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Hypotheses
Claims to verify & purpose of analyses



Hypotheses

1. Ventricle change across time is one of the most stable temporal 
patterns in longitudinal MRI of glioblastoma

2. Mean ventricle change across multiple subjects consists of ventricle 
volume increase

3. Ventricle change as temporal pattern can be correlated with clinical 
parameters for useful predictions



Clinical parameters (any suggestions?)
• Response assessment in neuro-oncology1 (RANO; 1-4) (one exam to the next)

• Overall survival (months): Glioblastoma median OS of 12-15 months2

• MGMT promoter methylation status (yes/no): higher OS for yes (21 vs. 14)3

• IDH status (mutant/wildtype): wildtype has worst OS (10 vs. 24)4

• Use of steroids (Yes: to reduce pressure)

• Change of ventricle volume vs. tumor volume

• Change of ventricle volume vs. tumor growth

• Ventricles to predict progression vs. pseudo-progression: Changes in image caused by treatment 
vs. caused by cancer progression



Preliminaries

Data matrix 𝑋 =

𝑎11 ⋯ 𝑎1𝑁
⋮ ⋱ ⋮

𝑎𝑀1 ⋯ 1𝑀𝑁

= 𝑥1⋯𝑥𝑁 ∈ ℝ𝑀 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑥𝑁(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)
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𝑀
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Covariance between variables 𝑐𝑜𝑣 𝑥1, 𝑥2 =
1

𝑀−1
σ𝑖=1
𝑀 (𝑥1𝑖 − ො𝑥1)(𝑥2𝑖 − ො𝑥2)

Covariance matrix of X 𝐶𝑋 =
1

𝑀−1
𝑋𝑇𝑋 ∈ ℝ𝑁𝑥𝑁

Standard deviation of variable 𝑠𝑡𝑑 𝑥 = 𝑣𝑎𝑟(𝑥)



Principal Component Analysis (PCA)

• Traditional dimensionality reduction method

• Describes variation in the data matrix X (M rows, N columns) in terms 
of 𝑘 ≤ 𝑁 uncorrelated variables

• Analog to computing CX

𝑋 =
𝑥11 ⋯ 𝑥1𝑁
⋮ ⋱ ⋮
𝑥𝑀1 ⋯ 𝑥𝑀𝑁

M=12 (samples)
N=3 (variables)
k=2 (reduced variables)
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(Error)
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Loadings: Variable importance (Variable=Exam). 
First exam is the most important (has highest 
intensities in red regions) for PC 2

Scores for PC 2. Red regions represent intensity 
change caused by expanding ventricles. Red and blue 
represents positive and negative values, respectively

PCA model of subject 6 (all exams)



Loadings: Variable importance (Variable=Exam). 

PCA model of subject 6 (first two exams)

Scores for PC 2



Comparison: Estimated displacement in subject 6 (first to second exam)



Loadings: Variable importance (Variable=Exam). 

PCA model of subject 6 (first two exams) with ANTs SyN displacement field overlaid

Scores for PC 2











Subject (t1c) Component describing ventricle change

1 2,3,4

4 2,3

6 2

14 2,3

23 2,3

24 2,3

26 2,3

What is component 2?
- High intensity change caused by expanding ventricles



1 subject, 1 PCA, variable contribution (variable=exam)



1 subject, 1 PCA, variable contribution (variable=exam)



1 subject, 1 PCA, variable contribution (variable=exam)

PC 2 Scores 
(volumes)



all subjects, 1 PCA, variable contribution (variable=exam)

?



Loadings: Mean variable importance Scores for PC 2

all subjects, 1 PCA, variable contribution





Summary PCA

• PCA on longitudinal MRI can describe ventricle change for a single 
subject (all exams, PC2). This supports hypothesis 1 (stable ventricle 
change)

• Stable ventricle volume increase can be quantified with PCA loadings 
and scores

• One PCA model of multiple subjects and exams fails to separate 
ventricle change into a distinct component



Autoencoder (AE)

• Dimensionality reduction as a computational graph problem

• Reduced dimensional representation of X is learnt by reconstructing 
inputs (rows) using encoder and decoder.

• Latent variables (dimensions) can correlate

• Possible to compute PCA loadings using 
AE weights1

𝑋 =
𝑥11 ⋯ 𝑥1𝑁
⋮ ⋱ ⋮
𝑥𝑀1 ⋯ 𝑥𝑀𝑁





PCA-AE correspondence requirements1

• Three-layer fully connected network: encoder, number of 
components, decoder

• No activation functions (=linear; f(x) = x)

• Mean squared error loss function

• L2 weight regularization (layer-wise)



Autoencoder
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The mean squared error loss 
function
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The weight regularization



• Encourages the network to keep the weights small

• Technique to reduce overfitting of the training dataset

• Applied on a per-layer basis

• Penalizing a network based on the size of the weighs during training
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Experimental setup (similar to1)

• Learning rate: 10-4

• Weight regularization (α): 5*10-4

• Weight update rule: Adam

• Batch-size: 4

• (row) shuffle (!)

• Epochs: 1



PCA and AE model of subject 6 (all exams) – Variable Importance

PCA loadings from SVD on X PCA loadings from SVD on AE weights (decoder), trained on X



Variable 
contributions 
for PC 1-4 are 
flipped – score 
images must be 

flipped

PCA loadings from SVD on X PCA loadings from SVD on AE weights (decoder), trained on X



Summary AE

• AE can present contributions of separate input variables to (principal) 
components, like loadings in PCA

• Interpretability method

• Starting point to test more advanced networks for learning 
interpretable representations of disease (convolutional, transformers, 
attention, etc.)



Conclusion and beyond

• Theoretical: Connection between the linear independent (orthogonal) features 
from PCA, and linear dependent features of AE, using SVD of decoder weights of 
the AE

• Practical: Possible to compute variable importance for large datasets with a 
simple autoencoder as if it were PCA

• Clinical: Ventricle change with time can be quantified using PCA and AE. PCA and 
AE indicate that ventricle change is the most stable temporal pattern with 
disease. This is an example and introduction to large scale analysis of MRI for 
categorizing disease. Potential outcomes are predictions for a new subject based 
on existing data, such as predicting treatment response and overall survival

• Combining multivariate methods with “AI” models and frameworks is a good 
starting point for building up intuition for interpreting more advanced neural 
network models, which is important in medicine


