Optimizing Artificial Neural Network Hyperparameters and

Architecture

Ivar Thokle Hovden, ivarth@student.matnat.uio.no, University of Oslo

May 6, 2019

1 Introduction

The process of successfully creating and training an Artificial Neural Network (ANN) to solve a
domain-specific task is highly dependent on the skill set of the researcher, which would typically
be various experience gained from repetitive trying and failing of ANN modeling as well as
domain knowledge from previous tasks. See Figure [I] to get an impression of the complexity in
the field. In the deep learning community, architectures such as Convolutional Neural Networks
(CNNs) and Autoencoders with many hidden layers have been proven to work well on large
datasets [1], but limitations of architectures initially created with few layers, such as Recurrent
Neural Networks (RNNs) have also inspired researchers to create completely new architectures
such as highway networks [2]. Another example is Squeeze-and-Excitation networks, networks
that better learn interdependencies between channels of convolutional features compared to
traditional CNNs [3]. There exist great potential to learn from previous neural network research
[4] to try to extend earlier ideas into Deep Neural Network (DNN) design, particulary those
who are more biologically inspired than today’s networks. One example is the Transformer
network, which incorporates attention mechanisms [5]. Regardless of the number of layers,
it can be hard to efficiently specify good non-learnable parameters of the ANN. In fact, how
deep the network is should rather be regarded as a hyperparameter that is automatically tuned
based on the problem at hand as well as available data. See Table [I]| for an extensive list of
ANN hyperparameters as well as various techniques to perform a successful ANN training. The
goal of this essay is to show that the researcher should not only rely on previous experiences
when defining hyperparameters, but also on ANN hyperparameter optimisation (HPO) and

Neural Architecture Search (NAS) techniques such as Bayesian and Gradient-based Sequential

Optimization methods, Grid Search, Evolutionary Strategies (ES) and Reinforcement Learning
(RL), for tuning into an optimal hyperparameter configuration and in this way commit to more

reproducible research.

QO Backfed Input Cell

o Neural Networks

~ Input Cell
@ Hidden Cell -

© Probablistic Hidden Cell

Noisy Input Cell

. Spiking Hidden Cell

. Output Cell

. Match Input Output Cell

. Recurrent Cell

. Memory Cell

. Different Memory Cell
~ Kernel

6 Convolution or Pool

Markov Chain (MC)

Deep Convolutional Network (DCN)

0 _
X0
:XV\O\/U\O\

SRy Yo

X > >8

Generative Adversarial Network (GAN)

/3 "
AR

Deep Residual Network (DRN)

Perceptron (P)

Recurrent Neural Network (RNN)
[[

Auto Encoder (AE)

A mostly complete chart of

©2016 Fjodor van Veen - asimovinstitute.org

Feed Forward (FF)

Deconvolutional Network (DN)

Y

W
~
U
~.
P
~.
P
NP

[N]

/NN
O O ©O
/NSNS N
) © © |

4

y

Kohonen Network (KN) Support Vector Machine (SVM)

Figure 1: High-level visualization of common ANN architectures. In most of these networks
weights and biases can be optimized through gradient based methods, such as backpropagation
gradient descent (GD) @ Actual engineering of the network architecture is typically done
manually, but the field of AutoML also considers optimizing the architecture [7]. A promis-
ing example is the evolutionary method CoDeepNEAT , which is suited for deep learning.

Borrowed from uﬂ] .

Variational AE (VAE)

Radial Basis Network (RBF)

Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

O 0 _0O

Liquid State Machine (LSM) Extreme Learning Machine (ELM)

Deep Feed Forward (DFF)

Y/

O

e O

*
WA

Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
[) [[

Y YN
aa% e
Denoising AE (DAE) Sparse AE (SAE)

Deep Belief Network (DBN)

Y, % Y, %

Deep Convolutional Inverse Graphics Network (DCIGN)

P, o PR e
'*>_<f\/Q\/O O\/Q\f\
P I~ &
X 0 MR S0
X 0 O>Oi
NS NA T ~ART
X0 ol

Neural Turing Machine (NTM)

Table 1: Some ANN hyperparameters and useful tricks for training ANNs. In this work, a

hyperparameter is defined as any parameter in the ANN configuration that is not directly

learnable by training through backpropagation and GD [6]. See |10] for useful tips on tuning

the most common hyperparameters: learning rate, batch size, momentum and weight decay, as

well as understanding the signs of overfitting and underfitting.

Parameter/method Description

Example

Activation func-

Defines how a mneuron or group of neurons acti-

Exponential

tion vate (”spiking”) based on input connections and bias Linear Unit
term(s). (ELU) [11].

Number of neu- - 1000

rons in a layer

Number of layers Typically layers between input and output layer, 5
which are called hidden layers.

Number of epochs The number of times all training examples have been 100
passed through the network during training.

Mini-batch size Number of training examples in each gradient descent 50
(GD) update.

Number of filters For Convolutional Neural Networks (CNNs). A filter 10

in each layer is a collection of CNN layer weights that is convolved
with the input of the layer.

Filter size For CNNs. The spatial size of the filter. 5x5

Stride For CNNs. The spatial step between successive con- 2
volutions with a filter. A stride larger than one will
downsample the data in addition to convolving it with
the filter.

Learning rate Step length for GD update. 0.005

Learning rate de- Incrementally decaying the learning rate parameter -

cay throughout the training to prevent overfitting. A reg-
ularization parameter.

Momentum If using a momentum in the (GD) update rule, ex. 0.9

Nesterov momentum. Acts as a smoothing of the tra-

jectory of GD updates.

Dropout [12]

”Dropping out” some input connections to some neu-
rons by a probability in order to make the network
represent features more evenly throughout the net-
work (some redundancy). ANN pruning. A type of
regularization. Can be used for uncertainty quantifi-

cation.

Early stopping

Stop the ANN training typically when training and
validation error start to diverge from each other cre-

ating a ”generalization gap”. Prevents overfitting.

Loss function

Specifies how to calculate the error between predic-
tion and label for a given training example. The error
is backpropagated during training in order to update

learnable parameters.

Multi-class
Cross-

entropy.

Regularization on

loss function

A (penality) term added to the loss function or gra-
dient update equation which can prevent overfitting
and/or make the network more robust against noisy

input data.

L2 or
weight
decay.

Initialization
techniques of
learnable param-

eters [13]

Learnable parameters such as weights and bias for
a neuron need to have initial values before training
starts. The initial values can affect the difficulty of
the learning task by changing the probabilities of en-

countering local minima.

He et al
initializa-
tion of
weights

[14].

Batch normaliza-

tion [15]

The distribution of each layer’s inputs have a tendency
to change during training leading to internal covari-
ate shift. This can lead to saturating nonlinearities.
Batch normalization attempts to prevent this by im-
plementing a normalization layer after fully connected

or convolutional layers that act on each mini-batch.

Transfer learning Not always is it necessary to train the entire network. VGGI16 [16]7
A pretrained network can be used. A selected number pretrained
of layers of the pretrained network can be retrained on on the Im-
new or task-specific data for domain shift /adaptation ageNet [17]
where learnt features of the pretrained network are dataset.

reused.

Data augmenta- Create new data from existing data to create more Rotating
tion training examples. and flipping

images.

Multitask learn- Train the same ANN on different datasets with differ- Data/task

ing ent tasks. 1: Object
detection;
data/task
2: re-
coloring

images.

Table 2: ANN parameters that are learnt through GD updates in backpropagation during

training.

Parameter Description

Weights The amplification of input signals to a neuron.

Bias An additive bias term to a neuron.

It must be noted that hyperparameter optimization (HPO) in the context of ANNs can
be regarded as a subset of a the broader task of specifying the best set of parameters of any
algorithm that can be evaluated through a performance measure that is dependent on those pa-
rameters. A branch of optimization called algorithm configuration [18] is central in this regard,
which deals with mathematically difficult search spaces consisting of both discrete and contin-
uous variables as well as conditional variables that are only meaningful for some combination
of other variables [19].

The fact that today’s supervised neural networks train on loss functions that are differ-

entiable is essentially what makes gradient based optimization through GD possible of the
learnable parameters. However, it is reasonable that traditionally non-learnable parameters,
namely hyperparameters, also play important roles in defining the overall learning capacity of
the neural network. ANN hyperparameters typically share many of the properties with a vari-
able in the algoritihm configuration task (discrete or continuous, partially dependent on other
variables, not differentiable w.r.t. the loss function / no gradient available, etc.). The ANN
topology itself should also be regarded a hyperparameter.

Methods for finding an optimal architecture fall withing the category of Neural Architecture
Search (NAS). [20] divide the NAS process into three dimensions; search space, search strategy,
and performance estimation strategy. One of the trickiest areas is the selection of performance
estimation strategy, since evaluating the performance of an ANN architecture typically is com-
putationally expensive. HPO including NAS can be regarded as a combined algorithm selection
and hyperparameter optimization (CASH) problem, which aims to identify the combination of

algorithm components with the best (cross-)validation performance [7].

2 Definition of HPO for ANN

If we regard gradient based optimization of the N learnable parameters in a configuration
space =03 O :: Oy asan inner optimization problem solved by GD, we can analogously

define hyperparameter optimization (HPO) for ANN as an outer optimization problem of the

M hyperparameters in a configuration space = A; Az i Am according to [21-23]
=argminEp, . .p y pV(L;A ;Dtrain; Dvai) = argmin () (1)
2A 2 (1) (5)

where V(L; A ; Dtrain; Dval) is a loss measure that we want to minimize, associated with
a loss function L and generated ANN model A with hyperparameters trained on training
data Dyrain and evaluated on validation data Dyg). In practice, V can be computed using k-fold
Cross-Validation (CV). Since we don’t have access to infinite data and computational resources,
the optimal hyperparameters are also approximations of the true optimal hyperparameters on
data D. Nevertheless, we want to find an optimal ANN architecture A with a hyperparameter
configuration that minimizes a given loss measure L. Moreover, the training D¢rajn and
validation Dyg data need to represent sufficient distributions of relevant features needed to
solve the task and thus minimize the loss. The HPO problem amounts to finding the best

available hyperparameter configuration, which is minimizing the response surface function ()

subject to all available hyperparameter configurations S. Equation [I| shows that not only are

hyperparameters important in HPO, but also the selection of data and loss function.

3 Methods

3.1 Grid search: Complete, Manual and Random

Perhaps the most basic form of HPO for ANNs is to perform a loss evaluation for each pos-
sible configuration of the M hyperparameters, S = Hmzlemj, to find the configuration with
the minimum loss. Here, S grows exponentially with the number of hyperparameters, thus a
complete grid search would suffer from a common problem in machine learning of having to
deal with a large amount of parameter states, often denoted the curse of dimensionality. A
complete GD training would be needed on each loss evaluation by for instance regarding the
final mini-batch cost function evaluation (after some number of epochs of training) as the loss
evaluation in the HPO.

Having to evaluate every possible configuration makes complete grid search a slow process.
For this reason, a subset of configurations can be selected manually by intuition before or during
the grid search process. However, this introduces difficulties of reproducibility and also forces
the HPO to be performed sequentially.

The most popular form of grid search today is random grid search where parameter config-
urations are instead selected randomly. [21] shows both theoretically and experimentally that
if sampling hyperparameter configurations by modeling all hyperparameters as independent
and identically uniformly distributed variables, random grid search will perform better in high-
dimensional spaces than complete grid search. This is related to the fact that the loss function
in hyperparameter space often has low effective dimensionality, and random grid search can
cope better with low effective dimensionality. A method for speeding up random search as an
infinite-armed bandit problem, HYPERBAND [24], also makes random search competitive to

Bayesian optimization for HPO, which will be discussed next.

Grid Layout Random Layout

— e
@ 5]
+— +—
Q Q
E £
1] [0
b A
(3] [9+]
o a
) +—
c c
1] [}
£ £
S o
o &
E S
£ (@] L @ =
])
Important parameter Important parameter

Figure 2: Complete and random grid search on two-dimensional hyperparameter space with
lower effective dimensionality (D=1). Random grid search is more likely to explore distinct
values in lower dimensional space. This becomes more evident in high-dimensional spaces.

Borrowed from ||)

3.2 Bayesian Optimization

Although having been around for a while , methods based on Bayesian optimization have
become increasingly popular for ANN HPO during the last years . A central reason for
introducing Bayesian ANN HPO is that the loss function in Equation [1] is very expensive to
evaluate since it needs a complete retraining of the ANN for each hyperparameter configuration.

The most popular Bayesian HPO for ANNs models the hyperparameter search process using
a Gaussian Process (GP) surrogate model (Equation [2|) together with an acquisition function
(Equation [3) in order to to infer a decision on which hyperparameter configuration to evaluate
next in each iteration , . In most simple form it is an adaptive Sequential Model-based
Optimization (SMBO) method [33].

() GP(m(k(")) (2)

EI(n+1):E[|(n+l)] = (ymin n(n+l)) (Z)+ n(n+1) (Z) (3)
where
_ Ymin n(n+1)
2= n(n+1) (4)

The GP in Equation P]is a probabilistic model of in Equation f[] and is fully specied
by a meanm() and covariancek(; 9 function. The value of () for each non-evaluated
(unknown) hyperparameter con guration is modelled according to a mean and con dence
interval prior to evaluation. Many di erent acquisition functions can be used with the GP
model to predict new promising hyperparameter con gurations to evaluate. The acquisition
Equation 3 is called Expected Improvement [22, 30]. In each iterationy min is the best observed
value so far, while () and () are the Probability Density Function (PDF) and Cumulative
Distribution Function (CDF) of standard normal distribution, respectively.

The acquisition function 3 determines in each iteration n which parameter con guration

to evaluate based on a trade-o between reasonably high prediction uncertainty, which is
essentially measuring the con dence interval (exploration), and good objective function value
which corresponds to the mean (exploitation) of the objective function approximating . In
the noise-free case, this involves for each iteratiom computing the predictive distribution of
the GP for each possible hyperparameter con guration n+1 according to Equations 5, 6 [30,
31]

n(n+1) = kTK 1}/1:n 5)

2(ne1) = K(ne1; ne1) kTK 1K (6)

whereK is the covariance matrix of all previously evaluated observations/ 1., and k a vector
of covariances between 41 and all previous con gurations 1.,.

The hyperparameter con guration 41 giving 5, 6 that lead to the most expected improve-
ment when inserted into Equation 3 is then evaluated using (t+1) giving the new observation

Yn+1, Which will be used in the next iteration [22], [34], Ch. 15.2.1. See Figure 3.

10

Figure 3: lllustration of objective function (blue) as well as acquisition function (orange) for
one-dimensional Bayesian hyperparameter optimization over three iterations. In each iteration,
the acquisition function determines the next point to evaluate based on a trade-o between
large acquisition function value (exploitation) and high objective function uncertainty (explo-

ration) (and thus minimized objective function value). The trade-o is achieved by nding the

hyperparameter con guration giving a predictive mean and standard deviation of the GP model
which maximizes the acquisition function. A new observation is then performed with this hy-
perparameter con guration. Lastly, the observation is used to update the posterior uncertainty

and mean of the GP model. Borrowed from [22].

An important aspect of Bayesian GP HPO is the selection of an appropriate covariance
function k(; 9, which is the kernel of the GP. The covariance function dictates the structure

of the response function that the GP can t, and can be stationary, periodic or nonstationary

11

[31]. A common kernel is the Matern 5/2 kernel, which is a stationary kernel.

The works in [26] used a negative exponentiated distance as the kernel, which uses a (pseudo-
)distance metric for ANN architectures that is e ciently computed via an Optimal Transport
Program [35]: Optimal Transport Metrics for Architectures of Neural Networks (OTMANN).
OTMANN introduces layer masses and path lengths into the ANN in order to e ciently esti-
mate the amount of computation of the layers (as a performance measure) between two ANN
architectures. They then used an Evolutionary Algorithm (EA) to maximize the Expected
Improvement acquisition function 3 over a pool of ANNs. The resulting Bayesian Optimiza-
tion (BO) framework was named Neural Architecture Search with Bayesian Optimisation and
Optimal Transport (NASBOT), and it provided quite e cient (and generic) NAS compared to
previous state-of-the-art evolutionary and reinforcement learning based NAS in terms of com-
putation time [36, 37]. See Figure 4 for a comparison of CV results between random search,
evolutionary algorithm, NASBOT and another BO framework, as well as Figure 11a for one of
the resulting CNNs from NAS on the CIFAR-10 dataset [38]. For another example of Bayesian
GP ANN HPO using CNNs and Transfer Learning, see the Master's thesis at [39].

Figure 4: A comparison of CV error results from NAS on the CIFAR-10 dataset from [26] using
four di erent NAS methods; random search, evolutionary algorithm, and the Bayesian methods
TreeBO and NASBOT. Parallelized NAS and training was performed on four Nvidia Tesla K80
(12GB) GPUs with a budget of 10 hours. For NASBOT, the computation time (search cost) is
several orders of magnitudes faster (less) than for instance Progressive NAS (PNAS) [36] (225

GPU days [40]).

Most kernels introduce their own hyperparameters, which of course is a downside of Bayesian

12

GP HPO for ANN. An attempt at handling GP kernel hyperparameters is to integrate them
out [32, 41].
Another downside of Bayesian GP HPO for ANN is that GPs scale cubically with the number
of observations. They also don't scale well to high dimensions [22]. [42] discussed using ANNs
instead of GPs to overcome those limitations. [43] did similar work introducing a framework
that they call Bayesian Optimization with Hamiltonian Monte Carlo Arti cial Neural Networks
(BOHAMIANN) reaching state-of-the art performance for a wide range of optimization tasks.
Some promising directions of Bayesian HPO are incorporating ideas from meta-learning
[44], for instance in [45] to initialize Bayesian HPO, and in [46] where to introduce ranking. A
comparable alternative to Bayesian optimization (suited for evaluating expensive functions) is

perhaps derivative-free HPO methods such as in [47] based on Radial Basis Functions.

3.3 Population-based methods

It is natural to think that a search heuristic maintaining a population of architectural candidates
can be bene cial when the goal is to nd a good architecture and hyperparameter con guration
based on available data. For example, the optimal con guration could be regarded as a result
of having architectural candidates compete for best tness in an environment with limited
resources and constraints (the data). This imposes novelty, which motivates creativity and thus
good con gurations [48]. However, less competitive population-based methods have also been
investigated for DNN HPO, such as Particle Swarm Optimization (PSO) [49, 50].

A group of algorithms building upon the idea of Evolutionary Strategies (ES) are Genetic
Algorithms (GA), which use random mutations and replication to evolve the candidates in a
population. Using ES to evolve ANNSs is called Neuroevolution [48, 51{53].

With ES, the outer optimization problem in Equation 1 is relaxed by letting possible con-
gurations evolve into new and unexplored con gurations before they are eventually evaluated
and the most t reproduced. At the end, the most t con guration or group of con gurations
is selected.

Evolutionary methods for training ANNs have existed for a long time [54] under the name
Evolutionary ANNs (EANNS) [55, 56], and their t with ANNs has been well known [53]. More
recent research methods have also showed that ES can contribute to NAS, for instance the
pionering work with NeuroEvolution of Augmenting Topologies (NEAT) [57].

A link between learning and evolution has been discussed in the context of ANNs as well, for

instance using GAs to initialize weights (evolution) before performing backpropagation gradient-

13

based training (learning), thereby learning on top of genetic search [58, 59]. This is motivated by
the fact that in nature genetic encodings can compactly capture regularities such as symmetries
in structure [48]. Moreover, the structures generated by genetic encodings are often more
advanced than the genetic encodings, for example is our capacity of 30000 genes in our DNA-
based genetic code [60] able to indirectly encode our biological neural network brain of about
100 trillion connections and 100 billion neurons [61].

Successful GAs try to mimic this indirect genotype-phenotype mapping through generations
with survival of the ttest. One such example used for evolving ANNSs is evolving Compositional
Pattern Producing Networks (CPPN) [62] with NEAT [57] and then use CPPNs to generate
patterns of weights for ANNs; HyperNEAT [63]. The main nding is that using CPPNs to
determine the weight patterns for as ANN as an indirect encoding makes the ANN able to
scale to new numbers of inputs and outputs without further evolution. An other example of
providing an indirect encoding is Di erentiable PPN (DPPN) [64] which was used to compress
the weights of a denoising autoencoder. Perhaps the latest innovation of NEAT extending to
DNNSs is CoDeepNEAT [8]. In this work, NEAT is extended to coevolutionary optimization of
components, topologies, and hyperparameters of DNNSs.

CoDeepNEAT starts with a population of Directed Asyclic Graphs (DAGs) which they
call chromosomes. Each node in a chromosome represents a DNN layer. Following NEAT,
chromosomes evolve starting from minimal graphs into more complex graphs through mutations
and crossover over generations. Genes from two chromosomes are lined up during crossover
based on historical markings. Based on a similarity metric, the population of chromomes become
divided into species. Then each species grows proportionally trough tness and evolution occurs
separately in each species. Unlike NEAT, in CoDeepNEAT, GD is used to determine the
tness of an evolved DNN. Each node in each chromosome (DAG) contains a table of real and
binary valued hyperparameters that are mutated through uniform Gaussian distribution and
random bit- ipping, respectively. These hyperparameters determine the type of layer (such as
convolutional, fully connected, or recurrent) and the properties of that layer (such as number of
neurons, kernel size, and activation function). In order to do a tness evaluation a chromosome
needs to be converted to a DNN. This is done by traversing the chromosome directed graph,
replacing each node with the corresponding layer. See Figure 5 for an illustration of the DNN

synthesis as well as Figure 11b for an evolved CNN architecture on the CIFAR-10 dataset.

14

Figure 5: Synthesis of a DNN from a chromosome (Blueprint) in CoDeepNEAT by replacing the
nodes of the chromosome with modules (such as convolutional layer) into an assembled DNN.

Borrowed from [8].

The main downside of CoDeepNEAT is its extremely demanding computational cost. Al-
though not speci ed exactly in the work, they report that a single DNN training takes a couple
of days on a state-of-the-art GPU. The evolutionary strategy requires thousands of DNNSs to be
trained through the course of evolution, thus the computational cost makes CoDeepNEAT an
infeasible solution for most people.

A lot of recent research has been done on more e cient ES for DNN HPO and NAS [40,
65{74]. In order to simplify the NAS and HPO problem, many of these methods de ne the
search space according to the NASNet search space [75] originally motivated by RL-based NAS
[37]. This search space is inspired by the fact that successful deep learning architectures such as
Inception and ResNet models [16, 76{79] have repetitivelyN stacked convolutional cells with
di erent con gurations, such as number of Iters F and pooling type and size. The NASNet
search space tries to generalize this by introducing the overall ANN macro architecture that
is known to perform well on two famous datasets: CIFAR-10 and ImageNet. A Cell in the
NASNet search space is some combination of interconnected pooling, convolution, summation
and concatenation operations, which can be of two types; Normal Cell which returns a feature
map of the same dimension, and Reduction Cell which returns a feature map where the feature
map height and width is reduced by a factor of two (stride of two) [75]. The idea is that when
introduced to a new dataset, for instance the ImageNet dataset, an architecture found from

NAS in the CIFAR-10 NASNet search space would be easier to transfer to the new dataset, by

15

altering a few free parameters such as the number of repeated layeh$ and number of Iters F
of the Normal Cell. HenceN and F are not optimized in the NAS but left to the user as easy

design parameters for the model transfer. See Figure 6.

Figure 6: Left: The CIFAR-10 NASNet search space consisting of multipleN stacked Normal

Cells as well as multiple Reduction Cells. Middle: Normal Cells stacked. Skip connections
shall also be learned (depending on NAS search strategy). Right: Example of a Cell. Within
the red circle is a summation of an average and max pooling operation. Opposed to NASBOT
and CoDeepNEAT which search for entire networks, NAS using this kind of search space is
considered micro search since it only searches for the best type of (convolutional) Cell. Borrowed

from [40].

The creators behind the NASNet search space used RL to search for an optimal convolutional
Cell, which resulted in NASNet-A [75]. They used a Proximal Policy Optimization (PPO)
method involving a controller (a RNN) that repeatedly predicted the two convolutional Cells
that were then synthesized into a candidate network and evaluated through gradient descent
training. Others started quickly to adopt the NASNet search space into their own NAS research,
for instance [80] (ENAS) using a similar RL approach but with additional parameter sharing
between candidate networks speeding up the search by more than 1000x in terms of GPU hours
compared to the original RL-based NAS work [37] (those who suggested the NASNet search
space, but the original work was conducted before this suggestion and with slightly di erent
search space), [36] (PNAS) which combinined RL with an evolutionary algorithm to make a

SMBO strategy resulting in 8 times more computational e ciency compared to NASNet-A

16

	Introduction
	Definition of HPO for ANN
	Methods
	Grid search: Complete, Manual and Random
	Bayesian Optimization
	Population-based methods
	Gradient-based methods

