no guarantee that the system will in fact find a higher maximum, or even a different one, only a certain
probability that it will. There is, however, a good chance that if the new maximum is higher, that it will be more resistant
to processes that cause mass extinctions, just as the marble that happened to land in a deep extremum will resist small
“kicks.” It may thus endure for a longer time, and we may have a higher probability of observing it.

How do we know that the extinction will take the system lower on the objective function, away from the local
maximum? If the system is truly at such a local extremum, then the answer to this question is almost a mathematical
tautology: any change at all relative to a local maximum will take the system lower on the function, by definition.

This procedure will only be important if the objective function is complicated enough to have a broad spectrum of
local extrema. Whether it is or not is a question that needs to be investigated in more detail than can be done in this
brief essay. There are, however, several reasons to think that it must possess such complexity. In the first place,
extremely complex objective functions are commonly found in very simple problems such as the TSP. Although it is not
impossible, there is no general reason to expect that systems that are far more complicated (such as biological
ecosystems) will have simpler objective functions. More tangibly, if the objective function of an ecosystem were very
simple, then we would expect that the system would tend to return to the same extremum, i.e., the same ecosystem would
tend to re-evolve following a disturbance such as a mass extinction, just as a marble in a simple, bowl-shaped surface will
return to the same point after being disturbed. But, plainly, ecosystems do not tend to repeat themselves after such
events. Kauffman and Levin (1987) give a detailed development of the some of the implications of the objective functions
having this level of complexity. For this discussion I am assuming that the function is sufficiently complex that the
problem of a system becoming trapped in a local extremum is serious.

Mass extinctions can be thought of as a form of super-variation, different from the normal variation of Darwinian
evolution principally in that super-variation acts to change whole systems of species at once, rather than to change
individual species. We should not be too surprised to find that random super-variations are effective (given that ordinary
random variation is also effective) in providing the raw material on which natural selection can act. Natural selection
is the important non-random factor here. The two important facts about super-variation are, first, that it can act in
directions other than toward the local maximum of the objective function (as can ordinary variation), and second, that
it can sometimes move the system far enough along the objective function to escape some particular local extremum.

In his recent book describing the difficulties posed by the organisms fossilized in the Burgess shale, Gould spends
some time debating whether or not there is any pattern to the species that survive mass extinctions (Gould, 1989, pp. 305-

“‘Recall the difficulty of solving the TSP for numbers in the range of 20-50 cities. In contrast, the
simulated annealing algorithm routinely solves similar problems involving the interconnections of hundreds
of thousands of components on integrated circuit chips.
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308). If in fact mass extinction is a form of super-variation, then the problem disappears. We do not expect ordinary
variation of species to be other than a random effect, and no more should be expected of super-variation.

We have described here a system with two levels of variation: the usual one caused by random mutations and sexual
shuffling of genetic material, and the second caused by mass extinction processes. There is no particular reason that the
situation could not be more complicated, with several different levels or types of super-variation. For example there could
be a variety of different mechanisms (of varying efficiency) for producing mass extinctions. Such a multi-level system
could well prove extremely efficient for exploring very complex objective functions.

Mass extinctions are probably not the only mechanism capable of kicking an ecosystem out of a local extremum in
the objective function. If the extremum is sufficiently shallow, ordinary species variation might be enough to spill the
system over a low “watershed.” Kauffman and Levin describe the possibility of an evolutionary “long jump,” i.e., a single
mutation that has large effects on an organism (Kauffman and Levin, 1987, p 33), and Gould describes a similar
mechanism he refers under the heading of “hopeful monsters” [Gould, 1982, pp. 186-193]. These mechanisms may
provide yet another type of “super-variation,” another mechanism by which ecosystems can avoid being trapped in local
extrema of the objective function.

Another aspect of the simulated annealing algorithm may be relevant to biological problems. In simulated annealing
processes the broad outlines of the final solution generally appear early in the process--the ball is trapped in the vicinity
of the deepest hole early on. Large variations away from the final solution are seen only very early in the process. Press
describes an example of this behavior in a variant on the TSP that involves a penalty for the connecting path when it
crosses certain boundaries that are somewhat whimsically termed “rivers.” Solutions that involve more than the minimum
number (two) of river crossings appear only at the very beginning of the process. The final number of crossings appears
fairly early in the solution process, and tends not to change through successive iterations.

This behavior is perhaps clearest in the case of the rolling marble, wherein many portions of the complex surface are
explored only in the early part of the solution before the marble is trapped in the very deep holes. Similarly, in the
evolution of biological systems, the variety of possibilities that is “tested” is larger in earlier times, and quickly decreases
with time. Gould refers to this as a pattern of “maximal early breadth.” He says “Paleontologists have long recognized
the Burgess pattern of maximal early disparity in conventional groups of fossils with hard parts. The echinoderms provide
our premier example.” (Gould, 1989, p 310-311). This pattern should be recognized as the natural consequence of a
system that is evolving under something like an annealing algorithm.

Mass extinctions in the fossil record may lack one critical feature of the simulated annealing algorithm--there is no
clear “cooling” process. That is, there is no obvious mechanism by which the mass extinctions mechanisms would be
made to decrease gradually with time--they may in fact not decrease at all. Thus the process may resemble periodic re-
melting rather than annealing. Nevertheless, by analogy with the rolling marble problem, a system that is periodically
“kicked” may eventually get to a deeper extremum, and get there faster, than a system that is not kicked at all. There
has been little mathematical analysis of such an “annealing” process without cooling. It seems intuitively, however, that
such a system, even without cooling, will still spend more time in the vicinity of global extrema of the objective function
than will a system that lacks the extinction processes. This assertion may need more detailed, quantitative analysis.

There is one possible mechanism for “cooling” the mass extinction process, although it relies on a number of
controversial or untested assumptions. If asteroid impacts are a major (not necessarily exclusive) cause of such
extinctions, the frequency of these impacts should decrease with time as these celestial bodies are swept up by the major
planets. It is clear from studies of craters on the Moon that there was a significant gradient in the frequency of impacts
after the first billion years or so of the Earth’s history (see, e.g., Short, 1978, pp. 94-96). Whether or not the rate of
change is large enough to cause significant “cooling” is something that will require further study. This process may be
taking the word “slow” to an extreme,

We should not lose sight of the fact that the biological systems that are evolving under Darwinian natural selection
arc almost infinitely more complex than the simple mathematical models (e.g., the TSP) we have explored here. In
particular, it has been suggested that the fitness function for individual organisms is controlled by the existence of other
organisms (see, e.g., Van Valen, 1980; Robertson, 1991). Thus a mass extinction event would not only knock a system
out of a local extremum in the objective function, it would vastly alter the objective function itself, thereby producing a
wildly non-linear situation that could enormously amplify the effects of the extinction itself. In other words, the objective
function (or the complex surface that the marble is rolling on) is not only extremely complex but is time-variable as well,
and the time variations can be both rapid and extreme where mass extinctions are involved. Thus the general problem
of the effects of mass extinctions may prove to be far more complicated than would be implied by the simple example
of a marble rolling on a complex surface that is not time-variable. The non-linearities introduced by time variability lead
directly to feedback loops and chaotic behavior, as outlined in Robertson, (1991). The mathematical complexities inherent
in such chaotic behavior suggest that the patterns seen in biological evolution may in the long run be no more predictable
than the weather.
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Darwinian evolution upset the earlier notions of special creation of species. It showed how species could be produced
by the mechanistic process of natural selection. But some Darwinists created a comfortable myth of their own, the myth
that present-day species, including of course the human race, were the natural, perhaps inevitable, product of a process
of slow, steady, inexorable improvement of organism design by variation and selection, a process in which organisms
slowly found their way along a smooth, well-behaved fitness curve. This concept underlies the idea of evolutionary
“gradualism” contrasted to more recent ideas such as Gould and Eldridge’s “punctuated equilibrium.” But “gradualism”
almost certainly requires smooth and well behaved fitness functions. If we allow the possibility that the function is not
smooth or well-behaved in the mathematical sense, but instead has fractal-like characteristics and is strongly time-variable,
then species we observe today may represent only the present, fascinating pattern created by a chaotic process. Present
ecosystems might be but one beautiful loop on pattern of Mandelbrot-like complexity, or more precisely, on a pattern
so complex that it makes the Mandelbrot set look smooth and simple by comparison.
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