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1 Introduction

The process of successfully creating and training an Artificial Neural Network (ANN) to solve a

domain-specific task is highly dependent on the skill set of the researcher, which would typically

be various experience gained from repetitive trying and failing of ANN modeling as well as

domain knowledge from previous tasks. See Figure 1 to get an impression of the complexity in

the field. In the deep learning community, architectures such as Convolutional Neural Networks

(CNNs) and Autoencoders with many hidden layers have been proven to work well on large

datasets [1], but limitations of architectures initially created with few layers, such as Recurrent

Neural Networks (RNNs) have also inspired researchers to create completely new architectures

such as highway networks [2]. Another example is Squeeze-and-Excitation networks, networks

that better learn interdependencies between channels of convolutional features compared to

traditional CNNs [3]. There exist great potential to learn from previous neural network research

[4] to try to extend earlier ideas into Deep Neural Network (DNN) design, particulary those

who are more biologically inspired than today’s networks. One example is the Transformer

network, which incorporates attention mechanisms [5]. Regardless of the number of layers,

it can be hard to efficiently specify good non-learnable parameters of the ANN. In fact, how

deep the network is should rather be regarded as a hyperparameter that is automatically tuned

based on the problem at hand as well as available data. See Table 1 for an extensive list of

ANN hyperparameters as well as various techniques to perform a successful ANN training. The

goal of this essay is to show that the researcher should not only rely on previous experiences

when defining hyperparameters, but also on ANN hyperparameter optimisation (HPO) and

Neural Architecture Search (NAS) techniques such as Bayesian and Gradient-based Sequential
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Optimization methods, Grid Search, Evolutionary Strategies (ES) and Reinforcement Learning

(RL), for tuning into an optimal hyperparameter configuration and in this way commit to more

reproducible research.
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Figure 1: High-level visualization of common ANN architectures. In most of these networks

weights and biases can be optimized through gradient based methods, such as backpropagation

gradient descent (GD) [6]. Actual engineering of the network architecture is typically done

manually, but the field of AutoML also considers optimizing the architecture [7]. A promis-

ing example is the evolutionary method CoDeepNEAT [8], which is suited for deep learning.

Borrowed from [9].
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Table 1: Some ANN hyperparameters and useful tricks for training ANNs. In this work, a

hyperparameter is defined as any parameter in the ANN configuration that is not directly

learnable by training through backpropagation and GD [6]. See [10] for useful tips on tuning

the most common hyperparameters: learning rate, batch size, momentum and weight decay, as

well as understanding the signs of overfitting and underfitting.

Parameter/method Description Example

Activation func-

tion

Defines how a neuron or group of neurons acti-

vate (”spiking”) based on input connections and bias

term(s).

Exponential

Linear Unit

(ELU) [11].

Number of neu-

rons in a layer

- 1000

Number of layers Typically layers between input and output layer,

which are called hidden layers.

5

Number of epochs The number of times all training examples have been

passed through the network during training.

100

Mini-batch size Number of training examples in each gradient descent

(GD) update.

50

Number of filters

in each layer

For Convolutional Neural Networks (CNNs). A filter

is a collection of CNN layer weights that is convolved

with the input of the layer.

10

Filter size For CNNs. The spatial size of the filter. 5 x 5

Stride For CNNs. The spatial step between successive con-

volutions with a filter. A stride larger than one will

downsample the data in addition to convolving it with

the filter.

2

Learning rate Step length for GD update. 0.005

Learning rate de-

cay

Incrementally decaying the learning rate parameter

throughout the training to prevent overfitting. A reg-

ularization parameter.

-

Momentum If using a momentum in the (GD) update rule, ex.

Nesterov momentum. Acts as a smoothing of the tra-

jectory of GD updates.

0.9
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Dropout [12] ”Dropping out” some input connections to some neu-

rons by a probability in order to make the network

represent features more evenly throughout the net-

work (some redundancy). ANN pruning. A type of

regularization. Can be used for uncertainty quantifi-

cation.

-

Early stopping Stop the ANN training typically when training and

validation error start to diverge from each other cre-

ating a ”generalization gap”. Prevents overfitting.

-

Loss function Specifies how to calculate the error between predic-

tion and label for a given training example. The error

is backpropagated during training in order to update

learnable parameters.

Multi-class

cross-

entropy.

Regularization on

loss function

A (penality) term added to the loss function or gra-

dient update equation which can prevent overfitting

and/or make the network more robust against noisy

input data.

L2 or

weight

decay.

Initialization

techniques of

learnable param-

eters [13]

Learnable parameters such as weights and bias for

a neuron need to have initial values before training

starts. The initial values can affect the difficulty of

the learning task by changing the probabilities of en-

countering local minima.

He et al.

initializa-

tion of

weights

[14].

Batch normaliza-

tion [15]

The distribution of each layer’s inputs have a tendency

to change during training leading to internal covari-

ate shift. This can lead to saturating nonlinearities.

Batch normalization attempts to prevent this by im-

plementing a normalization layer after fully connected

or convolutional layers that act on each mini-batch.

-
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Transfer learning Not always is it necessary to train the entire network.

A pretrained network can be used. A selected number

of layers of the pretrained network can be retrained on

new or task-specific data for domain shift/adaptation

where learnt features of the pretrained network are

reused.

VGG16 [16]

pretrained

on the Im-

ageNet [17]

dataset.

Data augmenta-

tion

Create new data from existing data to create more

training examples.

Rotating

and flipping

images.

Multitask learn-

ing

Train the same ANN on different datasets with differ-

ent tasks.

Data/task

1: Object

detection;

data/task

2: re-

coloring

images.

Table 2: ANN parameters that are learnt through GD updates in backpropagation during

training.

Parameter Description

Weights The amplification of input signals to a neuron.

Bias An additive bias term to a neuron.

It must be noted that hyperparameter optimization (HPO) in the context of ANNs can

be regarded as a subset of a the broader task of specifying the best set of parameters of any

algorithm that can be evaluated through a performance measure that is dependent on those pa-

rameters. A branch of optimization called algorithm configuration [18] is central in this regard,

which deals with mathematically difficult search spaces consisting of both discrete and contin-

uous variables as well as conditional variables that are only meaningful for some combination

of other variables [19].

The fact that today’s supervised neural networks train on loss functions that are differ-

6



entiable is essentially what makes gradient based optimization through GD possible of the

learnable parameters. However, it is reasonable that traditionally non-learnable parameters,

namely hyperparameters, also play important roles in defining the overall learning capacity of

the neural network. ANN hyperparameters typically share many of the properties with a vari-

able in the algoritihm configuration task (discrete or continuous, partially dependent on other

variables, not differentiable w.r.t. the loss function / no gradient available, etc.). The ANN

topology itself should also be regarded a hyperparameter.

Methods for finding an optimal architecture fall withing the category of Neural Architecture

Search (NAS). [20] divide the NAS process into three dimensions; search space, search strategy,

and performance estimation strategy. One of the trickiest areas is the selection of performance

estimation strategy, since evaluating the performance of an ANN architecture typically is com-

putationally expensive. HPO including NAS can be regarded as a combined algorithm selection

and hyperparameter optimization (CASH) problem, which aims to identify the combination of

algorithm components with the best (cross-)validation performance [7].

2 Definition of HPO for ANN

If we regard gradient based optimization of the N learnable parameters θ in a configuration

space Θ = Θ1×Θ2×...×ΘN as an inner optimization problem solved by GD, we can analogously

define hyperparameter optimization (HPO) for ANN as an outer optimization problem of the

M hyperparameters λ in a configuration space Λ = Λ1 × Λ2 × ...× ΛM according to [21–23]

λ∗ = argmin
λ∈Λ

E(Dtrain,Dval)∼DV(L,Aλ,Dtrain,Dval) = argmin
λ∈λ(1)...λ(S)

Ψ(λ) (1)

where V(L,Aλ,Dtrain,Dval) is a loss measure that we want to minimize, associated with

a loss function L and generated ANN model A with hyperparameters λ trained on training

data Dtrain and evaluated on validation data Dval. In practice, V can be computed using k-fold

Cross-Validation (CV). Since we don’t have access to infinite data and computational resources,

the optimal hyperparameters λ∗ are also approximations of the true optimal hyperparameters on

data D. Nevertheless, we want to find an optimal ANN architecture A with a hyperparameter

configuration λ∗ that minimizes a given loss measure L. Moreover, the training Dtrain and

validation Dval data need to represent sufficient distributions of relevant features needed to

solve the task and thus minimize the loss. The HPO problem amounts to finding the best

available hyperparameter configuration, which is minimizing the response surface function Ψ(λ)
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subject to all available hyperparameter configurations S. Equation 1 shows that not only are

hyperparameters important in HPO, but also the selection of data and loss function.

3 Methods

3.1 Grid search: Complete, Manual and Random

Perhaps the most basic form of HPO for ANNs is to perform a loss evaluation for each pos-

sible configuration of the M hyperparameters, S =
∏M
m=1 |Λm|, to find the configuration with

the minimum loss. Here, S grows exponentially with the number of hyperparameters, thus a

complete grid search would suffer from a common problem in machine learning of having to

deal with a large amount of parameter states, often denoted the curse of dimensionality. A

complete GD training would be needed on each loss evaluation by for instance regarding the

final mini-batch cost function evaluation (after some number of epochs of training) as the loss

evaluation in the HPO.

Having to evaluate every possible configuration makes complete grid search a slow process.

For this reason, a subset of configurations can be selected manually by intuition before or during

the grid search process. However, this introduces difficulties of reproducibility and also forces

the HPO to be performed sequentially.

The most popular form of grid search today is random grid search where parameter config-

urations are instead selected randomly. [21] shows both theoretically and experimentally that

if sampling hyperparameter configurations by modeling all hyperparameters as independent

and identically uniformly distributed variables, random grid search will perform better in high-

dimensional spaces than complete grid search. This is related to the fact that the loss function

in hyperparameter space often has low effective dimensionality, and random grid search can

cope better with low effective dimensionality. A method for speeding up random search as an

infinite-armed bandit problem, HYPERBAND [24], also makes random search competitive to

Bayesian optimization for HPO, which will be discussed next.
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Figure 2: Complete and random grid search on two-dimensional hyperparameter space with

lower effective dimensionality (D=1). Random grid search is more likely to explore distinct

values in lower dimensional space. This becomes more evident in high-dimensional spaces.

Borrowed from [21].

3.2 Bayesian Optimization

Although having been around for a while [25], methods based on Bayesian optimization have

become increasingly popular for ANN HPO during the last years [26–29]. A central reason for

introducing Bayesian ANN HPO is that the loss function in Equation 1 is very expensive to

evaluate since it needs a complete retraining of the ANN for each hyperparameter configuration.

The most popular Bayesian HPO for ANNs models the hyperparameter search process using

a Gaussian Process (GP) surrogate model (Equation 2) together with an acquisition function

(Equation 3) in order to to infer a decision on which hyperparameter configuration to evaluate

next in each iteration [22, 30–32]. In most simple form it is an adaptive Sequential Model-based

Optimization (SMBO) method [33].

Ψ(λ) ∼ GP(m(λ), k(λ, λ′))) (2)

αEI(λn+1) = E[I(λn+1)] = (ymin − µn(λn+1))Φ(Z) + σn(λn+1)φ(Z) (3)

where

Z =
ymin − µn(λn+1)

σn(λn+1)
(4)
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.

The GP in Equation 2 is a probabilistic model of Ψ in Equation 1 and is fully specified

by a mean m(λ) and covariance k(λ, λ′) function. The value of Ψ(λ) for each non-evaluated

(unknown) hyperparameter configuration λ is modelled according to a mean and confidence

interval prior to evaluation. Many different acquisition functions can be used with the GP

model to predict new promising hyperparameter configurations to evaluate. The acquisition

Equation 3 is called Expected Improvement [22, 30]. In each iteration, ymin is the best observed

value so far, while φ(·) and Φ(·) are the Probability Density Function (PDF) and Cumulative

Distribution Function (CDF) of standard normal distribution, respectively.

The acquisition function 3 determines in each iteration n which parameter configuration

λ to evaluate based on a trade-off between reasonably high prediction uncertainty, which is

essentially measuring the confidence interval (exploration), and good objective function value

which corresponds to the mean (exploitation) of the objective function approximating Ψ. In

the noise-free case, this involves for each iteration n computing the predictive distribution of

the GP for each possible hyperparameter configuration λn+1 according to Equations 5, 6 [30,

31]

µn(λn+1) = kTK−1y1:n (5)

σ2n(λn+1) = k(λn+1, λn+1)− kTK−1k (6)

where K is the covariance matrix of all previously evaluated observations y1:n and k a vector

of covariances between λn+1 and all previous configurations λ1:n.

The hyperparameter configuration λt+1 giving 5, 6 that lead to the most expected improve-

ment when inserted into Equation 3 is then evaluated using Ψ(λt+1) giving the new observation

yn+1, which will be used in the next iteration [22], [34], Ch. 15.2.1. See Figure 3.
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Figure 3: Illustration of objective function (blue) as well as acquisition function (orange) for

one-dimensional Bayesian hyperparameter optimization over three iterations. In each iteration,

the acquisition function determines the next point to evaluate based on a trade-off between

large acquisition function value (exploitation) and high objective function uncertainty (explo-

ration) (and thus minimized objective function value). The trade-off is achieved by finding the

hyperparameter configuration giving a predictive mean and standard deviation of the GP model

which maximizes the acquisition function. A new observation is then performed with this hy-

perparameter configuration. Lastly, the observation is used to update the posterior uncertainty

and mean of the GP model. Borrowed from [22].

An important aspect of Bayesian GP HPO is the selection of an appropriate covariance

function k(λ, λ′), which is the kernel of the GP. The covariance function dictates the structure

of the response function that the GP can fit, and can be stationary, periodic or nonstationary
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[31]. A common kernel is the Matern 5/2 kernel, which is a stationary kernel.

The works in [26] used a negative exponentiated distance as the kernel, which uses a (pseudo-

)distance metric for ANN architectures that is efficiently computed via an Optimal Transport

Program [35]: Optimal Transport Metrics for Architectures of Neural Networks (OTMANN).

OTMANN introduces layer masses and path lengths into the ANN in order to efficiently esti-

mate the amount of computation of the layers (as a performance measure) between two ANN

architectures. They then used an Evolutionary Algorithm (EA) to maximize the Expected

Improvement acquisition function 3 over a pool of ANNs. The resulting Bayesian Optimiza-

tion (BO) framework was named Neural Architecture Search with Bayesian Optimisation and

Optimal Transport (NASBOT), and it provided quite efficient (and generic) NAS compared to

previous state-of-the-art evolutionary and reinforcement learning based NAS in terms of com-

putation time [36, 37]. See Figure 4 for a comparison of CV results between random search,

evolutionary algorithm, NASBOT and another BO framework, as well as Figure 11a for one of

the resulting CNNs from NAS on the CIFAR-10 dataset [38]. For another example of Bayesian

GP ANN HPO using CNNs and Transfer Learning, see the Master’s thesis at [39].

Figure 4: A comparison of CV error results from NAS on the CIFAR-10 dataset from [26] using

four different NAS methods; random search, evolutionary algorithm, and the Bayesian methods

TreeBO and NASBOT. Parallelized NAS and training was performed on four Nvidia Tesla K80

(12GB) GPUs with a budget of 10 hours. For NASBOT, the computation time (search cost) is

several orders of magnitudes faster (less) than for instance Progressive NAS (PNAS) [36] (225

GPU days [40]).

Most kernels introduce their own hyperparameters, which of course is a downside of Bayesian
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GP HPO for ANN. An attempt at handling GP kernel hyperparameters is to integrate them

out [32, 41].

Another downside of Bayesian GP HPO for ANN is that GPs scale cubically with the number

of observations. They also don’t scale well to high dimensions [22]. [42] discussed using ANNs

instead of GPs to overcome those limitations. [43] did similar work introducing a framework

that they call Bayesian Optimization with Hamiltonian Monte Carlo Artificial Neural Networks

(BOHAMIANN) reaching state-of-the art performance for a wide range of optimization tasks.

Some promising directions of Bayesian HPO are incorporating ideas from meta-learning

[44], for instance in [45] to initialize Bayesian HPO, and in [46] where to introduce ranking. A

comparable alternative to Bayesian optimization (suited for evaluating expensive functions) is

perhaps derivative-free HPO methods such as in [47] based on Radial Basis Functions.

3.3 Population-based methods

It is natural to think that a search heuristic maintaining a population of architectural candidates

can be beneficial when the goal is to find a good architecture and hyperparameter configuration

based on available data. For example, the optimal configuration could be regarded as a result

of having architectural candidates compete for best fitness in an environment with limited

resources and constraints (the data). This imposes novelty, which motivates creativity and thus

good configurations [48]. However, less competitive population-based methods have also been

investigated for DNN HPO, such as Particle Swarm Optimization (PSO) [49, 50].

A group of algorithms building upon the idea of Evolutionary Strategies (ES) are Genetic

Algorithms (GA), which use random mutations and replication to evolve the candidates in a

population. Using ES to evolve ANNs is called Neuroevolution [48, 51–53].

With ES, the outer optimization problem in Equation 1 is relaxed by letting possible con-

figurations evolve into new and unexplored configurations before they are eventually evaluated

and the most fit reproduced. At the end, the most fit configuration or group of configurations

is selected.

Evolutionary methods for training ANNs have existed for a long time [54] under the name

Evolutionary ANNs (EANNs) [55, 56], and their fit with ANNs has been well known [53]. More

recent research methods have also showed that ES can contribute to NAS, for instance the

pionering work with NeuroEvolution of Augmenting Topologies (NEAT) [57].

A link between learning and evolution has been discussed in the context of ANNs as well, for

instance using GAs to initialize weights (evolution) before performing backpropagation gradient-
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based training (learning), thereby learning on top of genetic search [58, 59]. This is motivated by

the fact that in nature genetic encodings can compactly capture regularities such as symmetries

in structure [48]. Moreover, the structures generated by genetic encodings are often more

advanced than the genetic encodings, for example is our capacity of 30000 genes in our DNA-

based genetic code [60] able to indirectly encode our biological neural network brain of about

100 trillion connections and 100 billion neurons [61].

Successful GAs try to mimic this indirect genotype-phenotype mapping through generations

with survival of the fittest. One such example used for evolving ANNs is evolving Compositional

Pattern Producing Networks (CPPN) [62] with NEAT [57] and then use CPPNs to generate

patterns of weights for ANNs; HyperNEAT [63]. The main finding is that using CPPNs to

determine the weight patterns for as ANN as an indirect encoding makes the ANN able to

scale to new numbers of inputs and outputs without further evolution. An other example of

providing an indirect encoding is Differentiable PPN (DPPN) [64] which was used to compress

the weights of a denoising autoencoder. Perhaps the latest innovation of NEAT extending to

DNNs is CoDeepNEAT [8]. In this work, NEAT is extended to coevolutionary optimization of

components, topologies, and hyperparameters of DNNs.

CoDeepNEAT starts with a population of Directed Asyclic Graphs (DAGs) which they

call chromosomes. Each node in a chromosome represents a DNN layer. Following NEAT,

chromosomes evolve starting from minimal graphs into more complex graphs through mutations

and crossover over generations. Genes from two chromosomes are lined up during crossover

based on historical markings. Based on a similarity metric, the population of chromomes become

divided into species. Then each species grows proportionally trough fitness and evolution occurs

separately in each species. Unlike NEAT, in CoDeepNEAT, GD is used to determine the

fitness of an evolved DNN. Each node in each chromosome (DAG) contains a table of real and

binary valued hyperparameters that are mutated through uniform Gaussian distribution and

random bit-flipping, respectively. These hyperparameters determine the type of layer (such as

convolutional, fully connected, or recurrent) and the properties of that layer (such as number of

neurons, kernel size, and activation function). In order to do a fitness evaluation a chromosome

needs to be converted to a DNN. This is done by traversing the chromosome directed graph,

replacing each node with the corresponding layer. See Figure 5 for an illustration of the DNN

synthesis as well as Figure 11b for an evolved CNN architecture on the CIFAR-10 dataset.
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Figure 5: Synthesis of a DNN from a chromosome (Blueprint) in CoDeepNEAT by replacing the

nodes of the chromosome with modules (such as convolutional layer) into an assembled DNN.

Borrowed from [8].

The main downside of CoDeepNEAT is its extremely demanding computational cost. Al-

though not specified exactly in the work, they report that a single DNN training takes a couple

of days on a state-of-the-art GPU. The evolutionary strategy requires thousands of DNNs to be

trained through the course of evolution, thus the computational cost makes CoDeepNEAT an

infeasible solution for most people.

A lot of recent research has been done on more efficient ES for DNN HPO and NAS [40,

65–74]. In order to simplify the NAS and HPO problem, many of these methods define the

search space according to the NASNet search space [75] originally motivated by RL-based NAS

[37]. This search space is inspired by the fact that successful deep learning architectures such as

Inception and ResNet models [16, 76–79] have repetitively, N stacked convolutional cells with

different configurations, such as number of filters F and pooling type and size. The NASNet

search space tries to generalize this by introducing the overall ANN macro architecture that

is known to perform well on two famous datasets: CIFAR-10 and ImageNet. A Cell in the

NASNet search space is some combination of interconnected pooling, convolution, summation

and concatenation operations, which can be of two types; Normal Cell which returns a feature

map of the same dimension, and Reduction Cell which returns a feature map where the feature

map height and width is reduced by a factor of two (stride of two) [75]. The idea is that when

introduced to a new dataset, for instance the ImageNet dataset, an architecture found from

NAS in the CIFAR-10 NASNet search space would be easier to transfer to the new dataset, by
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altering a few free parameters such as the number of repeated layers N and number of filters F

of the Normal Cell. Hence N and F are not optimized in the NAS but left to the user as easy

design parameters for the model transfer. See Figure 6.

Figure 6: Left: The CIFAR-10 NASNet search space consisting of multiple N stacked Normal

Cells as well as multiple Reduction Cells. Middle: Normal Cells stacked. Skip connections

shall also be learned (depending on NAS search strategy). Right: Example of a Cell. Within

the red circle is a summation of an average and max pooling operation. Opposed to NASBOT

and CoDeepNEAT which search for entire networks, NAS using this kind of search space is

considered micro search since it only searches for the best type of (convolutional) Cell. Borrowed

from [40].

The creators behind the NASNet search space used RL to search for an optimal convolutional

Cell, which resulted in NASNet-A [75]. They used a Proximal Policy Optimization (PPO)

method involving a controller (a RNN) that repeatedly predicted the two convolutional Cells

that were then synthesized into a candidate network and evaluated through gradient descent

training. Others started quickly to adopt the NASNet search space into their own NAS research,

for instance [80] (ENAS) using a similar RL approach but with additional parameter sharing

between candidate networks speeding up the search by more than 1000x in terms of GPU hours

compared to the original RL-based NAS work [37] (those who suggested the NASNet search

space, but the original work was conducted before this suggestion and with slightly different

search space), [36] (PNAS) which combinined RL with an evolutionary algorithm to make a

SMBO strategy resulting in 8 times more computational efficiency compared to NASNet-A
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[75], and [40] (AmoebaNet-A) which used a tournament selection evolutionary algorithm with

an added aging property to get comparable results to PNAS but with even better computational

efficiency. Following the convention of NASNet, ENAS and PNAS, AmoebaNet-A was a CNN

architecture optimized using NAS on the CIFAR-10 dataset, then augmented (transfered) into

a model working on the ImageNet dataset (through retraining). Like initially proposed in

NASNet-A [75], the augmentation involved adding a convolution with stride at the start of the

architecture. See Figure 12b for a depiction of the evolved AmoebaNet-A CNN. The Cells of

RL-based NASNet-A are shown in Figure 12a. Figure 7a shows testing accuracies of the EA

(AmoebaNet-A, [40]), RL (PNAS, [36]) and random search ([21]) NAS methods on CIFAR-10

(before model augmentation), while Figure 7b shows final testing accuracies vs. model cost for

the final augmented (into ImageNet) models.

(a) Accuracies of five identical large

scale CIFAR-10 NAS experiments of three

methods.

(b) Final testing accuracies vs. model cost

of final augmented models (into ImageNet

models).

Figure 7: Evolution/Evol.: AmoebaNet-A, [40]. RL: PNAS [36]. RS: A model from random

search NAS [21]. Note that RS did note use the NASNet search space, unlike the other two

methods. Each large scale experiment ran on 450 Nvidia Tesla K40 GPUs for approx. 7 days

to evaluate 20000 models. Borrowed from [40].

As discussed with the case of using ES for NAS, RL has also been investigated for NAS

in more general ANN search spaces, like using Q-learning [81] and combining RL with Multi-

Objective Optimization [82, 83]. RL has also been used for more narrowed, specific tasks, like

searching for activation functions [84], searching for optimal update rules of optimization [85]

and learning how to do optimization [86]. Ideas such as re-using weights in NAS using RL

[87] and weight sharing in ENAS [80] correspond well to the idea of evolving genotypes for
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genotype-phenotype mapping originating from traditional population-based methods discussed

earlier [8, 57, 62–64]. Thus, many RL NAS methods incorporate ideas from ES. For this reason,

the author decided to discuss RL for NAS as population-based methods.

The well suitedness of ideas from evolution for tuning ANN HPO and NAS has been discussed

previously. Moreover, not only traditional population-based methods such as GAs benefit from

those ideas in the context of NAS. One example was RL NAS. The fact that raw computational

power has been a limiting factor for the success of NAS in early years [88] is exiting when taking

into account how much more powerful computers we have today. The increase in available

computation power is likely one of the main reasons why Deep Learning became so popular

in the recent years. Nevertheless, lack of data and computation power in the early years also

motivated creative ideas such as prediction risk for cheap model performance evaluation [88] and

modifications of the NAS search space (to have less computationally demanding NAS), such

as (neuron) sensitivity-based input pruning (SBP) and optimal brain damage (OBD) weight

pruning [88].

In a recent Neuroevolution review article [48], the authors discussed in a future outlook

that evolution in general is an open playground for testing and proving ideas, as it imposes few

limitations on imaginable models. One such limitation that Neuroevolution methods such as

GAs, do not impose, is that a model needs to be differentiable. They continue claiming that

ultimately, if it is possible to translate such ideas (evolution) into gradient descent, then the

effort may result in greater scalability and efficiency.

3.4 Gradient-based methods

Gradient-based NAS is perhaps the most interesting direction for ANN HPO and NAS. For ex-

ample, [89] introduced HyperNetworks, networks that are used to generate the weighs of another

network. This is analogous to what was done in HyperNEAT [63] discussed previously, but unlike

HyperNEAT, eveything is now trained end-to-end with backpropagation gradient descent. The

HyperNetwork thus incorporates the evolutionary idea of genotype(HyperNetwork)-phenotype

mapping into a gradient-based method. The phenotype would be analogous to traditional

gradient descent training of the neural network. [90] did similar work but with additional

Multi-Objective Optimization, while [91] investigated using deconvolutional neural networks to

design CNNs.

Some RL NAS methods use gradients, for instance PPO RL in NASNet-A [75] and MnasNet

[83], and Policy Gradient RL in MONAS [82]. Moreover, an ES that use gradients [92], called
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Natural ES (NES) [93] has been discussed as a scalable alternative to RL.

Some gradient-based methods that have entered HPO and NAS are a method of reversing

stochastic gradient descent to get gradients of hyperparameters [94], NAS by network morphisms

[95, 96] as well as an early conceptualization of gradient-based HPO [97].

More recently, [98] formulated the NAS problem as a continous optimization problem giving

it the name Neural Architecture Optimizaion (NAO), using a neural network based encoder,

decoder and regression model (predictor) to optimize for best architecture. Differentiable Archi-

tecture Search (DARTS) [99] favours a simpler method of alternating gradient descent optimiza-

tion of hyperparameter and traditional parameters to simultaneously optimize hyperparameters

and (traditionally) learnable parameters (training). Like previously discussed RL-based (f. ex.

NASNet [75]) and EA-based (f. ex. AmoebaNet-A [40]) methods, both DARTS [99] and NAO

[98] perform NAS in the NASNet search space [75] presented earlier. The author favours DARTS

for its simplicity and speed. Unlike earlier, gradient-based NAS enables the use of commodity

hardware with few GPUs. See Figure 8 for a comparison of state-of-the-art CIFAR-10 image

classifiers, mostly searched using NAS in the NASNet search space.
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Figure 8: A comparison of state-of-the-art image classifiers on CIFAR-10 conducted in [98].

The most interesting columns are Error, which is the top-1 validation error on CIFAR-10, as

well as GPU Days. All architectures except the two on the top were optimized using varying

NAS methods in the NASNet search space. Please consult [98] for cited works. The Bayesian

NAS discussed previously, NASBOT [26], has a computational cost that is competable with

DARTS [99]. However, NASBOT does not provide comparable accuracy, see Figure 4 and 9.

The following figure description was taken from [98] and slightly modified: ’N’ is the number of

times the discovered Normal Cell is unrolled to form the final CNN architecture. ’F’ represents

the filter size. ’op’ is the number of different operation for one branch in the Cell, which is an

indicator of the scale of architecture space for automatic architecture design algorithm. ’M’ is

the total number of network architectures that are trained to obtain the claimed performance.

’/’ denotes that the criteria is meaningless for a particular algorithm. ‘NAONet-WS’ represents

the architecture discovered by NAO ([98]) and the weight sharing method as described in the

ENAS work [80] (See NAO article [98], section 3.4). ’Random-WS’ represents the random search

baseline, conducted in the weight sharing setting of ENAS [80].
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Figure 9: Validation errors during four runs of the DARTS NAS [99] with different random

seeds, as well as competing NAS methods, on CIFAR-10. Each run is on a single NVidia GTX

1080Ti. As can be seen, a NAS run on CIFAR-10 takes approximately one day. In Figure 8,

results from DARTS is shown only for the 2. order version. There the search cost is four GPU

days.

The main idea behind DARTS is a continuous relaxation of the (categorical) candidate oper-

ations (for instance convolution and max pooling) within the Cell by a softmax over all possible

operations (see [99] Equation 2). A weight for each candidate operation is then associated with

all possible edges between each possible combination of nodes within a Cell, together to form the

architecture configuration α. When the NAS is finished, final single edge operations between

nodes are determined by taking operations with largest weight between nodes in α. With this

formulation of possible operations, the NAS reduces to finding the optimal architecture α∗ with

the optimal weights w∗ according to the bilevel optimization problem (with α as upper-level

variable and w as the lower-level variable)

min
α
Lval(w∗(α), α) (7)

s.t. w∗(α) = argmin
w
Ltrain(w,α) (8)

where

w∗ = argmin
w
Ltrain(w,α∗) (9)

The bilevel optimization problem defined in Equations 7, 8 and 9 is then solved by an

approximate iterative optimization procedure where w and α are optimized by alternating
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between gradient descent steps in the weight and architecture spaces respectively. See Figure

10 for an overall illustration of the NAS, as well as Figure 12c and Figure 12d for optimized

architecture in the NASNet search space based on CIFAR-10 data using this method. Relating

to the HPO for ANN definition in Equation 1, α corresponds to λ, while w corresponds to θ.

Figure 10: An overview of the DARTS method [99]. Normal and Reduction Cell according to

[75] is optimized using gradient descent. (a) Operations on the edges are initially unknown. (b)

Continuous relaxation of the search space by placing a mixture of candidate operations on each

edge. (c) Joint optimization of the mixing probabilities and the network weights by solving

a bilevel optimization problem. (d) Inducing the final architecture from the learned mixing

probabilities. Figure and description borrowed from [99].

DARTS has already been improved by performing some adjustments and additions creating

sharpDARTS [100], for instance a new type of Normal and Reduction Cell called SharpSetConv,

Cosine Power Annealing learning rate schedule, as well as a method for handling hyperparam-

eters of a Cell (hyperhyperparameters?). SharpDARTS also makes use of an automatic data

augmentation method, AutoAugment [101], which improves the validation results. Neverthe-

less, at the time of this writing, gradient-based HPO and NAS such as DARTS is an exiting

topic of NAS that provides state-of-the-art automatically optimized neural network architec-

tures suited for Deep Learning on relatively cheep hardware. This ultimately points in the

direction of removing the sub-optimal human dependence in neural network engineering and

thus more interpretable and reproducible Deep Learning.
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(a) NASBOT (Bayesian Optimization) [26] (b) CoDeepNEAT (EA) [8]

Figure 11: CNNs from (entire network, macro) NAS on CIFAR-10.
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(a) NASNet-A Cells (RL) [75]. The Cells are used in the same augmented network as in 12b Left.

(b) AmoebaNet-A (EA) [40]. Left: Augmented network for ImageNet. Middle: Normal Cell. Right:

Reduction Cell.

(c) DARTS Normal Cell (gradient-based) [99] (d) DARTS Reduction Cell (gradient-based) [99]

Figure 12: CNNs from (convolutional Cell search, micro) NAS on CIFAR-10 and transfered

into an ImageNet model by macro-model augmentation and gradient descent re-training.
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