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ABSTRACT. After a short discussion of the desirable properties
that should be exhibited by genetic fitness concepts, an attempt
is made to derive a particular fitness concept which is based
upon the individual gene as the unit of genetic transmission. It
is demonstrated that this definition accords well with common
usage as well as with intuitive understanding of the term fitness.
The applicability of the concept to discrete and continuous time
models of population genetics is verified by stating the basic
equations for gene frequency change. In this context, the funda-
mental significance of studying one-locus—-two-allele models is
emphasized, and the mode according to which genotypic fitnesses
and frequencies determine allelic fitnesses and thus the change
in allelic frequencies is discussed. Herewith, an as general as
possible characterization of the effects of overdominance, under-
dominance, etc. for regular Mendelian segregation and the degree
to which these effects could possibly be neutralized under the
action of segregation distortion is given. The necessity of
considering genotypic fitnesses to be, in general, frequency
dependent is pointed out by referring to a model of viability-
fecundity selection for animal populations.

1. INTRODUCTION

Unfortunately, fitness, as one of the most fundamental concepts
of population genetics, is still used with a great variety of
meanings, even within specific subject areas. There seems to be
general agreement only in that it should describe quantitatively
the extent to which biologically definable units reproduce them-
selves. Herewith, the outcome of reproduction is taken to be
characterized by the genetic similarity between the producer and
its product. At this point, however, conceptual difficulties al-
ready arise, While for vegetatively propagating organisms the
parent and offspring are genetically identical, sexually repro-
ducing individuals pass on only a part of their genetic informa-
tion to their descendants. In the first case, the fitness of an
individual could unambiguously be defined as the total number of
its offspring. In the second case, it is not so easy to see how
the requirement of genetic similarity between parent and off-
spring could be interpreted in order to specify meaningfully a
fitness value for a single individual. This difficulty can be
partially overcome by considering gametes as carriers of at
least part of an individual's genetic information such that the
number of successful gametes (those entering into zygotes) an
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individual produces measures the degree to which it transmits
its information (which is termed 'realized individual fitness'
by Gregorius and Ross (1981)). Despite the fact that, for sexu-
ally reproducing organisms, this fitness concept appears to be
quite obvious in its basic statement, it does not after all pro-
vide any information about how successful an individual is in
producing identical copies of its genotype. However, most of our
intuitive understanding of the plan according to which genetic
selection acts relies on this very property %for instance, cf.
Denniston 1978).

In order to find a way out of this dilemma, it might be use-
ful to begin by referring back to the unit of heredity which is
also necessarily the basic unit of evolutionary processes, the
gene. In this sense, the gene (for reasons of distinction from
other gene concepts sometimes also called the 'Mendelian gene')
is defined to be a set of genetic information which, if it is
transmitted from parent To offspring, has a high probability of
remaining unchanged. Any changes in information which do occur
are classified as mutational events, whether they result from
point mutation, chromosomal mutation or rare so-called intra-
genic recombination. Thus, in exclusively vegetatively repro-
ducing species, the whole genotype of an individual has to be
considered as a single gene. In particular, this statement indi-
cates clearly that, in the last consequence, the biologically
evolutionary relevance of each genetic fitness concept should be
evaluated with respect to the precision with which it allows for
conclusions to be drawn concerning the chances of individual
genes to produce identical copies.

Therefore, the best one could probably do is to define fit-
ness as a property of individual (Mendelian) genes and use this
definition to derive fitness concepts applicable to more complex
genetic units such as diploid multilocus genotypes. This way of
proceeding would also have the advantage of facilitating the
biological interpretation of phenomena, such as allelic effects,
by merely considering them to be the result of interaction of
a gene with its genotypic and ecological environment.

That is, the gene is considered to be the unit of reproduc-
tion, and its capacity to multiply is influenced by other genes
present in the complex genotype. From this point of view, the
fitness of a genotype should reflect the reproductive activities
(realized fitnesses) of all the genes of which it is made up.
This differs from common practice, where genotypic fitnesses
are assumed to be given and genic (allelic) fitnesses are ex-
tracted from these with the help of more or less purely mathe-
matical methods, not referring explicitly to their intrinsically
biological meaning.

In the present paper, an attempt will be made to give a defi-
nition of genic fitness which is assumed to be relevant in an
evolutionary sense and to relate this to an established concept
of genotypic fitness as applied to a single diploid gene locus.
With the help of a few classical selection models of population
genetics, the close correspondence of the two fitness concepts
to those used in the construction of these models will be
exemplified. Since allelic fitnesses directly determine the
change in allelic frequencies from one generation to the next,
main emphasis will be put on considering the conditions which
should be met by genotypic fitnesses and frequencies to ensure
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that one allele is superior (inferior, equal) to a second allele
with respect to its fitness value.

2. DEFINITION OF ALLELIC AND GENOTYPIC FITNESS

Considering a particular gene as an integral part of the complete
genotype of an individual means that this individual is conceived
of as a unit with respect to its reactions to ecological factors,
while the gene is a subunit involved in the creation of these re=
actions. Consequently, all of the copies of a gene present in the
cells of an individual organism should be counted as one single
gene. Based on this idea, it is meaningful to consider only those
copies which appear in the reproductive cells (gametes) produced
by an individual. Among these, in turn, there might be only a few
which are 'successful' in the sense that they take part in the
initiation of new individuals (zygotes). Hence a definition of
genic fitness which is in complete agreement with the basic re-
quirements stated in the introduction to this paper could be given
as follows:

The (realized) fitness of an individual gene is equal to

the number of successful copies it produces.

However, this definition of genic fitness does not reflect
the fact that the copies may be produced at different ages of
the individual containing the gene in question. But this is an
indispensable piece of information needed in population genetic
models dealing with iteroparous organisms and therefore concerned
with the description of the dynamics of genetic structures de-—
pending on age class structures. To take this aspect into account,
one could conceive of genic fitness as an age dependent cumulative
function specifying for each instant of time the number of success-
ful copies produced by a gene from birth up to that time. There-
fore the following more specific definition appears to make sense:

The cumulative (realized) fitness of an individual gene is
a time dependent function specifying for each age the number
of successful copies produced by this gene from birth up to

that age.

Thus the fitness of an individual gene is equal to its cumula-
tive fitness measured at its age of death, i.e. the age of death
of the individual carrying this gene.

As was argued previously, a purely vegetatively reproducing
organism should be considered as possessing only a single
(Mendelian) gene, such that the fitness of this individual is
equal to the fitness of its gene. For sexually reproducing or-
ganisms this correspondence between gene and individual is not
realized in general, since individuals might carry more than one
gene. We have already seen that the fitness of an individual gene
is measured by the number of 'successful' gametes which contain
copies of this gene produced by the individual carrying the gene.
Consequently, the fitness of an individual, when viewed as the
result of the interaction of all of its single genes, is ex-
pressed simply as the number of successful gametes it produces.

The (realized) fitness of an individual organism is
equal to the number of successful gametes it produces.
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The same reasoning leading to the concept of cumulative genic
fitness can be applied to define:

The cumulative (realized) fitness of an individual organism
is a time dependent function specifying for each age the
number of successful gametes it produces from birth up to

that age.

These definitions imply that, given a diploid sexually re-
producing organism, for example, its fitness is exactly equal
to the sum of the genic fitnesses for the two homologous genes
(alleles) present at any of the organism's gene loci.

So far, fitness has been treated as a variable the expres-
sions of which are measured at individual genes or organisms
and not at classes or groups within which these individual ex-
pressions could vary. The classes of primary interest in popula-
tion genetics are those formed for example by the sets of indi-
vidual genes exhibiting certain allelic states or sets of indi-
vidual organisms having certain genotypes. The usual method of
characterizing such a class with respect to fitness is to con-
sider the fitness averages over the individual members belonging
to the class. This is also the basis of the definition of allelic
and genotypic fitnesses. However, it is not sufficient, in gener-
al, to characterize individuals only by their alleles or genotypes,
since fitness may change with the population structure, the mating
system and the environmental conditions. Therefore, averages
should be taken only over individuals born at the same instant
of time (a cohort), and it should be made clear that they refer
only to a particular population including all the factors
governing the living and reproductive conditions of the members
of this population as it evolves. In favor of brevity, it is
tacitly assumed in the following that the term population com-
prises in substance all these aspects. The first requirement
(individuals born at the same time instant) seems to be evident,
when considering discrete, non-overlapping generations. But for
overlapping generations erroneous conclusions might be made if it
is not explicitly taken into account. Of course, in practice we
actually mean a relatively short interval of time when speaking
of an 'instant of time' at which individuals are born. In other
words, allelic and genotypic fitness should be considered pri-
marily as a cohort property.

The (realized) fitness (cumulative fitness) of a certain
allele in a particular population at a given instant of
time is equal to the population average over the fitnesses
(cumulative fitnesses) of all individual genes 'born' at
this instant and exhibiting this allelic state.

In an analogous manner, one arrives at the definition of
genotypic fitness.

The (realized) fitness (cumulative fitness) of a certain
genotype in a particular population at a given instant

of time is equal to the population average over the fit-
nesses (cumulative fitnesses) of all individual organisms
born at this instant and having this genotype.

Building upon this definitional groundwork, it is now an
easy task to derive the formal relationship between allelic and
genotypic fitnesses. This will be done for a population of di-
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ploid, sexually reproducing organisms. It suffices to restrict
the considerations to fitnesses only, since cumulative fitnesses
result in the same representations with the only difference that
an age index has to be added. Furthermore, being concerned with
the fitnesses of homologous genes, it does not make sense to
consider genotypic fitnesses of multilocus genotypes, since they
contain non-homologous genes. For notational convenience, we
also omitsubscripts indicating the instant of time to which the
fitnesses refer.

A necessary precondition for relating allelic to genotypic
fitness is to specify allelic fitnesses within their respective
'genotypic environments'. Therefore we denote by aij(k) the fit-

ness of the k-th allele within a genotype composed of the i-th
and j-th allele; clearly k is equal to i or Jj. The overall popu-
lation fitnesses of the i-th allele and the (i,j)-genotype are

denoted by aj and Wi respectively. It follows that

wij=aij(i) + aij(j) for all i and j, such that, in particular,
wii=2-aii(i) for homozygotes. The case aij(i)¥aij(j) for a
heterozygote (i#j) is commonly termed 'segregation distortion',
and for aij(l)=aij(3)’ i.e. aij(1)=1/2-wij=aij(3), one speaks
of regular Mendelian segregation.

Moreover, for some given instant of time, let Nij be the

number of individuals at the zygotic stage which have the

(i,j)-genotype (considered to be an unordered pair of alleles)

and let N:= Nij be the total number of zygotes at this in-
i<

stant. Then the number of individual genes having the i-th

allele equals Nii+ ;Nij among the zygotes, and it is equal to

J
aii(l)-Nii+ gaij(l)oNij among the successful gametes produced

J
by the cohort. Consequently, the allelic fitness ay turns out
to be . .
a;; (1)°Nj; + Za; (1)-Nyy
1 ii * 3

To translate this expression into relative frequencies, we
introduce Pi :=Nij/N for genotypic frequencies and

J
Njj* 2N 4 ]
pii= —sR—— =Py * % IP;; for allelic frequencies.
3
J#i
Hence . .
a;;(1)+Pyy +§aij(l)'Pij
ai=2' pi .

This can be written in a more compact and probably more
comprehensible manner if one makes use of the quantities
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Pii/pi for 1i=j
ql(J) i= ;
: ?Pij/pi for i#j
for which it holds that Eqi(j) = 1. Expressed in words, qi(j)

is the portion of the individual genes exhibiting the i-th
allelic state which is contributed by individual organisms
having the (i,j)-genotype. Thus qg.(.) specifies the distribu-
tion of individual genes exhibiting the i-th allelic state over
their 'genotypic environments'. Note that by assumption, the
distributions qi(.) depend on the allelic frequencies p; ac-

cording to the identity
. q;(3)ep; = q5(i)-py.
Thus
ai = galJ(l).ql(J)' (18.)
Uﬁder the particular situation of regular Mendelian segrega-
. . . 1 . /s . .
tion (aij(l) = aij(J) = 555 for all i#j) this equation has the
representation 1
a; =% gwij.qi(‘j) (1p)
Apart from the factor 1/2, Gregorius and Ziehe (1982) arrived
at exactly the same expression for allelic fitness in a model for

non-overlapping generations, random-mating and viability-fecun-
dity selection. More specifically, assuming Hardy-Weinberg pro-

portions for the Pij's, i.e. Pyy= p? and Pij= 2-pi-pj for i#J,
(1b) reads a; = % . Z wij'pj’ which, again apart from the factor

1/2, is the well-known representation of allelic fitness in the
classical viability selection model. Hence, the concepts of
allelic and genotypic fitness considered here reflect as special
cases the pertinent fitness functions known from standard via-
bility selection theory (cf. e.g. Crow and Kimura 1970, p. 180,
Equations 5.2.5 and 5.2.8). However, as mentioned earlier, via-
bility is only one component of selection and must not neces-
sarily be a major component of fitness. This, together with the
fact that other components may determine fitness in a more
complex and non-obvious manner is demonstrated with the help of
a particular example presented in Section 5.

Equation (1a) as opposed to (1b) demonstrates that, in general,
the information available from genotypic fitnesses does not uni-
quely determine allelic fitness., This deficiency is due to the
effect of segregation distortion, in a global sense. Basing their
considerations on the classical viability selection model,
Liberman and Feldman (1980) recently discussed the significance
of this effect with respect to attractivity properties of equi-
librium states for the diallelic case (also cf. Hiraizumi et al.
1960). The assumptions of this model imply that genotypic fit-
nesses are constant over time, genotypic frequencies are in
Hardy-Weinberg proportions after the first generation and segre-
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gation distortion is measured by a constant s(0 < s < 1) such
that, in our notation, s=a12(1)/w12. Thus

1 1
89= BWqqPq * S:WipPp, 8= pWp,Py + (178).wy5.Dg.

To close these primarily terminological considerations, a
brief remark on the relationship between the population (cohort)
averages for allelic and genotypic fitnesses seems appropriate.
Denote these averages by a and w. Then it follows that

a = Ip;ca; and w = I wij-Pij, and it is easily seen that

i i
a = % - w., This is an expected result, since in effect a and
w are the average numbers of successful copies per individual

gene at a single locus and successful gametes per individual
organism, respectively. In particular, for discrete, nonover-
lapping generations a cohort comprises all members of the popu-
lation, and therefore @ is equal to the average number of off-
spring per member of the cohort, irrespective of whether the
cohort consists of bisexual or unisexual organisms or a mixture
of sexual types.

3. THE INFLUENCE OF ALLELIC FITNESSES ON THE CHANGE IN
ALLELIC FREQUENCIES

In the preceding two sections, an attempt was made to explain
why genotypic fitnesses should merely be thought of as specifying
the conditions under which the single alleles realize their fit-
nesses. Therefore, before analyzing how genotypic fitnesses af-
fect allelic ones, the population genetic relevance of the latter
should be characterized more explicitly. This relevance undoubt-
edly lies in the mode according to which allelic fitnesses de-
termine allelic frequency changes. In order to arrive at a formu-
lation which is as widely applicable as possible, the model para-
meters will be chosen such that they can be applied to nonover-
lapping as well as to overlapping generations and allow for a
direct population biological interpretation. The following nota-
tion is recommended for this purpose:

N(t,s) := number of successful gametes produced in the time
interval ranging from t to t+é by individual
organisms born before time t.

pi(t,b) += allelic frequency of the i-th allele among the
successful gametes produced in the time interval
ranging from t to t+6 by individual organisms
born before time t.

ai(e;t,é) := cumulative allelic fitness of the i-th allele,
based on the set of successful gametes produced
in the time interval from t to t+6 by individual
organisms born before time t and evaluated at
time t+6+e., Thus, at time t+6+e, individual genes
produced by the cohort range in age from O to 6&+e.
For given t and 3§, ai(e;t,é) is assumed to remain

constant for all € such that &+e exceeds some
maximum attainable age «.
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With the help of this notation, it is quite easy to see the
way in which the allelic frequency pi(t,ég depends on states

realized in the population prior to t., First, divide the maxi-
mum life expectancy, «, into m equally spaced intervals of

length B = % < & and consider the set of individual genes 'born'’
in the time interval t-B.k to t-p-k+B, where 1 <k < m. This set
contains N(t—B-k,B)-pi(t—B-k,B) individual genes exhibiting the

i-th allelic state. In the time interval t to t+é each of these
individual genes produces, on the average, a number of success-
ful copies which is given by ai(Bo(k—1)+6;t—B-k,B) -
ai(B'(k—1);t—B'k’p)-

Consequently,

pi(t.f>)=£1 Ca; (B (k=1)+85t-B-k,B) - a;(B+(k=1);t-p-k,8) J-

(2)
. pi(t_p‘kyﬁ) . N(t—ﬂ‘kaﬁ) / D

where the normalizing denominator D is equal to

D - kg Ca(B- (k=1)+835t-B-k,p) - a(B-(k=1);t--k,p) J-

¢ N(t—ﬁ'k,ﬁ) = N(t’é):'

with the population average of the cumulative allelic fitnesses
given by _
a(e;t,8) = Za (e;t,8) - p,(t,8).
i

For iteroparous populations reproducing in distinct breeding
seasons, it is common usage to choose B such that the length of
each breeding season is an integer multiple of f, and 6 is set
equal to B. Moreover, since newborns cannot reproduce,
ai(O;t—p,B) = 0 for all i. The situation of non-overlapping

generations can be considered as a special case, for which
a = B =& and thus m=1. Consequently, in this case (2) reads

ai(a;t—a,a)

p;(tya) = p,(t-a,a) - —= .
itm + ’ a(a;t-o,a)

Omitting the time and age parameters and denoting the
allelic frequencies in the next generation with primes, p!

this equation attains the familiar form i’
8
p! = p. - . (3)
i i 3

On the other hand, since the choice of 6 and B in (2) is
arbitrary, equation (2) can always be considered in the form
of (3), i.e. with m=1 and « = B = 86, however with the restric-
tion that ai(O;t—a,a) need not be zero. Hence, a; in (3)

should then read ai(a;t—a,a) - ai(O;t—a,a), which is the
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allelic fitness averaged over, so to say, the set of successful
gametes produced by one generation, i.e. produced in the time
interval from t-o to t by individual organisms born before time
t-a. The considerations of the next section, treating the kind
of dependence of allelic on genotypic fitnesses will therefore
?e)based on the simplified version (3) of the general equation
2 .

Before closing the present section, a remark will be made on
how (2) should be applied to arrive at a correct continuous
time (integral) representation of the change in allelic fre-
quencies. For this purpose let 6= approach zero (i.e. m tends
to infinity for fixed «). Furthermore, suppose that

lim p. (t,8)=t p.(t), 1im ME:8) . B(¢) and
, 1 1 o
5—>0 —
2a.(e;t,s)
lim lae ’ =3 a*(e;t) exist, where a;(e;t) is the
5—>0 . 1

allelic fitness density and B(t) is commonly referred to as
the birth rate. Then it is readily seen that, as B tends to
zero, (2) attains the integral representation

pi(t) 5f a:(e;t-e)-pi(t—s)-B(t—e).de / B(t)

with:
B(t)

[0 4
j’ a¥(e;t-e).B(t-€)-de, where
0]

a¥(e;t):= Za;(e,t).pi(t)g This result corresponds to those
i

of Charlesworth (1970) contained in his equations (2.9) and
g2.103 and the equation preceding (3.5) as well as Charlesworth
1973) Equations (1) and (2). It has also been used to derive
necessary and sufficient conditions under which Fisher's famous
continuous-time model of gene frequency change is correct
(Gregorius and Ziehe 1981%.

4, THE INFLUENCE OF GENOTYPIC FITNESSES ON THE CHANGE IN
ALLELIC FREQUENCIES

It was shown that genotypic fitnesses in connection with the
effects of segregation distortion are the fundamental determi-
nants of allelic fitnesses, which, in turn, are the fundamental
determinants of changes in allelic frequencies. Furthermore, it
was reasoned in the last section why the representation stated
in (3) is suitable for studying on a rather general basis the
effect of allelic fitnesses on the change in allelic frequencies.
With the help of this equation, the problem in question reduces
to finding the conditions under which the frequency of the i-th
allele decreases,remains the same, or increases, i.e. under

which a; < a, a; = a, or a; > a. This can be done most conven-—

iently &nd without loss of generality by opposing the effect
of the i-th allele to the summarized effects of all other
alleles, which are then treated as a single allele indexed k.
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To keep the number of symbols used at a low level, the fitness
and frequency of this compound allele will again be denoted by
a; and Py respectively, such that

P, = 1-p; and g = I aj.pj/(1—pi). Hence, in effect, one is

-J.
J#i
concerned with a diallelic case, where all other possibly

existing alleles are considered as being 'hidden' behind at
least one of the two alleles i and k.

For two alleles, a can be written as a = ai+pk~(ak—ai) and,
consequently, the cases a;< a,a;=a and a;> a are equivalent to
a,> a;, a,=a, and < 2y, respectively, where it is always
assumed that O < p, < 1. Moreover, setting qi(i) =: q; and

qk(k) =: g for simplicity, (1a) reads
ai=aii(i)'qi+aik(i)'(1—qi) and akzakk(k).qk+aik(k).(1—qk)’
thus relating allelic fitnesses to their 'genotypic environ-

ments' and hereby to genotypic fitnesses. Consequently, the
basic concern is to study the sign of the difference a;=ay,

which can be written as
- _ 1 _ . ) -
ajmay = plwy =wydeay + plwy-wgdeqp +

. 1 (4)

+ (aik(l)—aik(k)).(j— Z(qi+qk))

Herein, the first two summands describe the effect of geno-

typic fitnesses, and the last summand refers to the effect of
segregation distortion, which vanishes for

aik(i) = aik(k) (= % wik) or q;=q, =1, whereas the latter refers

to the trivial case that there are no heterozygotes in the
population.

Equation (4) demonstrates that the sign of a;=ay, for given

genotypic fitnesses and q; and q» Can, in general, depend on

the magnitude of segregation distortion measured by
aik(i) - aik(k). This requires, as a first step, separate charac-

terizations of the modes of action of genotypic fitnesses and
segregation distortion. It is therefore reasonable to begin with
the situation aik(i) = aik(k), and, after this, seek for condi-

tions under which segregation distortion does not change the sign
of a;~a,.

Before doing so, it is advisable to point out more clearly
the relationship between genotypic as well as allelic frequen-
cies and the q's. For this purpose we shall make use of the
well-known representation of genotypic frequencies as points
in an equilateral triangle. The coordinate system is illus-
trated in Fig. 1 (with i=1 and k=2, for instance). In the
opinion of the present author, this system has an advantage
over the DeFinetti system, in that coordinates can be measured
directly along the triangle sides, which have unit length.
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Fig.1

Hardy - Weinberg
parabola

19

Since it is always assumed that O <P;ipy < 1, genotypic
and allelic frequencies are uniquely determined by q; and Qe
when qi,q < 1, and the following identities are easily
verified:

qi(1—qk) 2(1-qi)(1—qk) 1_qk
Pii = 2=q-q,_ * Fik = TZ9q,-q,  ’ Pi T Fq;aq;

Hence, in this case, qi< Qs a3 > qkand Qi = if and
only if p;<p,, p;> py and p; = p,= Z; respectively.

The significance of a3 and Qe in relation to Hardy-Weinberg
proportions for the genotypic frequencies can be demonstrated
by comparing Pi to q; - If P;i<4ay, then p? < Pii and thus
pi < Pkk’ 2'pi'pk > Pik’ which, in turn, implies that
Py < q,- Adding both inequalities for the p's and q's yields
1 < Qi+ Q- Analogously, Py > q4; implies
2pipk < Piyr P > gy and g;+ g < 1, and P;= q; implies
2pipk = Pik’ Py= and Qi+ q = 1. These implications hold,

of course, also in the reverse directions and are therefore
equivalence relationships. The representation of these re-
sults in the frequency diagram of Fig. 1 shows that genotypic
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frequencies characterized by p;> qi(qi+ q < 1),
p;<q;(q;* > 1) and p;= q;(q;+ q = 1) are placed above,
below and on the Hardy-Weinberg parabola, respectively.
These representations will prove to be helpful in illus-
trating the subsequent considerations.

(a) No segregation distortion, aik(i) = aik(k)

In this case equation (4) reduces to
_ 1 _ 1 _ .
ajmay = gwymwydeqy + zwg-wg ) qp.
The influence of the heterozygote on a;-a, vanishes if
Q3= Qs which requires that either P;i= Py= % or Pik= 0,
and the sign of a;=a, is identical to that of Wi Wiy

The same statement holds, but irrespective of the values for
q; and Qs if the heterozygote fitness is located between the

two homozygote fitnesses, including equality with one of the
homozygote fitnesses (dominance). The only exception to this
rule is to be found in the case of complete dominance and zero
frequency for the genotype homozygous with respect to the

recessive allele, in which case a;=ay, .

The remaining rankings between genotypic fitnesses are those
commonly denoted as overdominance (heterozygote superiority)
and underdominance (heterozygote inferiority), i.e. Wik™ Wi oWy

and wik<'wii’ Wi * Excluding the trivial cases in which

q; Or q is equal to zero, a simple reformulation of the above
equation shows that the sign of
ik Wk _ 9 . L
——— - — equals that of a,-a, for overdominance, and it is
W.,~W. . q i "k

ik "ii k
equal to the sign of a,-a; for underdominance. This result
demonstrates that, for each given genotypic structure and
absolute values of the deviations in genotypic fitnesses of both
homozygotes from the heterozygote, overdominance and underdomi-
nance have opposite effects on the direction of change in allelic
frequencies. Again there is an immediate correspondence to the
findings from classical viability selection. But it should also
again be emphasized that the above generalization comprises all
kinds of selection (such as fertility, fecundity, sexual selec-
tion, selection through assortative mating, etc.s and deviations
from Hardy-Weinberg-proportions (caused by inbreeding, mating
preferences, etc.), and that the formulation of the result is
rendered possible by the particular concept of fitness applied
here. Furthermore, if certain ranking relationships between
the homozygote fitnesses are realized, the above result can be
applied to show that the sign of a—ay does not depend on the

concrete values for q; and Qe

To see this, recall that p;< % if and only if qi< Qy -
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. 1 ) . . .
Consequently, provided P;< > Wkks Wiy implies a;> a, in the
case of overdominance, and w;;<w,, implies a/> a; in the case
of underdominance. Hence, the only situations in which one
expects the sign of a;-ay to depend explicitly on the geno-

typic frequencies are those for which p;<=> and

Wi < Wy < Wy OF WS W < Wiss i.e. where the homozygous
expression of the more frequent allele (k) is intermediate
with respect to the other homozygote and the heterozygote.
A comprehensible treatment of these situations can be

achieved if one proceeds from the idea that, if

Wik Ykk
7w is given by some value y, the sign of a;=a, is equal
ik "ii
, q: q.
to that of y - ai and ai - y for over- and underdominance,
k k

respectively, where qi/qk varies with the genotypic fre-
quencies.

Note that by assumption O < y < 1. For this purpose it is
advantageous to look at the contour lines for qi/qk and use

these for the interpretation of the sign of a;-a;.
Equating q; /q, to y, one obtains P;;ep, = y+P,, «p; and
. 1 1
from this Pj*P) ?Pik°pk= Y'pi'pk—Y'ZPik'pi‘ Thus

o 2.p; Py (1-y) 2.py+ (1-p; ) (1-y)
ik 7 P~ YDy - 1—pi(ﬂ+y) :

so that P, can be conceived of as a function of y and p,,
i.e. Pyy= Pik(Y’ pi), which can be applied to draw for each
y the contour lines qi/qk =y given in Fig. 2. Assuming,

without loss of generality, that i=1 and, therefore, consid-
ering the left half of the frequency triangle in Fig. 2, one
arrives, for a given value of

Wik kK
Wik Wii
the domain of genotypic frequencies located above (left of)
or below (right of) the y-contour line for q;/q, then

y = , at the following result: If y is realized in

ai> a, or ai< 2y respectively, for overdominance. For under-

dominance, the reverse relationships hold. If y is realized on
the y-contour line, then a;=a,.

In order to demonstrate briefly the significance of these
results for population genetics, consider the following situa-
tion: Suppose that the breeding system of a population implies
q;*tq < 1, which signifies that genotypic frequencies are

located on or above the Hardy-Weinberg parabola as was shown
previously. Furthermore, suppose that there exists Yo
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Fig 2

contour lines for gl =7 contour lines for gz =7
2 !

0 < y,< 1 such that for all genotypic structures with
q;+q, <1 and qi/qk <y, the genotypic fitnesses obey the

conditions w, . < w and Ylk:ﬁk& > in case <
kk~ Yik w..—w.. = Yo Wiis Wike
ik "ii
Hence, we allow for Wi > Wik but exclude underdominance, and
Yik Ykk
in the case of overdominance ~———— is not allowed to

ik Vi |
approach arbitrarily close to the value of 0. Consulting
Fig. 2, it is immediately seen that the frequency of the
i-th allele increases at the latest when the trajectory of

genotypic frequencies enters the region to the left of the
Yo-contour line for qi/qk (and on or above the Hardy-Wein-

berg parabola). This implies that the i-th allele is protec-
ted in such a system.

(b) The limits set to the effect of segregation distortion

by genotypic fitnesses

As before, the aim is to find conditions under which a;~ay

is positive or negative. Segregation distortion is considered
as a force that causes deviations from the results to be ex-—
pected under the action of regular Mendelian segregation as
they are presented in the preceding subsection. This necessi-
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tates a study of the effect of segregation distortion within
the frame set by the genotypic fitnesses. In accordance with
common usage, the amount of segregation distortion will be
defined as the average proportion of the i-th allele, say,
among the successful gametes produced by heterozygotic indi-

viduals and will be denoted by o;. Hence, aik(i) = 0 Wiy

and therefore aik(i)—aik(k) = wik.(2.ci—1), which must be

inserted into (4). The problem, as it now appears, is to

consider a;-ay as a function of o; for each given set of

genotypic fitnesses and frequencies and observe whether this
function changes its sign as o; varies between 0 and 1.
Clearly, a;~-a, assumes its smallest and largest value for
o= 0 and o;= 1, respectively. Consequently, if a;=a, is
negative for 0;= O and positive for o;= 1, the results ex-

pected for regular Mendelian segregation could be reversed
in the presence of segregation distortion, while otherwise
they are maintained. Because of this, interest will be
focused on specifying the conditions for genotypic fitnesses
and frequencies under which aj;-ay is negative and positive
according to the extreme values 0= 0 and 0;= 1, In terms of
equation (4), these conditions require that

%(Wii_wik)'qi + %(wik-wkk)'qk_wik(1_ %(qi+qk)) =

1 1 _ _1

S0 s plwiymwipdeayr plwyywg ) apetwy, (1= 3l +a))
holds, which can be written more conveniently as
= 20wy (1q5) S Wy 5Q W gy S 20wy - (Mg ). (5)
The case Wik= 0 or q; = Q = 1 can be excluded from the
considerations since in both these cases the influence of
heterozygotes on a;-a, is eliminated.

If, in particular, q;= Q= q > 0 (and thus P;= Py= %),

1; (note that for

q=0 (5) is always realized). One expects this inequality
not to be realized and, therefore, the sign of a;=ay not

then (5) reduces to |wii_wkk| S 2ewyye

to be affected by the influence of segregation distortion
if Wik but not q is small and the homozygotes differ

markedly in fitness. In general, assuming that both qj and
q are not small, the same speculation applies when qi¥ Q-

A more precise representation of this aspect, however,
requires the explicit formulation of a question that allows
for a meaningful answer. For the present purpose, the
probably most comprehensive characterization would be to
delimit the region of genotypic frequencies within which

a given set of genotypic fitnesses must be realized in order
to satisfy (5). In the complement of this region, the sign

157
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of a;=a, would then not be influenced by segregation distortion.
Division of (5) by Wiy vields
-2(1-q;) <hj-q; - hy-q <2(1-q.) (52)
where hi= wii/wik and hkz wkk/wik could be conceived of as

measuring the deviation of both homozygotes from the hetero-
zygote with respect to fitness and are kept fixed in accordance
with the above reasoning.

In order to achieve comparability of the present results
with those of the previous subsection, it is advisable to in-
vestigate the validity of (5a) along qi/qk—contour lines. Again,

considerations are restricted to one-half of the frequency
triangle (Fig. 2) by assuming that qi/qk < 1. Hence, setting

Yi= q;/q, as before, with the restriction that 0 <y <1
and 0 <gq, <1, (5a) reads
_2(1—qk'Y) 5 qk(hi'Y—hk) _<_ 2(1—qk)- (5b)
It is immediately clear that (5b) holds for small values of
Q. i.e. in the vicinity of the top of the triangle (Fig. 2),

as was to be expected. The following statements are easily
provens:
If hy+y ~h, > O then (5b) is satisfied exactly for all

positive Qe not exceeding a value of >+ h if
i

. Y—hk ’
h;.y-h, < -2(1-y) then (5b) is satisfied exactly for all
positive g, not exceeding a value of hk‘Y(ii”Z) ; (5b) is

satisfied for all Qs 0 < q < 1 if and only if
-2(1-y) < h;-y-h, < O.

The most significant conclusion that can be drawn from
these findings is that (5a) holds for all genotypic frequen-—
cies (with P> 0) if and only if hy=h, < 2. Therefore, only

if this condition is not met by a set of genotypic fitnesses
does there exist a region of genotypic frequencies such that,
provided the fitnesses are realized in this region, the sign

of a;=ay, does not depend on the amount of segregation distor-

tion. Several examples for this are given in Fig. 3.

An exhaustive discussion of the precise conditions under
which the regions shown in this figure take on their charac-
teristic shapes would grow too lengthy to be justified by
the nature of this paper. However, the examples presented
here have been selected as demonstrating typical relation-
ships that may occur between genotypic fitnesses. In partic-
ular, the triangle with h1= 0.5 and h2= 3.0, indicating

selective disadvantage of allele 1 refers to the frequent
observation that an allele (allele 1) inducing segregation
distortion also lowers fitness (cf. e.g. Crow 1979).
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Disaction of change inallelic frequencies
offecled by segregation distortion
if normalized homozygote {requencies h, h,
are realized in the hakched regins

5. AN EXAMPLE OF HOW TO OBTAIN GENOTYPIC FITNESSES

Consider an effectively infinite dioecious population of
diploid animals reproducing in discrete, non-overlapping gene-
rations. All females mate exactly once and at random; males
also mate at random and do not differ with respect to mating
propensity. For a single, autosomal locus, let

Ni. and Ni. be the number of females and males, respectively,
having the (unordered) (i,j)-genotype at the zygotic stage.
ij’ sjj be the probability of survival from
the zygotic to the reproductive stage of female and male
(i,J)-genotypes, and denote by b ‘%1 the average number of

14
offspring of a mating between an ?i,j)—female and (k,1l)-male,

According to the definition in Section 2, the fitness of
an (i,j)-female is obtained by computing the average number
of successful gametes (ovulesg produced per (i,j)-female over
its whole life span. The number of (i,j)-female zygotes sur-
viving to the reproductive stage equals

Nij . Sij and, at that stage, the relative frequency of (k,1)-

Furthermore, let s

d é
P .8
males equals —E%——El where Pa 3= N6 /Na, Nazz z Nq. and
éd kl kl R By |
s 1S3
s%:= 389K, Consequently, a fraction Pil'sgl/ 59
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of the Nij-sij females produce bij;kl zygotes, and therefore
,

the total number of zygotes (successful ovules) produced per

(i,j)-female equals

e @
Ni.-s. )

J —ij | <% .8 /=9 . e
0 kzlbij;kl Sp1 Pkl/ s®. Hence, the fitness W3 of an
1 ’

ij k<l
(i,j)-female genotype is given by
? 3 =3
s . = L .o .
le k,lClJ;kl Pkl/ S
k<1
with c = s9 - b .s8
ij;kl ij ij;k1""kl®

Td obtain the male genotypic fitnesses, note that the number
of matings performed by (k,l)-males with (i,Jj)-females equals
3 3
P

s
? <% . k1l "kl . .
Nij Sij ——gg——— , where each such mating yields bij;kl

offspring (successful male gametes). Therefore, the total number
of zygotes initiated per (k,l)-male equals

8 é
S,.1+P
Q ? k1l “kl 3 . .
iZ‘-J_Nij~sij . ——gg——— . bij;kl/Nkl’ which can be written as
H
i<
? p? ? 3 3 =38 2 _ NP ?
isz 'Pij'sij'bij;kl'skl/(N .s”), where Pij“ Nij/N and
?
i)

N9 = I N?.. Hence, the fitness wa of a (k,l)-male genotype
i< iJ kl
is given by

9
3 _N 9 , =a
Ww. = = ZC... 'P.-/So
k1l Na i3 iJ;kl “1ij
i3
Setting N,.:= N°. + N°., it follows that the fitness w;j of

iJ iJ i)
the (i,j)-genotype (i.e. averaged over (i,Jj)-males and

e 3
N7T . N7 .
females in the population) equals Nil -w?.+ ﬁll . wq.,
ij ij 13 ij
which can be reformulated in terms of genotypic frequencies:
N*.p%, N°. pe,
W. .= g 9 le 6 . WQ. . 9 9 lg d\ . Wq.
lJ . . lJ L ] L] lJ'
N Pij + N Pij N Pij + N Pij

This representation is simplified considerably if any form
of sex distortion among the zygotes can be excluded, such that
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?_ O 3 _ =2 . )
N*= N~ and Pij = Pij =3 Pij for all genotypes. In this case
- é _ 1 . =3
wi 3= zlwigtwiy) = 1 5(Ci55k1* k15150 P/ 8 (6)
k<1

which, apart from the denominator, coincides with the repre-
sentation derived by Gregorius and Ziehe (1982) for a fecundity
selection model introduced by Roux (1977). It is seen that, even
e 3
i3? Sij
genotypic fitnesses are, in general, frequency dependent, so
that ranking relationships such as overdominance, underdominance,
etc. could be realized in certain regions of the state space of
genotypic frequencies but not in others. This frequency depend-
ence vanishes if there are no fecundity differences between the
mating pairs,i.e. bij'kIE b, and if viability selection takes
?

¢ Sd\_S.

if the selection coefficients s and bij'kl are constant,
’

place symmetrically in the sexes, i.e. s since

i3~ ®ijT Piy
then (6) reads Wi 4= b'Sij’ This is the situation of the

'classical' viability-selection model, and it is probably the
only selection model based on random-mating for which fre-
quency dependence of genotypic fitnesses vanishes., A detailed
discussion of this problem for a general model for plant popu-
lations consisting of several sexual types can be found in
Gregorius and Ross (1981).

An attempt to give an even extremely condensed survey of
the range of applicability of the ideas presented here would
by far exceed the limits reasonably set to a single paper,
Nevertheless, the present author hopes that at least some
of his considerations could help to achieve a higher level of
precision concerning our intuitive understanding of genetic
fitness concepts with regard to their population and evolu-
tionary genetic relevance., For example, many population genet-
icists still feel confused by the arguments exerted in connec-
tion with the selectionist-neutralist controversy which,
essentially, seems to be due to the interpretation of fit-
nesses as being multiplicative, additive,etc. and constant.
Biologically intelligible Jjustifications for such mathemat-
ically technical assumptions can hardly be found. However,
as is demonstrated by the above example, even for constant
selection coefficients of biologically Jjustifiable structure,
fitnesses may easily show frequency dependence and are there-
fore more liable to maintain multiple allelic polymorphisms.
This touches also very basically on the question of the condi-
tions under which it is reasonable to consider the gene, the
gamete or the genotype as the unit of selection (cf. e.g.
Franklin and Lewontin (1970)).

It may be that many results from theoretical population
genetics could be classified much more easily with respect
to their underlying ecological and evolutionary principles
if they were given an interpretation in terms of fitness
properties rather than properties of selection parameters.
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