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What's in a niche? II. Responses of trophic niche indices to simulated and actual
prey distributions and sampling regimes.

Sifford Pearre, Jr.
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1

ABSTRACT: If data on prey in a predator’s diet can be ordered so as to produce a normal or lognormal
distribution, ordinary normal-curve statistics can be used to describe trophic niche breadth or position.
Substitution of prey species sizes for taxon names provides a simple means of producing such an order
(Pearre, 1999). Using simulated normal and lognormal prey distributions, this study examines the utility
and reliability of two such statistical indices in commonly encountered situations of data acquisition and
manipulation, compared to four of the most commonly used taxon-based niche-width indices. In order
to illustrate the effect of prey identification level, data on three widely different predator species were
also analyzed.

Although the Shannon-Weaver index standardized to its maximum value was probably the most
useful of the conventional indices, the standard deviation of the logarithmically transformed prey size
distribution (christened "SLH") seems overall the best of all the indices considered. However, the
related and non-dimensional coefficient of variation of the normal distribution (“CVH") may be more

useful under certain circumstances.
* * *

INTRODUCTION:

In a previous publication (Pearre, 1999), I have argued that trophic niche estimators should be
based on the numbers and sizes of prey species, rather than on taxonomic categories. When using size
data in an index designed for taxonomic categories, the sizes can of course be themselves regarded as
taxa, as long as no two taxonomic species are of the same mean size. Thus it is feasible to examine the
behaviors of such niche indices in the same analysis as niche indices based on size distributions.

By means of simulated data, this study compares two statistical measures of prey size-spectrum
widths- the coefficient of variation of prey sizes (“CVH", Pearre, 1986) and the standard deviation of
logarithmically-transformed prey sizes ("SLH", Pearre, 1986)- to the four most popular taxon-based
trophic niche indices. First, I shall examine the responsiveness of each index to the parameters of prey
distributions, including the number of prey classes, total number of prey, and degree of aggregation of
the prey into the classes. Secondly, I shall demonstrate that the properties of the size-based statistical
niche indices are superior to those of the four most popular taxon-based trophic niche breadth indices for
practical data manipulation. Thirdly, I shall discuss examples from the recent literature, using this
analysis, showing the superior utility of the statistical niche indices in ecological investigation.

For the purposes of this paper, I shall designate as “predators” all organisms being considered as
consumers, whether carnivores or not, and as "prey” all those organisms which they consume.

Evolutionary Theory 12: 23-37 (October, 1999)
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MATERIALS: THE INDICES:

The most popular indices used to describe trophic niches are undoubtedly those discussed by
Levins (1968): the first is generally called the inverse Simpson Index or Levins Index:

r
B, =1/ Z Py ¢
j=1
where p; = n; [ N; (the frequency of utilization of resources “j” by predator species “i”), with “t” being
the total number of possible resource states (prey species) and N; = ¥ n;. The second, an “information
theoretic index” (Emlen, 1973), I will term the Shannon Index, and it is based on the Shannon-Weaver
information theoretic, given by:
r
H;= -} p;log p @
=1

Both of these indices are designed to vary with the number of prey classes examined, but can be
misleading when class number (“species richness”) is affected by sample size. For this and other
reasons (see Colwell & Futuyma, 1971) they have been at least partly superseded as niche breadth
measures by versions normalized to their maximum theoretical values, which are reached when all
resource species are consumed equally (Pielou, 1969, Petraitis, 1979). These normalized indices are
considered to measure species evenness (Pielou, 1969; Hurlbert, 1971). For the Levins index this is "r”
(Levins, 1968), and the normalized Levins index has usually been symbolized by various authors as “"B”
or "B,”. The non-normalized version has also been symbolized as “"B" (also "B/, "B,", "B,”, "B.",
"NB”, “FNB”, and ();); B has also been used for the Shannon index and for Feinsinger et al.'s (1981)
index, and B’ for the Colwell & Futuyma (1971) and Hurlbert (1971) indices. To avoid confusion, I will
refer to the two versions simply as “Levins” and “Levins-N”. The Shannon index can be normalized by
division by its theoretical maximum, log(r). The non-normalized version has been termed “H”, "H"",
"H"", "H'NGG”, "PRD", "PSD", “FNB", and "B", and the normalized version “H/H_,.”, "H1", "H"",
"H'.", "h™, "e", "]” and "), while "H” is also used to designate the Brillouin index (Pielou, 1969). To
avoid confusion, I will likewise term these two “Shannon” and “Shannon-N”. These four indices will be
considered as standards against which to judge other approaches to trophic niche estimation. Note that
“species” as used above need not be (although it usually is) a taxonomic species: it is just as easy to use
other taxa such as genera or classes (e.g. Marti et al., 1993) or classification based on some other
characteristic such as color, size, or ecological requirements (Ehrlich & Holm, 1962; see Pearre, 1999).

In this study, these are compared to two statistical measures of the prey-size spectrum. The first,
which assumes an approximately normal distribution, is the coefficient of variation of the spectrum, that
is:

CVH = 100(s/m) 3)
where “s” is the parametric estimate of the standard deviation ¢ of the prey size distribution of estimated
mean "m". The second, assuming an approximately lognormal distribution, is “SLH", the parametric
standard deviation ”s™ of logarithmically-transformed prey sizes, expressed here as log,,. As standard
deviations are computed by a difference equation, standard deviations of logarithmic data are equivalent
~ to ratios of the untransformed data, giving both expressions similar content (Wright, 1968; Pearre, 1986).
Of course, the responses of the taxonomic indices (Levins’ and Shannon's and their derivatives) to these
distributions will be the same as to any other species assemblage in which each species is assigned some
unique size.
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METHODS AND RESULTS: THE SIMULATIONS:

I).Prey distributions of known characteristics: Investigation of relevant parameters and
preliminary results: In order to compare the statistical niche indices to the conventional set, simulated
data of known characteristics were generated. In the interest of clarity and to save space, the results of
the analyses are presented with the description of each test. Two approaches to simulation-based
exploration of the indices were used:

First, distributions were generated in which all of the principal statistical functions were
independently varied, in order to identify and rank the major influences on each index. Although some
of the factors are more apt than others to vary in real prey spectra, all were given equal total variation
(3x or 5x) for the purpose of fairly assessing sensitivity. Levels of each of these factors were chosen to
bracket realistic values (Pearre, 1986). The output of the niche estimations on these distributions was
analysed by forward-stepped analysis of variance (SYSTAT®, Wilkinson, 1991), with an entry tolerance
level of 0.01, indicating the order in which the independent variables and their higher-order interaction
terms affected the magnitude of each index. As numerical values would only refer to the particular
simulation parameters, results are given simply as rankings of factors and factor interactions.

A). In the first set 4 factors (mean, standard deviation, class number and prey number) were
varied over 3 levels each, in sets of both normal and lognormal distributions. The un-normalized Levins
and Shannon indices responded most strongly to the number of abscissa (“prey”) classes (Table Ia and
b), and somewhat surprisingly, for both normal and lognormal distributions, classes remained the best
predictor for the Shannon-N index as well. Except for the unmodified Shannon index (normal
distributions) and Levins index (lognormal distributions), total prey number was generally the second
best predictor in this group. The two important first-order interactions can be regarded as indicators of
aggregation of prey into groups. In these situations, the unmodified Levins index appears superior to the
other three related ones in assessing the importance of unevenness of lognormal prey distributions. In
both normal and lognormal sets, CVH and SLH were most influenced, as expected, by standard
deviation.

B). As the mean had generally proven a poor predictor in the four-factor simulations, a three
factor, 5 level lognormal simulation was generated with only standard deviation, class number and
total number varying (Table II). Class number remained the best predictor for both versions of the
Levins index and the Shannon index, but was second to prey number in Shannon-N. As before, the
(classes)*(total number) interaction was also important. Standard deviation remained the best
predictor for CVH and SLH.

II). Simulations of data collection and presentation: methods and results: Secondly, a group of
distributions was generated simulating common data manipulation tasks from samples of different
designs and reporting strategies: these should test how consistent the various indices are in ordinary
use. Of course, many of the situations were similar to those discussed in the first sets of simulations.
As these were not designed for analysis by factorial ANOVA, the results were generally examined
graphically and by linear regression (SYSTAT®). The combinations used were:

A). Increasing sample sizes: If the prey size class interval is not permitted to vary, then as
total prey number increases with a given distribution width, or distribution width increases with a
- given total number, the number of prey classes will increase. This simulates increasing sampling
effort in assemblages of varying distribution widths (Table III). For this two-factor simulation,
standard deviation and total sample size were the independent variables. All of the indices
responded more strongly to the standard deviation than to total prey number. This was initially
surprising, but is explained by the response of class number to these factors (Fig. 1): presumably the
Levins and Shannon indices are responding to standard deviation as a proxy variable. Standardized
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Fig. 1. Relationship of the number of classes to total prey number and standard deviation. 12 x 12 matrix, with distance-
weighted least-square smoothing (SYSTAT®). Standardized to a maximum value of 25.

AhREAREKTR KERAIAT AAEARE AAKAIEA AAA R AT ARTR AR AT A I At AR A I Ad ARk Ak A Ak h AR Rhd Fhddhh khhkdhk Ahkhdkhk dhdhhk hhhkdr %
Table I: Identification of major sources of variation: 4-factor, 3-level series, 3* = 81 distributions: prey class interval
unfixed, factorial design:

factors  levels levels
(@ ®
Normal: Lognormal:
mean 24, 48, 72 12, 24, 36
sd. 4,8 12 0.3, 0.6, 0.9
class# 6,12, 18 6, 12, 18
prey # 60, 120, 180 40, 80, 120
a). Normal: Significant (p<0.05) factors or interactions, in order':
Levins’ Index: CLASSES, PREY, PREY*S.D., CLASSES*MEAN*PREY*S.D
Levins-N: PREY, PREY*S.D., CLASSES*PREY, CLASSES*PREY*S.D.

Shannon Index: CLASSES, CLASSES*S.D., S.D.
Shannon-N: CLASSES, CLASSES*S.D., PREY, S.D.

CVH: S.D., MEAN*S.D.

SLH: S.D., MEAN*S.D., MEAN
b). Lognoemal:

Levins' Index: CLASSES, CLASSES*PREY

Levins-N: CLASSES, PREY

Shannon Index: CLASSES, PREY

Shannon-N: PREY, CLASSES*PREY, CLASSES

CVH: S.D., PREY*S.D., CLASSES*S.D., PREY, CLASSES
SLH: S.D., CLASSES*S.D., CLASSES*PREY*S.D., PREY*S.D.

! - order is rank of entry in forward stepped ANOVA model (SYSTAT®)
"MEAN" = arithmetic or logarithmic (as appropriate) mean of the distribution
”S.D.” = standard deviation of the distribution

“CLASSES” = number of prey species or size classes

"PREY” = total number of prey

* - denotes interaction between factors
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Table II: 3-factor, 5-level series: factorial design: 5° = 125 distributions:

Lognormal: mean = 10; class interval unfixed:
s.d. 0.2, 04, 0.6, 0.8, 1.0
class # 5, 10, 15, 20, 25
prey# 50, 100, 150, 200, 250

Significant (p<0.05) factors or_interactions, in order’;
Levins’ Index: CLASSES, CLASSES*PREY
Levins-N: CLASSES, PREY
Shannon: CLASSES, PREY
Shannon-N: PREY, CLASSES, CLASSES*PREY
CVH: S.D,, S.D.*PREY, CLASSES*S.D., CLASSES
SLH: S.D., CLASSES*S.D., SD*PREY, CLASSES*S.D.*PREY

! - order is rank of entry in forward stepped ANOVA model (SYSTAT®)

* - indicates interaction between factors

AAAAKRKAIAK AAAAAK A AT A I I AAETAA* AA A IR I AAAAAE AAHIAA AATAAK A ARNARK AR AR AI FRAARIT A RAAR A AR AR A h Ahh Ak RhRddhh A hkhk i %
Table II: Simulating increasing sampling effort.

Increasing sample sizes: 2-factor, 12 level series: 122 = 144 distributions:

Lognormal: fixed class interval, class number allowed to vary:
s.d. 0.05- 0.60 (+0.05%)
prey # 50- 600 (+50%)

Lognormal: _Significant (p<0.05) factors or interactions, in order®
Levins’ Index: S.D, PREY*S.D., PREY
Levins-N: S.D, PREY*S.D., PREY
Shannon Index:  S.D.
Shannon-N: S.D., PREY
CVH: S.D., PREY*S.D., PREY
SLH: S.D,, PREY*S.D., PREY

% . increment (additive)
® _ order is rank of entry in forward stepped ANOVA model (SYSTAT®)

* . denotes interaction between factors
hkhkhkk khkhkkkk AAkXAEX EREAIK XKXFREAR KT AIAA AAETRK AXAATI A AAAAX AR AATA AT A KA A hAhhh Ak vhk khhkkdh khkhkkh khkhkhkhk kkhkdk &

response surfaces of each index are shown in Fig. 2(a-f): from these the non-normalized Levins
Index and SLH appear to have the most linear responses to either factor, with CVH not far behind.
The Shannon Index takes a curvilinear approach to its maxima as standard deviation increases, but
appears very nearly constant as prey number (usually the more relevant variable) varies. Both the
Levins-N and Shannon-N indices appear very unreliable for small samples, though of course the
~ exact shapes of the response surfaces are influenced by the parameters and type of smoothing
function used (see figure headings). Hurlbert (1971) showed that evenness (here estimated by the
normalized niche indices) should decrease as sample size increases, but this is presumably offset by
the concomitant increase due to increasing class number.

B). Data summation: Data sets often consist of samples taken at different times or places,
and the researcher may wish to sum these for an overall value of the niche. Usually, there are two
directions for tabular data summation. The most obvious and generally useful is summation of
numbers of each prey species in the table across all of the samples in which it appears. This yields a
set of data in which each species appears only once, at the total number of that species found in the
whole original table, and is, of course, equivalent to increasing sample size (above). This type of
summation I have termed “horizontal” (as most data tables are set up in columns each representing a
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Fig. 2: Relationships of each of the niche breadth indices to total prey numbers and standard deviations of the
distributions. 12x12 element matrices, using distance-weighted least-square smoothing (SYSTAT®). All indices
standardized to a maximum value of 25.

a). Levins' Index.

b). Levins-N (as “N Levins”) Index: Levins’ Index normalized to “r”, the number of resource states ("prey
species”, “prey sizes”, or classes).

¢). Shannon's Index: the Shannon-Weaver or information theoretic index.

d). Shannon-N (as “N Shannon”) Index: Shannon’s index normalized to log "1”.

¢). CVH: the coefficient of variation (standard deviation/mean, x100) for the distributions.

f). SLH: the standard deviation of the distributions of log-transformed “prey sizes”.
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whole sample grouping, e.g. by date or locale), and horizontal summation must be the standard. The
other, and often more convenient way of summing data is to “stack” or append data sets end-to-end.
This results in many species appearing more than once in the final data set: I have called this "serial”
summation. Regardless of how any index changes as more distributions are added, in an ideal index
the changes resulting from horizontal and serial summation should be identical. To examine this,
each succeeding data set was made cumulative of all the previous ones. Useful summation is thus
testable by a regression of the results in serial summation against those in horizontal summation.
Details of the distributions and probabilities of the regressions are provided in Table IV. For visual
presentation, the results were arranged as the ratio of the value under serial summation to the value
under horizontal summation, plotted against the number of summed distributions.

1). The first test was summation of identical distributions. As would be predicted
from their forms, the Levins and Shannon indices and their normalized variants were constant-valued
in horizontal summation of identical distributions, but all except the normalized Levins index
increased as distributions were added serially (Fig. 3a and Table IV). In Levins-N, each generated
value was divided by the number by which the class number was incremented, which meant that
Levins-N was the only index in which serial summation was exactly equivalent to horizontal
summation. The non-normalized Levins and Shannon indices again responded mainly to class
number, which in serial summation, increases as more distributions are summed. In horizontal
summation, of course, the class number is constant, as were the indices. Note that Levins’ Index
corresponded absolutely to this factor. CVH and SLH declined slightly as distributions were added:

hkkdhhhhkdkk khkhkkk hkhhhdk khkhkhkhk hkhkhdhk dhhddhdk ddhAkd khhhhd khkhddd Ardhdd khkhhk kdkdkhhkh Fhhdhk dhhhhk dkhhkhd khkhkdc %

Table IV: Data summation:

Lognormal distribution types; 10 of each: fixed class intervals. These were added cumulatively to track the results of
horizontal and serial summation.

Identical Varying s.d.. Varying mean:
mean 25 10 2.5-30 (+2.59
s.d. 0.2 0.05-0.6 (+0.05% 0.15
class # 13 15 12
prey # 50 101 101

2 - increment (additive)

Regressions: Cumulative serial summation (dependent) vs. cumulative horizontal summation (independent):
Form: INDEX = a + b (# summed distributions): values of “a” omitted.

SERIES: index: b F-ratio p

a). Identical: Levins 1.0 - 0.0
Shannon 0.098 76.8 0.00002
Shannon-N 0.004 27.1 0.0008

"~ Levins-N was constant: CVH and SLH declined slightly (see text).

b). Varying s.d.: Levins 0.441 392.3 <0.0001
Levins-N 0.076 191.8 <0.0001
Shannon 0.028 109 0.008
Shannon-N 0.008 883 0.014

CVH and SLH had identical values under both types of summation.

¢). Varying mean: Levins 0.094 36.6 0.00012
Levins-N, Shannon's and Shannon-N had no significant relationships.
CVH and SLH had identical values under both types of summation.
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serial summation/ horizontal summation
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Fig. 3. Ratio of each index as determined by serial addition within data tables to its value from horizontal addition.
a). Identical data sets.
b). Data sets with variable standard deviation.
¢). Data sets with variable means.

Symbols: ™8 | cvins Index; + Levins-N; * Shannon Index; & Shannon-N; x CVH;@d1 SLH
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this is expected because of relative restriction of the tails of the cumulative (finite) distributions.
However, from Fig. 3a, it appears that the non-normalized Levins and Shannon indices are by far the
worst performers.

When differing distributions (the general case) are summed, the results are quite different. As
neither the prey sizes (or taxa) nor total class number was necessarily identical between distributions,
both forms of summation should generate changing class numbers.

2). When distributions of either varying standard deviations (Fig. 3b) or of varying mean
("niche position”) (Fig. 3c) were summed, all indices also changed: only CVH and SLH changed
identically under both forms of summation in both sets of simulations, but Shannon-N varied relatively
little. It appears that class number, which necessarily increases as distributions are added by either
method, again mainly controlled the magnitudes of all versions of the Levins and Shannon indices in
both cases, but as expected, less drastically in the normalized versions. As opposed to that, CVH and
SLH responded mainly to the broadening of the cumulative distributions.

C). Addition of information on within-size-class variability: The niche breadth estimated by a
finite number of weighted prey size classes should always be an underestimate of the true niche breadth,
as grouping prey into prey size classes always hides some within-class variance (see Pearre, 1999:
“Limitations”). If the distribution of prey sizes within each prey size class is added to the spectrum, the
true niche width should be approached. No index should decrease under these circumstances, but the
indices should be asymptotic as increased information about the variation is added, and clearly, vary as
little as possible. This was tested by adding normally distributed size data in increasing numbers of
classes to a framework of a basic lognormal distribution. This simulates the frequently encountered case
where prey sizes and standard deviations are supplied along with the total numbers per size class; it is
assumed that most authors supplying such data have used normal approximations for their data
variability estimation. For taxon-based niche indices, this is equivalent to adding prey species
information to data originally presented only as genera or higher taxa (see Greene and Jaksic, 1983).
Details of the generated distributions are provided in Table Va, and the behaviors of the indices are
shown in Fig. 4. Shannon-N varied least, followed closely by SLH and CVH, and all three appeared to

FAKAAKKARI AFAAKA AAAKAAE ERATA K AL ARAR ARA R AR AR AR R A AT AR AT AT AL R A A A AT Ah AAR A Ik AR KK KT XA TR AT AR A hk Ahhhkdk hhkik &
Table V:
a). Addition of information on within-size class variability:

Lognormal.
The first step up in class number is made by substituting a normal distribution having the same mean and prey

number as each class in the original Jognormal distribution, but with 3 prey sizes instead of the original one. Each subsequent
step is made by substituting a normal distribution of the same characteristics but with the prey size classes further subdivided.
Seven distributions. (see Fig. 4)

mean 20
s.d. 02
Prey # 480
subclasses/class 1,3,4,5,6,7,9
total class # 7, 21, 28, 35, 42, 49, 63

b). Variable spacing on the prey-size axis: This involved a single value per size class, but with the intervals between the size
classes varying. Distribution 1 was approximately normal but very tightly aggregated, while Distribution 2 had a larger
variance. Distribution 3 was uniform, while Distribution 4 was essentially a normal distribution split in half and reassembled
with the peaks at the extremes.

(see Fig. 5): 4 distributions:

mean 12.5
minimum 1
maximum 25

class # 49
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Fig. 4. Response of each index as supplementary data (ordinates of normal sub-distributions: see text) are added to an original
lognormal “prey size” distribution with 7 classes. Abscissa values are the maximum number of classes inserted at the original
prey size class in each run. Indices are standardized to their means for presentation on the same ordinate scale. Symbols as
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approach asymptotes, as desired. Levins’ Index increased most and did not appear to be approaching an
asymptote, and Levins-N actually decreased.

D). Variable spacing on the prey-size axis: Thus far, spacing on the prey-ranking axis has
been held constant within any distribution, as the Levins and Shannon indices cannot respond to this
as a factor. However, an ideal index should reflect such changes in clustering, allowing use of and
comparisons with data of this type (see Pearre, 1999: “The question of incorporating resource
availability”). Four such distributions were generated, each with a single “prey” per ordinate
location. These are illustrated in Fig. 5, and the parameters of the distributions are given in Table
Vb. Because equal representation per prey group defines the maximal evenness for Levins or
Shannon indices, all of these take their limiting constant values for this type of simulation.

For a taxon-based index, such clustering might reflect species relatedness if appropriate
coefficients were available (see Pearre, 1999: "Taxonomic relatedness”). For a size-based index,
this clustering represents the between prey-size spacing of the size groups, even if the range and all
other statistics remain constant. These distributions also simulate unweighted scattergram data in
which each point represents a single predator/prey interaction in some predator size group (e.g.
Pearre, 1986). Despite the gross violations of normal distributional assumptions in the last two
cases, CVH and SLH produced useful indices, being lowest-valued when the sizes were most
strongly aggregated, and maximal when the distributions were broadest (bimodal).

EXAMPLES AND DISCUSSION OF FIELD DATA ANALYSIS:

A). Mauchline and Gordon (1985) estimated cumulative Shannon indices for groups of deep-
sea fish. They found that the index was very sensitive to sample size at small sample sizes, but
reached asymptotic values fairly early (c.f. Fig. 2¢).
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Fig. 5. Distributions of 49 single points ("prey”) on size axes, illustrating types and degrees of clustering. Levins' niche
index = 49.0 (the number of size classes) and the Shannon index = 3.89 (In number of size classes) for all distributions.

Levins-N and Shannon-N = 1.0 (see text).

hkhkdhkhhdhh AhkhFh hARXdk K FAXKAA AFHAXIK AKXARAX KK AKAX Ahhkdhk Ahkhkd dhdhhd hhkddhhk kA Xddd Ahhhhd dhkdkdkdh hhdhhdkkhhkd

B). Greene and Jaksi¢ (1983) compared the niche breadths and overlaps generated by the
Levins Index (non-normalized) for eight studies of sympatric predators, as influenced by the level of
prey identification. They found that for every study, “lower” identification (i.e. to higher taxa only)
produced smaller niche estimates, hence with smaller overlaps, than did identification to species
(although they could only identify insects to orders). To illustrate this point, I analyzed three data
sets in which a large range of prey taxa were found, and for which mean prey species sizes were
supplied by the authors. Hiraldo et al. (1975) examined the diets of the Eagle Owl (Bubo bubo),
which spanned 24 orders in 8 classes of two phyla. Heidemann (1973) examined the diets of feral
cats (Felis catus), in which a smaller total variety of prey were found (10 orders in 5 classes), but in
three phyla. Cockcroft & Ross (1990) examined the diets of stranded bottlenose dolphins (Tursiops
truncatus); these contained only three prey classes (two phyla) but in 13 orders and with a number of
multispecies genera. These are analyzed by the six methods used here, with prey sizes expressed in
equivalent spherical diameters (ESD, mm: see Pearre, 1999: Appendix) and SLH expressed in
logarithms to the base 10. Mean sizes of higher taxa were estimated by weighting the species means
by the numbers consumed. Variability was examined by estimating the coefficient of variation
- (C.V.) of each index over the various taxonomic levels, with each index weighted for the number of
taxa included at each level. This also tests “Addition of information on within-size-class
variability: ”, above. The results of this analysis are presented in Table VI. As can be seen, the
niche estimates from SLH tend to vary least with taxonomic level, while CVH is slightly higher. As
in the simulations (Fig. 4), Shannon-N also is relatively constant and Levins-N actually decreases as
taxonomic levels are added.

C). Pearre (1986) estimated size-based trophic niche breadths (CVH and SLH) of fish species,
both within species as they grew larger and between species of differing mean size. This analysis
used both “histogram” type data (abundances of different mean prey sizes within predator size
classes, often presented as tables) and “scattergram” data (individual predator and prey sizes,
weighted or unweighted; as in "Variable spacing on the prey-size axis :”, above). The ability to



34
Pearre

utilize these various types of data- and to obtain consistent niche estimates per predator species (e.g.
see Pearre, 1986: Fig. 5)- demonstrates the value of this type of index in comparative studies.

D). Krzysik (1979) examined the overall niche structure (microhabitat + diet) of a salamander
community, and concluded that food size (as CVH) was more valuable than taxa (Levins Index) for
describing diet segregation in that context. Pearre and Maass (1998) analyzed diets of feral domestic
cats (Felis catus) around the world, comparing SLH to Levins-N and Shannon-N, the two best overall
of the conventional indices, above. Using SLH, trophic niches were found to expand as prey became
more available on two time scales (seasonal and decadal) and as latitude decreased. This supports
Zaret and Rand’s (1971) hypothesis, rather than that of Ivlev (1955) and Schoener (1971), who

KEKAKAKAKRAK AXARAKK AAKKAK AALKAKL A ARAAKN ARARKA I A RAI TR AAAIAT RRARAAK AFARAR AXAAAA AL A FAA okdhkk Ak dkddk dhdhhk ddhkhrd %

Table VI. Variation of niche estimates with taxonomic level: field data.

1). Eagle Owl (Bubo bubo), Spain.

Levins Levins-N Shannon Shannon-N CVH SLH # taxa taxonomic level
202 0.253 0.95 0458 27.3 0.231 8 classes

3.04 0.126 1.69 0.532 31.6 0.239 24 orders

3.20 0.059 2.09 0.523 34.6 0.255 54 families

4.25 0.052 2.50 0.568 36.0 0.264 82 genera

4.25 0.048 2.56 0.571 36.1 0.265 89 species

385 0.065 231 0.553 350 0.259 mean

0.60 0.040 0.37 0.026 1.92 0.0093 s.d.

15.6 61.7 16.1 4.8 55 36 C.V.

2). feral cat (Pelis catus), Germany.

Levins Levins-N Shannon Shannon-N CVH SLH # taxa taxonomic level

1.03 0.343 0.084 0.077 8.9 0.076 3 phyla
1.14 0228 0.301 0.187 232 0.098 5 classes
1.26 0.126 0526 0.228 313 0.105 10 orders
1.36 0.085 0.724 0.261 316 0.106 16 families
352 0.130 1.797 0.545 319 0.108 27 species
227 0.136 1.100 0.366 29.9 0.104 mean
1.13 0.060 0645 0.166 5.3 0.0070 sd.
50.0 439 58.6 452 179 61 C.V.

3). bottlenose dolphin (Tursiops truncatus) off Natal, South Africa.

Levins Levins-N Shannon Shannon-N CVH SLH # taxa taxonomic level
1.30 0434 0.403 0.366 20.1 0.073 3 classes
1.52 0.117 0.761 0.297 240 0.087 13 orders
398 0.097 2.048 0.552 337 0.126 41 families
" 4.19 0.069 2.279 0.554 36.0 0.133 61 genera
4.72 0.066 2422 0.566 384 0.140 72 species
4.12 0.083 2.150 0.538 353 0.130 mean
0.856 0.048 0.466 0.070 4.10 0.015 s.d.
20.8 575 21.7 13.0 11.6 114 C.V.

1). Hiraldo, F., J. Andrada, & F.F. Pamrefio, 1975. Diet of the Eagle Owl (Bubo bubo) in Mediterranean Spain. Dofiana, Acta
Vertebrata 2: 161-177.

2). Heidemann, G. 1973. Weitere Untersuchungen zur Nahrungsdkologie “wildernder” Hauskatzen (Felis sylvestris f. catus Linné, 1758).
Z. Siugetierkunde 38: 216-224.

3). Cockcroft, V.G., & G.J.B. Ross, 1990. Food and feeding of the Indian Ocean bottlenose dolphin off southern Natal, South Africa.
ch. 15: 295-308 In: Leatherwood, S.; Reeves, R.R. (eds.) The bottlenose doiphin. Academic Press, N.Y.
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proposed that niches should expand as prey becomes scarcer. While both Levins-N and Shannon-N
varied substantially between studies, neither exhibited any trends consistent with predator, prey, or
environmental characteristics; thus SLH proved a much more powerful tool for this investigation.

DISCUSSION:

There are a number of factors which might affect the way in which these indices react. For the
simulations, the factors examined were the width of the distribution (as standard deviation), the position
of the distribution (as mean), the “prey size” class interval, the number of "prey size” classes, and the
total number of “prey”. These are, or course, interrelated. It is perhaps worth reiterating that estimating
Levins and Shannon-Weaver indices using prey size data is identical to doing so with taxonomic data, as
long as each named species is of a different mean size (i.e., there is a unique name for each species, in
words or numbers). Thus, the simulations used in this way reflect how these types of index respond to
changes in degrees of aggregation into species classes. However, estimating means and standard
deviations per se is only relevant if the species data are ordered into approximately normal distributions
(see Pearre, 1999: "EVOLUTION OF A SIZE-BASED TROPHIC NICHE INDEX"). If different
ordering criteria lead to different prey-abundance spectra, different statistical indices will be needed.

The original Levins and Shannon-Weaver indices, which are independent of ordering, were designed to
grow larger as more prey species (size classes) were added, so should be sensitive to the number of such
classes. Analysis of the multi-factor simulations confirms this and that they are less influenced by the
manner in which prey are distributed into the classes. This is reflected in the fact that SLH and CVH
generally vary less than the others with taxon level in real data (Shannon-N also generally varied little).
This could be a disadvantage if one wished to look separately at “species diversity” vs. “trophic
diversity” (e.g. Greene & Jaksic, 1983: see Pearre, 1999: “"TAXON-BASED NICHE METRICS ys.
SIZE-BASED ONES: Advantages of taxon-basing:"), but is an obvious advantage in estimating a niche
breadth from small samples andfor mixed taxonomic levels.

The normalized versions react more to the evenness of the distribution of prey among classes, so
they should not respond as strongly to class number, but should and do respond to the interaction
between class number and total prey. The normalized versions are superior for certain purposes, such as
manipulation of data tables, but appear unreliable in assessing niche widths for small sample sizes. Of
the four, only the normalized Shannon-Weaver Index (“Shannon-N") performed well at either serial data
addition or addition of extra distributional information to species tables. Overall, Shannon-N was
probably the most useful of the four variants: usually, the non-normalized Levins Index was the most
variable.

Although Levins’ and Shannon'’s indices are sometimes used with size data instead of taxonomic
species (Pearre, 1999: "PREY-SIZE BASED NICHE INDICES: Approaches”), doing so wastes size
and size increment information contained in the data. These indices, by their nature, react alike to a
- perfectly even distribution of sizes (or other ordering information, such as relatedness) and to a highly
clumped distribution (e.g. around a central “optimal” size value, or perhaps to a prey species most
closely related to the predator), as long as the number of distinguishable size classes is constant.
However, ability to utilize this type of data is a useful attribute of a niche index, and both CVH and
SLH do so. For brevity, other types of imaginable data manipulations were omitted, and of those
examined, clearly, some of the simulated problems are more serious than others. The judgement of
seriousness will probably vary with the researcher and with the type of problem under investigation.



36
Pearre

CONCLUSIONS:

In general, SLH and CVH were the best or near the best performers on all tasks on both simulated
and real data. From Figures 3 and 4, it is clear that their values very closely track each other in the
simulated data, confirming expectation (Wright, 1968; Lewontin, 1966) and the results from fish trophic
niche analyses (Pearre, 1986). Because both SLH and CVH are statistical measures, it is also simple to
test for the reality of differences between niche widths (Alevizon, 1975; Krzysik, 1979, Pearre, 1986),
which may be important in comparative studies. As we may expect prey size distributions to approach
lognormality (see Pearre, 1999: "EVOLUTION OF A SIZE-BASED TROPHIC NICHE INDEX"), SLH
should in principle be more useful, and indeed appears slightly superior to CVH with simulated
lognormally distributed data. In practice, it was found less variable than CVH and less subject to biases
(Pearre, 1986) in comparisons of fish predator species. Also, as it describes a section of a logarithmic
biomass spectrum (e.g. Sheldon et al., 1972; Kerr, 1974; Platt & Denman, 1978; Peters, 1983) the
trophic niche breadth thus obtained can be used to predict energy flow or relative population size
(Pearre, 1986). However, because the numerical value of SLH will change depending on the prey size
units and logarithmic base chosen, the non-dimensional CVH may sometimes be more appealing. Also,
as many published prey size spectra are presented only as means and standard deviations, CVH may be
superior if one wishes to compare them to new results.
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Wangersky at Dalhousie University, Halifax, N.S., in July 1994, a year after his formal retirement from
the Department of Oceanography at Dalhousie University. Because his academic career and interests
have spanned so many fields, discussions with him in various contexts have been direct progenitors for
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