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Summary

Functional analysis on voltage recordings from electrodes from a developing dopaminergic neu-
ronal microelectrode array (MEA) culture using Principal Component Analysis on Power spectral
densities and interspike histograms revealed a spatial difference in power variation and spike ac-
tivity in the MEA. Additionally, high frequency power increase for f ∈ [500, 2000] Hz as well as
decreasing power trends at low frequencies 2− 4 Hz and at the beta-band f ∈ [13, 30〉 Hz along
with the age of the culture were observed from four experiments spanning five months. Existing
research report that synchronized beta-band oscillations are observed in patients with Parkinson’s
disease (PD), and that this is related to dopamine depletion. It is hypothesized that the observed
power decrease in the beta-band along with the likely increase of number of dopaminergic neu-
rons is possibly related to PD where the cells have developed into mature ”less Parkinson’s like”
cultures. Evidence of a transition from in-phase activity (oscillations) to anti-phase activity on
low frequencies along with the age of the culture is also presented with video and sound examples.
Understanding mechanisms behind this transition (possibly temporal and rate neural coding), as
well as mehanisms behind the observed spatial activity difference and power changes with respect
to varying stimulation, could help in building better brain-machine interfaces, implementing bi-
ological neural network closed-loop control of the robot in the NTNU Cyborg project as well as
help in the development of cell therapy for PD.
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Chapter 1

Introduction

A study of variance of various types of electrode signals from an in-vitro neuronal culture (Arenas,
2015; MultiChannelSystems, 2017a) was done using Principal Component Analysis (PCA), a
dimensional reduction method (Wold, 1987). A motivation for selecting PCA was to have a
linear, transparent method of investigating the complex non-linear and non-stationary nature of
neuronal signaling. This explorative analysis could find the most clear signaling properties in the
data with respect to the variance. In this setting, PCA is an analysis of functional connectivity of
electrodes (Friston, 2011).

The overall goal is to better understand signaling, dynamics, change and learning in biological
neural networks. This provides an intermediate goal of improving the signaling in a closed-loop
feedback system for movement control of a robot for the Cyborg project at NTNU (Aaser, 2017b;
Potter, 2006). In this analysis, the signaling came from an in-vitro Microelectrode Array (MEA)
hosting human induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neu-
rons.

The mDA neurons were engineered at the Sandvig laboratory, Department of Neuromedicine
and Movement Science, NTNU, as part of ongoing research on Parkinson´s disease (PD). DA
neurons are particularly vulnerable in Parkinson´s disease and get severely depleted with disease
progression, resulting in functional deficits, including impaired motor control. Hence, studying
the behavior of DA neurons could be interesting also for the Cyborg project.

1.1 Original problem description

The original problem description was written in Norwegian. An English summary follows

1.1.1 Norwegian

NTNU Cyborg er et tverrfaglig prosjekt som skal undersøke mulighetene for inkorporering av lev-
ende nerveceller og robot i et kognitivt system. Det forskes på hvordan to-veis lærende kommu-
nikasjon mellom nerveceller og robot kan oppnås, med den hensikt å få frem intelligent oppførsel
av roboten og dens tilhørende sanntids visualisering av aktivitet i nervecellene.

Det tas utgangspunkt i data fra nåværende lukket sløyfe-kommunikasjon mellom in-vitro nevro-
stamcellekultur i multielektrodearray (MEA) og en simulering av roboten. Dataen er 10 Hz spen-
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ningsavlesinger målt fra 60 elektroder jevnt spredt over stamcellekulturen. I den lukkede sloeyfen
tolkes avlesingene til bestemte aksjoner for den simulerte roboten. For eksisterende avlest data
har stimulering av nervecellene vært en periodisk puls fordelt over 1 electrode, med økende puls
frekvens desto nærmere en vegg den simulerte roboten befinner seg. Heuristikken har altså hittil
dreiet seg om å unngå kollisjon med vegger for den simulerte roboten.

Utkast til arbeidsoppgaver er:

1. Multivariat analyse (MVA) på eksisterende data for undersøkelse av sammenhenger/korre-
lasjon mellom spenningsavlesinger fra elektroder. Kartlegging av andre metoder som kan
være nyttige. Er noen elektroder mer interessante enn andre for tolkning av aksjoner? Gir
dette belegg for videre utvikling med eksisterende heuristikk?

2. Bruke resultater fra kartleggingen til å forbedre heuristikk med tanke på utvikling i kulturen.
Det kan dreie seg om bedre avlesing-aksjon-mapping, annen type målfunksjon/stimulering,
andre typer stimuleringer. Blackbox-metoder for juksing frem til man oppnår whitebox.
Det skal være mulig å kjøre systemet for ny avlesing av data.

3. Sette opp system for sanntidsprosessering av data. Fra batch-basert databehandling til san-
ntid databehandling. Mulig samarbeid med Idletechs AS.

Det kan tenkes at repetisjon av stegene 1 og 2 er nyttig for å forstå nevrokulturen. Oppgave 1 er
mest egnet utkast for prosjektoppgave.

1.1.2 English summary of realized tasks

An investigation of intercorrelations of electrode signals described in 1., was done in this report
using PCA on Power Spectral Densities (PSDs) and Interspike intervals (ISI), as well as some
additional time-domain analysis.

Using of multivariate analysis (MVA) results to improve heuristics for controlling a moving robot
in a simulated environment to not go into walls described in 2., is discussed in result-section 5.0.1
and is a natural extension of the work into a master’s thesis.

3. discussing a batch-based real-time processing system is now regarded as part of realizing 2.

1. was suggested as primary the task in project work.
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Chapter 2

Background

2.1 Overview of recording extracellular activity

The consensus regarding signals and recording techniques today when looking at extracellular
brain activity is summarized in Figure 2.1. In short, the recording approaches are Electroen-
cephalography (EEG), Magnetoencephalography (MEG), Electrocorticography (ECoG) and var-
ious kinds of Intracortical Neuron Recordings (Nicolas-Alonso, 2012). Although MEG is an in-
tracellular recording technique, it is mentioned because its signals are comparable to EEG signals
(Waldert, 2009).

Figure 2.1: Various recording techniques and signals to measure brain activity. Taken from (Waldert, 2009).
An in-vitro MEA such as MEA2100 used in this report, measures electrical currents on its electrodes. MEA
measurements are a combination of LFPs and analog forms of SUAs and MUAs (or EAPs) (Obien, 2015;
Waldert, 2009)

For intracortical recordings such as MEAs placed onto the brain after surgery and variants (in-
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vivo, Viventi (2012) (ECoG), Maynard (1996)), Local Field Potentials (LFPs) are extracted by
low-pass filtering (f < 300 Hz) of the neuron activity recorded from electrodes. Single-unit
activity (SUA) signals are obtained by high-pass filtering (f > 300 Hz) signals of a single neuron,
then spike detection and spike sorting. Multi-unit avtivities (MUAs) are obtained in the same
way, but the signals may come from multiple neurons (Nicolas-Alonso, 2012; Waldert, 2009;
Changkyun, 2016).

Extracellular Action Potentials (EAPs) are analog spike signals roughly in the frequency range
f ∈ [300, 3000] Hz caused by firing actions of single neurons (Obien, 2015; Pine, 1980). LFPs
and EAPs are analog signals while SUA and MUA measure the spiking activity of single neurons
and can be reduced to discrete events in time (Nicolas-Alonso, 2012). (Obien, 2015) shows by
experiments a correlation of intracellular action potentials (IAPs) and EAPs. Assuming that IAPs
and SUAs are closely related, EAPs could be seen as an analog version of SUAs.

(Obien, 2015) proposes that data measured from in-vivo and in-vitro MEAs are similar. For this
reason, it is assumed that in-vivo brain signaling such as LFPs can also be measured from in-
vitro MEAs containing comparable neuronal cells. MEA recordings is therefore considered as
electrophysiological extracellular recordings of LFPs, EAPs and summations of EAPs (Obien,
2015; Waldert, 2009).

Measuring EAPs from in-vitro MEAs is well described in (Pine, 1980). In (Gold, 2006), an
attempt to make a mathematical model of EAPs in order to draw another connection between
intra- and extracellular recordings is made. (Bai, 2001) discusses a technique for recording SUAs
using both in-vitro and in-vivo active MEAs.

EEG is the most common extracellular recording technique and consists of placing electrodes onto
the scull (Buzsáki, 2012b), hence non-invasive. EEG and MEG signals are said to be smoothed
versions of the local field potential (LFP) (Buzsáki, 2012b; Waldert, 2009).

EEG, MEG and ECoG measured signals are simply called EEG, MEG and ECoG signals, while
Intracortical Neuron Recorded signals are Local Field Potentials (LFP), Multi-Unit activity (MUA)
or Single-Unit activity (SUA) (Changkyun, 2016; Nicolas-Alonso, 2012). Opposed to the other
signals mentioned, MEG reflects intracellular currents flowing through dendrites which produce
magnetic fields measurable outside the head (Waldert, 2009).

2.2 Functions of dopaminergic neurons in animals and hu-
mans, and Parkinson’s disease (PD)

In both animals and humans, the primary functions of DA neurons is in general related to motiva-
tion, and regulate approach behavior. The basic functionality is activation and inactivation of DA
neurons, thereby regulating mood by inducing reward and aversion, respectively (Ikemoto, 2015).
In the mammalian brain, activation of DA neurons such as the ones originating from the A9 group
analysed in this report, leads to release of 3-hydroxytyramine (named dopamine), a metabolite of
the amino acid tyrosine, into either of the four major dopaminergic (DAergic) pathways known
in the mammalian brain (Beaulieu, 2011). Release of DA from midbrain DA neurons influences
voluntary movement, cognition, and motivational state (Deignan, 2012). There is a diversity in
types of DA neurons in humans and animals, and some subtypes even develop postnataly.
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It is well known that lack of DA in the brain in humans is related to PD (Bernheimer, 1973).
Other diseases related to inappropriate DA levels are Schizophrenia, Alzheimer’s and Hunting-
ton’s diseases (Seeman, 1987). Levels of DA have shown to have a role in both locomotor be-
havior and learning in humans (Beninger, 1983). Perhaps, in the simplistic biological view of the
author, dopamine and dopaminergic neurons could be seen as the major functional parts in the
biological neural system equivalent of reinforcement learning (see Kaelbling (1996)). (Holroyd,
2002) describes such a biological equivalent. Recent research has made it possible to generate
human pluripotent stem cell (hPSC)-derived DA neurons, capable of inducing behavioral recov-
ery in animal models of PD. This could help in development of cell replacement therapy as a
future treatment in PD (La Manno, 2016). (Jo, 2016) even developed a method to differentiate
hPSCs into a large multicellular organoid-like structure that contains distinct layers of neuronal
cells expressing characteristic markers of human midbrain. They detected electrically active and
functionally mature mDA neurons as well as DA production.

DAergic signaling in has been related to various kinds of cognitive tasks in the mammalian brain,
which makes analysis of DA neurons interesting in the Cyborg perspective. Some examples are:

• (Barter, 2015) reports from in-vivo experiments on movement of rats identification of DA
SNc neurons representing vector components of velocity or acceleration in the directions
up, down, left and right, hence showing DA neurons belonging to a velocity control circuit.
They hypothesized that DA signaling implements gain adjustment for adaptive transition
control (Barter, 2015). This is discussed in result section 4.2.

• (Howe, 2016) reports a new optical method of in-vivo recording rapid signaling in distinct
dopaminergic axons during locomotion and reward on mice, suggesting that DA neuro-
modulation can differentially impact motor control and reward learning with sub-second
precision, and that the results indicate that both precise signal timing and neuronal subtype
are important parameters to consider in the treatment of DA-related disorders.

• (Jay, 2015) conducted an in-vivo study of endogenous activity using paired supraspinal
DA neuron and motoneuron recordings on awake, paralyzed zebrafish, reporting that show
that supraspinal DAergic neurons generate two forms of output: tonic spiking and phasic
bursting. Tonic spiking being related to inactivity, bursting correlating to locomotor output.

• (Gadagkar, 2015) even reports on the task of DA neurons in the basal ganglia in the zebra
finch (a bird) on giving auditory feedback on the magnitude of distortion in its bird song,
as well as relating to movement.

• (Wagenaar, 2005) investigates stimulation of in-vitro rat DAergic neuronal MEA cultures
in a closed-loop feedback system in order to control spontaneous bursting behavior. The
work is discussed in result section 4.2.

2.3 Brain frequency bands

The frequencies analysed have been systematized into conventional EEG brain bands, in an at-
tempt to relate findings of MEA signals to traditional EEG signals and other recording approached
described in section 2.1 and previous work (Hovden, 2017). A table presenting the EEG bands
(MultiChannelSystems, 2017b) as well as an unspecified band is shown in Table 2.1.
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Hz Band
[0.5, 4〉 delta
[4, 8〉 theta
[8, 13〉 alpha
[13, 30〉 beta
[30, 120〉 gamma

[0, 0.5〉 and [120,∞〉 unspecified

Table 2.1: The typical EEG frequency bands with an additional ”unspecified” band.Taken from (Hovden,
2017)

(Nácher, 2013) makes it clear that coherent oscillations on theta, alpha, beta and gamma frequency
range have been proposed as mechanisms that coordinate neural activity in large-scale cortical
networks in sensory, motor, and cognitive tasks. They propose in this work that coherent delta-
band oscillations between cortical areas correlate with decision making in monkeys. All in all,
oscillations in any of the EEG bands have been found to relate to different tasks in both humans
and animals.

Alpha and gamma oscillations have previously been characterized as feedback and feedforward
processing, respectively, in the monkey visual cortex, making a connection between oscillations
in these bands regarding visual processing (Kerkoerle, 2014).

For further review on associated functions of EEG-band oscillations, see (Nicolas-Alonso (2012),
p. 1216 in section 2.1. ”Electroencephalography (EEG)”).
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Chapter 3

Method

3.1 Making the neurons - neuronal cell differentiation

The in-vitro midbrain DAergic neuronal culture was made following a procedure of neuronal cell
differentiation from human induced pluripotent stem cells (hiPSCs) at Axel and Ioanna Sandvigs’
laboratory of Translational and Regenerative Neuroscience at the Department of Neuromedicine
and Movement Science (INB), Faculty of Medicine and Health Sciences, NTNU. The protocol
for differentiating iPSCs into dopaminergic neurons was an adaption from several other protocols
(Kirkeby, 2013, 2017; Doi, 2014).

The seeding, lab recordings and maintaining of the culture was conducted by PhD students Vibeke
Devold Valderhaug, Ola Huse Ramstad and Rosanne van de Wijdeven. The seeding was a 15 day
long specific protocol of adding various neuronal property enhancing ingredients. From day 16
and on, it has received a weekly feeding with neuronal maintenance media.

The resulting population was a mixed cell culture containing a specific type of dissociated human
mDA neurons (naturally existing in substantia nigra pars compacta (SNc, A9 group)), which
are known to have a selective vulnerability in PD (Arenas, 2015; Barker, 2015). To study their
electrophysiological properties, the cells were maintained on a MEA2100 MultiChannel Systems
MEA (MultiChannelSystems, 2017a) as seen in Figure 3.1c. When the activity was not recorded,
the MEA was placed in an incubator with appropriate living conditions.

The neuronal culture was seeded on 11. of October 2016, and is still alive at the delivery of this
report (December, 2017). Two experiments relating to Parkinson’s research was done November
11th and 16th 2016, where DA was added. It was nicknamed ”Dopey” by the PhD students from
its characteristics and long-living property, and was registered as MEA 2.

3.2 Recording and stimulating MEA 2

Online raw and spike recordings were obtained using MultiChannel Experimeter (MultiChannel-
Systems, 2017d). The raw and spike data for selected experiment #2 (explained later) is shown
offline in MultiChannel Analyzer (MultiChannelSystems, 2017b) in Figure 3.2

MEA 2 was recorded in total 86 times over the duration of nine months as seen in Figure 3.3, each
experiment typically resulting in 7-10 minute long analog voltage recordings of 60 electrodes in
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(a) MEA 2 day 46 (2016.11.25)
(b) The electrode numbering

(c) The in-vitro MEA is illustrated in the leftmost figure. It is a small device that stores the cells inside a
glass container and connects the neuronal culture to an electric circuit. The 60 electrodes are illustrated in
the rightmost figure. The larger mark on the left side is the reference point, measuring a reference voltage

Figure 3.1: MEA2100
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(a) Raw recording of #2 with electrode 35 marked. 35 shows some interesting busts behavior. Stimulation
electrode 74 shows high amplitudes

(b) Treshold spike detection of #2 with 35 marked. Spike detection as in 6.30 with 10 second window for
estimation of standard deviation. The calculated spike tresholds are the blue and red lines

Figure 3.2: 10 second windows of the end of #2 from MCS Analyzer (MultiChannelSystems, 2017b). A
weakness of the treshold-based spike detection can be seen. Although electrode 35 has a lot of distinct
behavior during the end of a burst that is seen in this window, it actually gets fewer spikes detected opposed
to non-bursting electrodes, f. ex. electrode 37. This is because spike detection tresholds are much larger in
35 because of larger standard deviation (40.7 upper, -40.7 lower treshold) than for 37 (28.4, -28.4). However,
as seen later in Figure 3.16a, 35 has more variance in interspike intervals and also a more negative correlation
to the low frequency high energy estimates 2 and 4 Hz, than 37
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the piko voltage (pV) range. The sampling rate was 10000 Hz. The available recordings were
from 17. of October 2016 to 16. of June 2017.

In most of the analyzed recordings (#1-#3), only electrode 74 received an external voltage stim-
ulation by stimulation protocol 4. Stimulation protocol 4 was an electrical bi-phasic pulse of
±500 µV, each phase lasting 100 µs, applied on electrode 74 every 30 s of reading.

Naturally, the recordings had unknown Signal-to-Noise Ratio (SNR). A MEA recording is de-
noted as an experiment from now on.

3.3 Experiment selection

Four experiments were selected for analysis as depicted in Figure 3.3 with numbering #1-#4

Figure 3.3: All available 86 experiments, as well as the four selected experiments. Each vertical line in
the figure correspond to one experiment with 60 measurements. The four selected experiments marked in
orange, containing raw and spike data. Experiment date, time duration and raw data size is displayed for
the selected experiments. The height of the lines is purely there for readability. An s in the naming of
an experiment should mean that a stimulation protocol was used during the recording. s4 is stimulation
protocol 4. However, it has later become evident that #4 did not receive any stimulation. The four chosen
experiments are marked in orange. The culture went trough two dopamine experiments in November, 2016,
where dopamine was added. These experiments were not investigated

#1-#3 received stimulation by stimulation protocol 4, #4 did not receive any external stimulation
(although the figure shows the experiment name ”s4” for #4). After selection, the four experi-
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ments were converted from their original raw files to csv format using Multi Channel DataMan-
ager, a tool from MultiChannel Systems (MultiChannelSystems, 2017c).

3.3.1 Simple statistics in time domain

An average min, max and mean for all electrodes in the selected experiments were calculated with
Python and plotted in The Unscrambler X as seen in Figure 3.4. The python script is described in
section 3.5.

(a) The average min and max of all electrodes (b) The average of the average of all electrodes

Figure 3.4: Average min, max, and average average of the time series data in #1-#4. y axis is pV , x axis
is experiment. There was an increase in max and decrease in min. The average drastically decreased in #4.
Note that #4 did not receive stimulation, unlike #1-#3

3.4 Principal Component Analysis on experiment #4 raw data

PhD student Martinius Knudsen did a PCA on similar MEA raw data, where a few electrodes
were projected apart from the others in the loadings plot. For comparison, the same was done on
a 30 second experiment taken just before #4 (the same day) by treating the analog raw data as the
matrix 6.11 with N = 30× 10000 objects and M = 60 electrodes.

The results, seen in Figure 3.5 are very similar to Martinius’ results. One PC expresses almost all
the variance in this data. The reference electrode and electrode 16 are projected far away from
the rest of the electrodes. 66 is also a bit different from the other electrodes. A quick look back at
the raw data in MCS Analyzer reveals that electrode 16 and reference electrode have significant
different amplitudes from the rest of the electrodes. A little more low frequencies might be seen
on electrode 66.

This method of doing PCA was concluded to not give any significant results, simply because of
the high sampling rate of the recordings. 30 seconds resulted in 300 000 objects in the score plot.
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Figure 3.5: PCA on raw data of the 30 second experiment from 2017.06.12

3.5 Computation of Power Spectral Densities on experiments
#1-#4

In order to have a more appropriate data format, Power Spectral Densities (PSDs) were calculated
from the raw csv files for each of the experiments. This resulted in PSD data with dimensions
N ∈ [0, 5000] Hz and M ∈ 60 electrodes. The Python script is in the Appendix section 6.14. All
the PSDs except in the frequency range f ∈ [0, 10] Hz are visualized in Figure 3.6. The reason
for only plotting f ∈ [11, 5000] Hz was simply because of the impression that the low frequencies
were outliers and had a lot of noise (from Figure 3.8). This has turned out to not necessarily be
true (see Figures 3.16, 3.19).

Average PSDs over the electrodes for the four experiments were also calculated as shown in
Figure 3.7.

3.6 PCA on PSD #1-#4

3.6.1 1-5000 Hz band

Initially, a PCA on a combined PSD data set from the four experiments was done on the entire
frequency range f ∈ [1 − 5000] Hz. Power on 0 Hz was discarded because if its high power. A
zero Hz amplitude in the PSD simply shows the power of the offset in the signal, which was a lot
higher than the other powers.

The computed PSDs 6.11 had the dimensions N = [0, 5000] × 4 Hz (0 Hz is discarded in The
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Figure 3.6: PSDs from the four experiments with 0-10 Hz removed. The left figure shows PSDs for each
electrode on top of each other, for each of the four experiments. The y axis pV 2/Hz, x axis 11− 5000 Hz
four times after another. The right figure is the same data, with Hz as objects and electrodes as variables.
This is the input to combined PCA described in 3.6.2. There were low frequency energy peaks (11− 16 Hz)
in stimulation electrode 74 in #1-#3. 63 had peaks in #1-#3, but in decreasing frequencies (50, 30, 16 Hz).
54 had a peak at 894 Hz in #4. PSDs in the total frequency range (0− 5000 Hz) were also calculated for the
first PSD PCA in described in section 3.6.1

Figure 3.7: Average PSD for all 60 electrodes for the four experiments. The four sections in the x axis are
frequencies 11 − 5000 Hz. The y axis is pV 2/Hz. This shows clearly that there were significant energy
increases in high frequencies
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Figure 3.8: Scores from PCA on the four experiments selected as in Figure 3.3. This plot tries to summarize
in two dimensions (Principal components (PCs)) what happened in terms of variation in energy (PSD) in
the 60 dimensions (electrodes, see appendix 6.1.3). The x axis is the projection of energy at individual Hz
onto the first principal component (PC1), which expressed 76 % of the variation in the PSDs. The y axis
is the same but for principal component two (PC2). PC2 only expressed 6 % of the variation that were not
expressed by PC1. In the object labeling, the first number is the frequency from PSD that have a power
projecting it to its position. The other number is the experiment number from the experiment selection.
Objects from the four experiments are colored. #1 in blue, #2 in red, #3 in green and #4 in light blue. It
shows that very high frequencies (around 1000 Hz) in #4 contribute to a lot of the variance in the combined
data set. Additionally, increasingly higher frequencies contribute to the variance over the four experiments.
Low frequency activity seem to contribute less to the variance of PC1 over the experiments

Unscrambler X) objects and M = 60 electrodes. Weighting of the electrodes was done by divid-
ing by standard deviation of their PSDs. Categorical cross-validation using experiment number
as category. The reference electrode was not included in the PCA.

3.6.2 11-5000 Hz band

Information about low frequencies in figure 3.8 were combined with insights from empty MEA
recordings recorded by Peter Aaser to propose that there were more noise apparent in the range
0 − 10 Hz than in the rest of the frequency range. Recordings of empty MEAs (no cells inside)
showed high amplitude variations in this range. This was the motivation for removing 0− 10 Hz
and conducting the PCA on the resulting matrix 6.11 with dimensions N = [11, 5000] × 4 Hz
and M = 60 electrodes. The results are displayed in Figure 3.9.

However, important variation might have been missed when removing these frequencies. Fig-

14



ure 3.16 shows later that low spike frequencies were dominant in the variation of spike counts.
Perhaps could the same spiking frequencies be related to the envelope frequencies of the actions
displayed in Figure 3.19. In other words, the trend of decreasing energies in low frequencies from
Figures 3.8, 3.13, 3.16, 3.17 and 4.2 could be related to the apparent de-synchronization of low
frequencies in Figure 3.19b.

This time the electrodes were not weighted, from the insight that high energy variation electrodes
should contribute to most of the variance (the impression of noise in low frequencies + a lot of
activity in wide frequency band around 1000 Hz as shown in Figure 3.7). Again, categorical
cross-validation with experiments as category was used.

In order to see the individual electrode contributions in each experiment separately, PCA was
then conducted separately on each of the experiments. Again, no scaling of electrode weights
was used. 10-segment random cross-validation was used on the individual experiment PCAs.
Figure 3.10 shows line plots of PC1 loadings from the four individual PCAs.

Figure 3.10: PC1 loadings from individual PCAs on #1-#4. Unlike the loadings plot in Figure 3.9, the
line loadings plot displays the electrode contributions to energy variation expressed in a single PC. #4 is
significantly different with electrode 54 as the main contributor to energy variance in its own PCA model.
The single frequency causing an energy peak in 54 is later shown to be 894 Hz, see Figure 3.18b

Going back to the combined PCA model, average power object grouping was then used on score
and influence plots for comparison with Figure 3.11.
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Figure 3.9: PCA on #1-#4, scores and influence plot grouped according to experiments. Upper left is the
score plot explained in Figure 3.8 and in the Appendix section 6.1.3. The color grouping are the dates
of the experiments. Upper right is the corresponding loadings plot for the same PCs, which displays the
contribution of electrodes to the PSD variations along PCs. Electrode 66 and 63 have a large contribution
to both variation in PC1 (60 %) and PC2 (15 %). Note that PC1 expressed less of the total variance when
0-10 Hz objects were removed. The lower left is the influence plot, which displays information of how
good individual objects fit to the PCA model with up to a number of PCs included (here PC 1-6 included).
Here, the x axis is Hoteling’s T 2 metric (how well the object is described by the model. A scaled leverage or
accumulated score), the y axis is the F-residual (object distance to the model. F-residuals are calculated from
the calibration as well as the validated residual x-variance, see Appendix section 6.1.5). The red lines are
critical limits from Hoteling’s statistic (x axis) and F-residuals (y axis). Both critical limits are based on an
F-test with a preset confidence interval (in the plots, always 95 %, or p-value 5 %) which gives a confidence
in variance for the objects and can be used to detect outlier objects. Most of the interesting objects seem
to be outliers according to these metrics. Most object within the confidence limits are from #4. Extensive
information about interpreting PCA plots can be found in (CAMO (2017c), p. 553-581). 14 and 16 Hz from
#1 and #3, respectively, are the two frequencies to singularly have the largest influence on the variation in the
overall PCA model. Both have higher F-residuals than the F-test critical limit. However, 16 Hz fits better to
the model than 14 Hz, since it has a smaller F-residual. As a confirmation 14 and 16 Hz are the two highest
peaks in Figure 3.6 (left) from electrode 66 and 74 respectively. 14 has higher energy than 16, which is
described in the model with a higher F-residual. Perhaps would frequencies in 0-10 Hz have large influence
on the model as well, if they were not removed. The lower right is the explained variance plot described in
the Appendix section 6.1.5, for the entire model (calibration, blue) and during model training (categorical
cross-validation, red). Too large differences between blue and red are signs of overfitting of the PCA model,
which is unwanted in statistical model building (especially when the model shall be used for prediction from
new data). The x axis is number of PCs used in the model, the y axis is resulting explained variance in the
data
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Figure 3.11: The same PCA as in Figure 3.9, but with five intervals of powers from the average PSD used
to group the objects. Blue are the frequencies with the lowest average power over electrodes, while brown
are the highest powers. Interestingly, objects (Hz) group similarly independently of the experiments. When
compared with Figure 3.9 one can see that #4 had the most energy variation in terms of frequency

The individual PCA results on the most interesting experiments, #2 and #4, are shown in Figure
3.12.

3.6.3 Beta-band (13− 30 Hz)

Previous work on MEA 2 shows decreasing beta-band f ∈ [13, 30〉 power, as well as increas-
ing band power on f ∈ [120, 5000〉, from two second segments of #1-#4 (Hovden, 2017). A
combined PCA on f ∈ [13, 30] Hz from PSDs was done do further investigate beta-band energy
behavior. Results can be seen in Figure 3.13.

3.7 Spike counts

In addition to raw data, threshold-based discrete spike data explained in the Appendix section
6.30 was available. The spikes were detected and recorded using the ”Spike Detector” module
in MultiChannel Experimeter (MultiChannelSystems, 2017d) by the neurobiology PhD students
at Sandvigs’ lab at the same time of analog raw recordings. The window length used for esti-
mation of standard deviation is unknown, but not longer than 10 seconds since 10 seconds is the
maximum data preview length in Spike Detector.

For each experiments, the number of discrete spike timestamps were counted for each electrode
using Microsoft Excel. The resulting plots of accumulated spikes are shown in Figure 3.14.

17



(a) #2. 51 % or the variance is expressed in PC1

(b) #4. 96 % of the variance is expressed with PC1. The color grouping shows that PC1 describes the
average power over electrodes of the frequencies

Figure 3.12: Comparison of PCA on #2 and #4 with average power object grouping as in Figure 3.11, with
line loadings plots for PC1. It seems that the average power over PSD of electrodes are essentially PC1 in
(b) and to some degree in also PC1 in (a)
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(a) With experiment object grouping and PC1 loading plot

(b) With average power object grouping, PC1-PC2 loadings, and the Hoteling’s T 2 ellipse on the score plot.
Hoteling’s T 2 ellipse is a multivariate version of Hoteling’s T 2 statistic, and displays in this case which
objects were within the 95 % confidence limit for Hoteling’s T 2 with PC1 and PC2 selected

Figure 3.13: Combined PCA beta-band (13 − 30 Hz) on #1-#4. By looking at the influence plots ((a), (b)
lower left) it is clearly seen that #4 had the lowest energy in this band. The same 14 and 16 Hz as displayed
in Figure 3.9 and 3.11 as highly influential objects, are above critical limits in the scores and influence plots.
However, unlike the in the comparable models, they have not critical F-residuals and are therefore a valuable
part of the model
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Figure 3.14: Spikes detected in the experiments from discrete timestamp data. #4 had generally the most
spikes detected and a peak in electrode 54. 54 had also the most variance in power over frequencies from
PCA analysis on #4 (see Figure 3.12b). #2 had high spiking activity on three electrodes close to the reference
point in the MEA

3.8 PCA on interspike interval histograms

Due to the removal of energies in the 0-10 Hz range in the PSD analysis, it would be interesting to
try PCA on lower frequencies using another type of data and then try to group these frequencies
by average electrode power computed earlier from average PSDs.

The ”Spike Analyzer” module in MultiChannel Analyzer (MultiChannelSystems, 2017b) can fur-
ther analyse the detected spikes from the ”Spike Detector” module (both MCS Analyzer and MCS
Experimeter). The module has the ability to compute ISI histograms on each electrode from the
raw data of the (7-10 min) experiments.

interspike interval (ISI) histograms show the distribution of ISI in fixed 10 ms bins for each
channel. The maximum ISI displayed is 1000 ms (MultiChannelSystems, 2017b). Therefore, the
histograms show spike counts over a distribution of 100 bins.

The histograms had to be generated from the raw voltage data. This required setting new tresholds
for spike detection. The standard deviations were now calculated from 10 second window seg-
ments. Note that this might have lead to different total number of spikes detected than presented
in Figure 3.14. The significant spiking frequencies were hopefully preserved. The decision of
trying PCA on ISI histograms came from the impression that better temporal resolution on low
frequencies might be derived from spike counts.

20



3.8.1 Estimation of spike frequency from ISI bins

An estimation of spiking frequency was calculated for each 10 ms bin in Microsoft Excel using
the formula

BinFrequencyi[Hz] =
1

Avg(BinStartT imeMsi, BinEndTimeMsi)× 10−3
(3.1)

where BinEndT imeMsi − BinStartT imeMsi = 10 ms and i ∈ 100. For example, for the
last bin, BinFrequency100 = 1

((990+1000)/2)×10−3 = 1.005 Hz. The resulting frequency band
was f ∈ [1.005− 200] Hz with uneven frequency spacing.

3.8.2 Histogram interpolation

The frequency spacing needed to be even in order to group the frequencies using the average PSD
powers from earlier. This was achieved by importing the modified histograms (conversion to Hz
as row header) into The Unscrambler X and using the ”Interpolate...” transform with a step size of
2 on the imported data. The procedure was done on ISI histograms for each of the experiments.
The results for #4 is seen in Figure 3.15.

3.8.3 Result

Individual PCAs were done on the interpolated histograms of #1-#4. For each experiment, the
input matrix had dimensions N ∈ [2, 200] Hz and M ∈ 60 electrodes. The results for #2 and
#4 are shown in Figure 3.16. They can be compared to the high passed PSD PCA and beta-band
PSD PCA in Figure 3.12 and 3.13. The objects were grouped by the the sections of average PSD
shown in Figure 3.17.

PCA directly on ISI histograms as in Figure 3.15a would prove a better frequency resolution on
especially f ∈ [1, 10] Hz. However, because of the grouping of object according to energy and
thereby connection to PSD analysis, the interpolated versions were used.
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(a) ISI histograms with estimated bin frequencies. Frequency range f ∈ [1.005− 200] Hz with uneven step
size. The estimated frequencies are plotted for reference to (b) (the green exponential line)

(b) The interpolated histograms. Frequency range f ∈ [2 − 200] Hz with 2 as step size. By comparision
with (a), most information lies in f ∈ [2−32] Hz. Note that the height of the histograms are no longer spike
counts, but stretched-out interpolations for integer frequencies. This was done in order to group objects using
average electrode power from PSD in score and influence plot after PCA on the interpolated ISI histograms.
A step size of 2 was the solution for having correct interpolation in The Unscrambler X software. The
straight line of the plotted Hz verifies that the interpolation was done correctly

Figure 3.15: The original and interpolated interspike interval histogram of #4
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(a) #2

(b) #4

Figure 3.16: PCA on interspike interval histograms of #2 and #4. Objects (Hz) are grouped in intervals
based on their average electrode power (average PSD computed earlier). In the object labeling, the number
is now the interpolated, estimated frequency from the interpolated ISI histograms that have a interpolated
total spike count projecting it to its position. The objects that occur in smooth waves in the score plots
are likely artifacts from the interpolation, and should be denoted as the least interesting frequencies. 2 and
4 Hz have outlier behavior in both experiments. 2 Hz also is the spike frequency with the highest power
in both experiments (brown color). Blue objects have the lowest power. High power and influence of 2
and 4 Hz could indicate that these spike frequencies have high amplitudes and cause a major part of the
detected spikes. Perhaps they are further caused by many simultaneous synchronized action potentials. The
most spiking activity seem to not occur at the same electrodes that have the highest energy variation (Figure
3.12). 84 % and 96 % of the total variance are explained by PC1 in #2 and #4, respectively. #2 needs more
PCs to explain the total variance
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(a) #2 (b) #4

Figure 3.17: The average PSDs used to group the objects in Figure 3.16. f ∈ [2, 200] sections of the total
average PSDs calculated. 2 and 4 Hz have in total higher energies in #2 than in #4. However, 2 and 4 Hz are
still dominant in the average energies in #4. The scale in the y axis in (a) is a lot larger in (b), so energies
might seem to have decreased in this range. There is a peak in 100 Hz in #4

3.9 Looking back at data

From Figures 3.14, 3.13, 3.11 and 3.7, it has become evident that #2 and #4 contained the most
interesting recordings. #2 in spike activity, #4 in energy variation. This has been investigated
further in Figures 3.12 and 3.16, showing that PC1 from #4 is essentially expressing the average
PSD and that low-frequent spiking behavior was still apparent in #4 although with lower power.

3.9.1 PSD object plots of #2 and #4

Figure 3.18 displays the full PSD data (f ∈ [0, 5000] Hz) in order to look for clues on variation
in power over electrodes.

3.9.2 Short-Time Fourier Transform on spiking electrodes of #2 and #4

From Figures 3.16, 3.14 and 3.10, it is clear that some electrodes had more spiking activity than
others. An attempt to investigate spiking activity was done with Short-Time Fourier Transform
(STFT) on noise reduced time versions raw signals of electrode 35 and 87 in 46 and 86 in #4.

First, the raw voltage data from the selected electrodes were converted to waveforms (sound) with
equal (10000 Hz) sampling rate. Then, they were noise reduced using a selected noise profile from
electrode 35 of #2. This was done in Audacity using the ”Noise Reduction” plugin. The noise
profile used was approximately the section of the recording of 35 between the first and second
bursts. The first burst can be seen in Figure 3.2a. The parameters of the noise reduction method
is described in Table 3.1.

The filtered sound was then inputted to a spectrogram analyzer (Baudline, 6.13.4) in Ubuntu using
the command:

parec --format=s16le --channels=1 -d alsa_output.pci-0000_00_05.0.analog-stereo.monitor | baudline -stdin
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(a) #2. Shows that much of the energy peaks were dominated by low frequencies at a few electrodes

(b) #4. Electrode 54 has in overall higher energy than any other electrode, for a lot of frequencies. 894 Hz
was the single frequency with the highest energy, in almost all electrodes. Perhaps 54 simply was a broken
electrode?

Figure 3.18: Further investigation on energy variation. Sample plot of PSD data from #2 and #4. Each
color is a single frequency. The plots are as if you look into the data from the variable side of the 3D plot
in Figure 3.6, but with individual 3D plots for the individual experiments. #4 had clearly more variance in
power over the frequencies than in #2. The other major difference is a much larger y scale in (a) because
of few electrodes with very high energy at some low frequencies. The fact that #4 had the most variance in
power was confirmed in Figure 3.11
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Parameter Setting
Noise reduction [dB] 48
Sensitivity 4
Frequency smoothing 0

Table 3.1: Parameters in the Noise Reduction plugin in Audacity, referring to this documentation

The spectrogram used a Hamming window (Harris, 1978), and it was fine-tuned to preview the
bursting activity visible on raw signals of 35 in Figure 3.2a. The noise reduction resulted in many
clear frequency components occurring during the bursts in #2 and sporadically in #4. A video of
#2 of the spectrogram on stereo sound with electrode 35 (left) and 87 (right) can be seen following
this link. A screenshot of STFT on the selected electrodes of #2 and #4 are in Figure 3.19, and
the noise reduced stereo signal from selected electrodes of #2 are shown in Figure 3.20.

Figure 3.20: The filtered audio signals from #2 in Audacity used as audio input to the STFT in the video
described in section 3.9.2. The video had some minor parametric differences in the settings of STFT (other
color aperture tresholds) and noise reduction parameters (a little lower noise reduction (40 dB) and sensitivity
(3)). Links to the actual sound used in the STFT in Figure 3.19 are available in the subfigure descriptions of
that figure
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(a) #2 on 35 and 87. In-phase events. The sound can
be heard here

(b) #4 on 46 and 86. Anti-phase events. The sound
here

Figure 3.19: Further investigation of spiking activity. Short-Time Fourier Transform (STFT) on a noise
reduced selection of the most spiking-active electrodes from #2 and #4. The x axis is a time window of 7
seconds, while y is frequency f ∈ 〈0, 5000] Hz. #2 shows the start of a 8 second long burst. In experi-
ment #2, bursts seem to occur with an average length of 10 s, in a frequency 10 s (rough estimates from
Figure 3.20). In #4, comparable activity (bursts...) seem to happen almost continuously. In #4, most of the
frequency components occur in a wide frequency range around 1000 Hz. Perhaps one can say that a syn-
chonization of the frequency components are what makes the spikes in (a) and seen and detected in Figure
3.2. It is interesting that no continuously changing frequencies occur, and that the length of each individual
frequency instance in (a) and (b) seem to be the similar with this noise reduction. Also, most of each in-
dividual frequency instance happen at both electrodes. However, the frequency of the instances happening
simultaneously can be different. They can be apart from each other in height in the figure. Sometimes, this
makes a stereo effect on the sound
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Chapter 4

Results and Discussion

4.1 Spatial difference in power and spiking activity

There is a spatial difference in the electrode activity in terms of variance in power (green elec-
trodes and electrode 54 and 64), variance in number of counted spikes (brown and yellow elec-
trodes, electrode 64), as well the number of counted spikes (yellow electrodes, electrode 54). The
variance was measured over frequencies (the objects) using PCA. This is further described in
Figure 4.1.

Assuming denser brown areas in Figure 4.1b resembles higher density of neuronal cells, it is
possible to connect many of the most spiking electrodes (yellow and brown) in Figure 4.1a to the
dense areas in this figure.

One could expect that high variance in power means high spiking activity. This was not observed.
Two possible reasons are listed below.

• Stimulation could prevent natural spiking activity: The neurons get too stressed by the
strong periodic electrical voltage to act naturally as they get electrocuted and try to recover
from the shock periodically (stimulation period was 30 seconds).

• Stimulation could increase spike detection treshold: From PCA, it is evident that stimu-
lation drives the variation in energy. This leads to higher standard deviation, which is used
in the formula for spike detection 6.30.

Relating to existing research

Perhaps the spatial difference has something to do with the fact that power and synchronized
oscillations and spikes do not necessarily represent the same information if the same power results
from de-syncrhonized oscillations (Buzsáki (2012a), gamma-band).

In a study where 58 dissociated cultures of cortical cells, each with different cell densities, were
grown and recorded in MEAs, richer cell population bursting patterns (and more detected spikes in
total) were observed in denser cultures. The number of spike counts during bursts also increased
with ages of cultures in general (Wagenaar, 2006).

(Wagenaar, 2005) did also an attempt on controlling bursts in a similar in-vitro cortical culture
with closed-loop control with stimulation, proposing that externally applied electrical stimulation
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(a) #1 (day 126), #4 (day 161), #3 (day 204) and #4
(day 245) summary

(b) Day 160. #2 is day 161

(c) Day 46 (d) Day 403

Figure 4.1: Summary of active electrodes in terms of variation in energy and number of detected spikes, as
well as MEA pictures before, during and after selected experiments. Green electrodes had a lot of variation
in their PDSs, which was expressed by PCA on PSDs. Yellow and brown electrodes had a lot of spike
activity, either in terms of detected spikes (yellow, 54) or variation of spike frequency of detected spikes
(yellow and brown). 54 had a lot of variation in energy, as well as many detected spikes. 64 had a lot of
variation in energy and in detected spikes. (a) and (b) might show that the dense brown areas of neurons in
(b) are connected to the spiking activity (yellow, brown and red), and/or that stimulation electrode 74 are
connected to the varying energies (green, red)
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can substitute for natural inputs to cortical neuronal ensembles in transforming burst-dominated
activity to dispersed spiking. Dispersed spiking is more reminiscent of the awake cortex in-vivo.
Of 10 MultiChannel Systems MEA cultures containing 60 electrodes, they managed to suppress
spontaneous bursting completely in > 50% of the cultures by randomly selecting 10 electrodes
for sequential bi-phasic stimulation with a fixed rate of 10 Hz and with varying voltage amplitude
between 100 − 900 mV. The varying voltage of the stimulation was the feedback loop, and it
was determined as 5× spontaneous firing rate (intra-burst firing rate). If the culture in this report
were to react similarly as those described, then closed-loop multi-electrode stimulation on varying
electrodes and with varying pulse voltage could probably be used to further analyse and control
the spatial difference in power and spiking activity.

4.2 De-synchronization on low frequencies (2-4 Hz) could be
related to high frequency power increase in f ∈ [500, 2000]
Hz

From Figure 3.16, estimations of the spiking frequencies with the highest powers were 2 and 4
Hz in both #2 and #4. Loading plots from this result were used to select interesting electrodes for
de-noising and Short-Term Fourier as seen in figure 3.19. All electrodes were noise reduced with
the same parameters and noise profile. It is proposed that activity seen in the STFT is caused by
MUAs or mutli-EAPs.

Electrodes with high loading along PC1 were selected. These were not the electrodes with the
most spikes detected. Figure 3.16 show that they were in fact among the electrodes with the
highest negative correlation to variation in spike frequency. These electrodes seem to be the ones
with the most visible bursting activity on raw recordings (at least in #2, which can be verified in
Figure 3.2a). The PCA also shows that the selected electrodes are among the ones that negatively
correlate the most with the highest power from PSD, and that the estimated spike frequencies
associated to the highest powers are 2 and 4 Hz.

The suggested interpretation of the negative correlation is that increasing number of spikes de-
tected correlates with decreasing spike frequency. This makes sense from looking at the original
exponential histogram before interpolation in Figure 3.15a. Most of the original spike counts
arrive are at very low frequencies. What’s more, the selected visible bursting electrodes seem
to also have fewer spikes detected in general because of higher spike thresholds. This is further
described in Figure 3.2. Perhaps this implies that they are the most interesting electrodes.

By combining the the observation of evident low spiking frequencies in both #2 and #4 with
decreasing power from PSD (see Figure 3.13), as well as the frequency behavior from STFT
in Figure 3.19, it is observed that the power decrease could be related to de-synchronization
of oscillations at these low frequencies. Another observation is that the time duration of a short
occurrence of energy at a high frequency (in a wide band around 894 Hz, roughly f ∈ [500, 2000]
Hz), or ”stripe”, in Figure 3.19a seem to be of similar length in Figure 3.19b. In Figure 3.19a, the
frequency if envelopes of most of these ”stripes” seem to be around 2− 4 Hz, too.

Note that the PSD calculation is not dependent on the spike threshold for noticing the power
decrease in the low frequencies (around 2 and 4 Hz). The behavior in Figure 3.19 could also be
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related to the fact that the noise profile used for noise reduction on both experiments were taken
from experiment #2. The noise profile was the recording of #2 between first and second burst.
Hence, #4 was noise reduced as if this recording clip in #2 was noise in #4.

It must also be mentioned that the STFT behavior in #4 happened almost all the time in the
recording, while #2 happened in bursts. Such dispersed occurrence of ”stripes” could just as well
be what causes dispersed spiking observed in #4. Remember, #4 had in total a lot more total
spikes detected on all electrodes, than all other experiments (Figure 3.14), and the highest power
at 894 Hz (see Figures 3.7, 3.18b). Dispersed spiking as in Figure 3.19b happening almost all
the time explains the fact that #4 has the highest power at these very high frequencies (see Figure
3.7). Perhaps is the activity seen in Figure 3.19b de-synchronized oscillations of which would
have caused non-stop bursting such as in Figure 3.19a if they were synchronized oscillations.

From Figure 3.7, 3.8, 3.9 and 3.11, it is clear that high frequencies around 894 Hz contributed to
most of the variance in the combined PCAs, and most of this energy variance was in #4.

Figure 3.12b shows that PC1 of this PCA expresses the average PSD very well. This is almost
the same for #2 in Figure 3.12a and for all experiments in Figure 3.11.

Relating to existing research

There exist research on in-vitro midbrain dopaminergic neuronal cultures proposing that the per-
sistence of global bursting in mature cultures is evidence that such cultures are in a state of arrested
development as a result of lack of sensory input. (Wagenaar, 2005) proposes and confirms this
view. (Paladini, 2014) proposes that future in-vivo intracellular studies of DA neurons are needed
to improve our mechanistic understanding of burst and pause firing of defined DA neurons in
awake behaving animals.

(Barter, 2015) hypothesizes from in-vivo recordings on rats that rate neural coding in DA sig-
naling implements gain adjustment for adaptive transition control. They found the firing rate
of neurons to be positively correlated to vector components of velocity and acceleration during
movements in four directions—up, down, left, right.

Using calcium imaging (Kirwan, 2015) describes similar low frequency oscillatory activity in
two long-term externally stimulated in-vitro cultures of hPSC-derived cerebral cortex neurons.
Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks
(2̃5) in culture. An initial phase of increasing frequency of oscillations is followed by a phase
of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. They
demonstrated that the formation of hPSC-derived cortical networks mimics in-vivo cortical net-
work development and function as well. Some other works reporting robust long-term electrical
activity recorded from hiPSC-derived stem cells are (Odawara, 2016; Lam, 2016).

Using sequential stimulation randomly over all electrodes in a 60 electrode in-vitro MEA con-
taining rat contical neurons, (Hales, 2012) demonstrated the ability to induce pathological high
frequency oscillations (250−600 Hz), which they then propose are present in the brains of elipep-
tic animals and humans. Oscillations were more apparent with higher stimulus voltages.

A journal reviewing principles of cortical rhythms in cognition, presents that rhythms produced
by an interneuronal mechanism in cortical circuits are ultrafast (> 100 Hz) when single neu-
rons fire irregularly in a sparsely synchronized oscillation, but at 40 Hz when single neurons
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behave like regular oscillators. Another cortical mechanism described, the excitatory-inhibitory
loop mechanism, gives rise to gamma- and beta-band oscillations during highly irregular firing
of single neurons (Wang, 2010). It is unclear if any of these cortical mechanisms could exist
in the MEA, or if they can be related to midbrain dopaminergic neurons. MEAs that do extra-
cellular recordings are anyways ”blind” to subthreshold synaptic potentials generated by single
cells (Spira, 2013). If the dopaminergic neurons acts anything similar to these cortical neurons,
irregular firing of single neurons could be the cause of the lack of synchronization, and hence the
increase in high frequency power.

(Stephens, 2012) discusses from in-vitro experiments on adult rat hippocampal neural progenitor
cell (NPC)-derived neurons that high-frequency network-wide bursting or “superbursting” is a
hallmark of early plasticity that is ultimately refined into mature stable neural network activity.
The superbursts are clusters of bursts, and is regarded a transient phase of the culture before it is
stabilizing into short high-frequency bursts of activity that persist for the lifetime of the culture.
The transient superbusting has also been observed in-vivo.

In an in-vivo study of CA1 pyramidal cells in the hippocampus of rats where sharp wave-associated
high-frequency oscillations were measured (200 Hz), (Ylinen, 1995) hypothesize that these fast
field oscillations the CA1 region reflect summed Inhibitory postsynaptic potentials (IPSPs) in
pyramidal cells as a result of high-frequency barrage of interneurons. They relate these findings
to transiently stored memory.

(Wang, 2016) found from in-vitro recordings of human, monkey and mouse neocortex slices that
the maximum frequency of APs from cortical fast-spiking neurons were different between species
and cortical areas. The maximal mean AP frequency in humans were found to be 338 Hz.

4.3 Decrease of Beta-band power

In Figure 3.13, it is observed that #4 contributes to the least of the variance in the beta-power,
following a stable decrease throughout the experiments. Consequently, #4 is the experiment with
the least energy in the beta-band. It is assumed that the type of dopaminergic neurons analyzed
in the report would have had capabilities of releasing dopamine in an in-vivo scenario (Arenas,
2015)

Relating to Parkinson’s disease

As mentioned earlier in section 2.2, Release of dopamine (DA) from midbrain dopaminergic
neurons influences voluntary movement, cognition, and motivational state. If the highly likely
assumption that the amount of dopaminergic neurons have increased over the experiments is true,
a relation to Parkinson’s research might have been observed in the MEA culture. The author has
had an impression that the data analysed have become ”less Parkinson’s-like” over the months,
when looking at beta-band energy and spiking activity.

In awake rats, dopamine depletion has been found to increase the power and coherence of beta-
oscillations (Sharott, 2005). In humans, Parkinson’s disease has been found to relate to depletion
of dopaminergic neurons such as the type analyzed in this report (Arenas, 2015), leading to motor
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symptoms (ex. rigidity, bradykinesia, tremor and postural instability) (Bellucci, 2016; Arenas,
2015).

Previous Time-Frequency analysis conducted on the same experiments by the same author presents
similar trends in band power. However, only 2 second segments of electrode 47 from the same
four experiments were analysed. Plots of calculated power from band-filtered versions of the last
two seconds of electrode 47 of the four experiments are shown in Figure 4.2. Band powers on
(a) and (b) were computed from PSDs, while the band powers in (c) and (d) were computed from
reconstructed EEG band signals computed from a self-developed adaptive energy based recon-
struction algorithm. Bands signals were reconstructed by adding or subtracting Intrinsic Mode
Functions (IMFs) the from the original signal, after getting the IMFs from Epirical Mode Decom-
position (EMD) of the original signal. A band signals was only reconstructed if EMD managed
to decompose the original signal into IMFs where at least some of the IMFs had a certain amount
of its power within the band. All figures show similar trends.

Results in Figures 3.13, 3.11 and 3.7 conforms to the results in Figure 4.2 regarding decreasing
beta-band activity, which seems to be related to the increasing amount of DAergic neurons.

In the journal paper, multiple references were included reporting on synchronized beta-band os-
cillations in PD patients, as well as on less beta-band synchronization or de-synchronization after
dopamine medications on the patients (Hovden (2017), references [13],[14],[15],[18]. Download
link available in Bibliography).

What’s more, a substantial increase in power at high frequencies is also observed in Figure 4.2a,
which conforms to power results in this report (f. example, see Figure 3.7). Attempts to relate the
high frequency power increase this to DAergic neurons, PD or neuronal firing activity in general,
was previosly done in the last sections 4.1 and 4.2.

About the peak in gamma power

The apparent peak in gamma-band power in #3 in Figure 4.2 is harder connect to PCA on
dopaminergic neurons. On a cellular level, transient cell assemblies may be organized into
gamma-wave cycles (Buzsáki, 2012a). Hence, synchronous gamma activity could be related to
the making of cells.

(Leondopulos, 2012) reports increased power in theta (4− 11 Hz) and slow gamma (30− 55 Hz)
bands in chronic stimulated hippocampal rat neurons.

In a more general perspective, increased gamma activity has been related to sensory responses
from in-vivo recordings on mice (Cardin, 2009). Gamma-band activities are well known during
sensory-cognitive events in EEG signals of many different species (Bagar-Eroglu, 1996). (Her-
rmann, 2004) connects gamma activity to memory match and utilization in humans and animals.
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(a) Total band powers from PSD (b) (a) zoomed in on other bands

(c) Total band powers from energy based Intrinsic
Mode Function (IMF) filtering

(d) (c) zoomed in on other bands

Figure 4.2: Comparison of power in and outside EEG bands from the last 2 second recordings of electrode
47 in the four experiments. (a) shows a power increase outside EEG bands (unspecified). The energy
increase was caused majorly by high frequencies f ∈ [120, inf〉. (b) shows energy decrease in beta band
(blue) and energy peak in gamma-band in #3. Using an additional method, (c) and (d) shows the same as
(b). From (Hovden, 2017)
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(a) #1 (b) #2

(c) #3 (d) #4

Figure 4.3: Time and frequency domain (PSD) of the reconstructed band signals from last 2 seconds of
electrode 47, as well as the original raw signal, from #1, #2, #3 and #4. The height of the marked colors
in PSDs are determined from the max peak in the PSD. The gamma signal has the highest oscillations in
#3. Decreasing beta oscillations might bee seen. The decreasing power in the beta signal is seen Figure
4.2 (c) and (d). Each band signal was reconstructed by summation of IMFs from Ensemble EMD, based a
criteria that minimum 70 % energy criteria were within the band in the PSD. Which IMFs that were made to
reconstruct the band signals are shown in the legend. Both time and PSD amplitudes are made comparable
within the experiments. All the time signals were used to calculate the powers in Figure 4.2 (c). The
reconstructed delta signal should be mostly noise because S was highpass filtered f > 4 Hz of same reason
for removing 0− 10 Hz in PSDs for PCA in this report (assumed low SNR). From (Hovden, 2017)
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4.4 Caveats and problems

• Fault of discarding 0-10 Hz in PSD PCA: The information in this range is probably not
just noise, although empty MEA recordings results in recording much noise in this range
(described earlier). Neurons seem to have an insulating effect on the recordings as well.

• Bad data quality: The metadata of the recordings available have multiple human errors,
such as incorrect stimulation protocol and wrong MEA numbe. It has been reported that
configuration files from MCS Experimeter were re-used many times, where the students
forgot to configure it correctly to the experiment. This has resulted in recordings with
metadata reporting that stimulation occurred, while in reality stimulation did not occur.
The MEA electrode layout can also be changed in configuration, hopefully different MEA
layouts were not apparent in the files analysed. It is important that human errors do not
occur in the systematic work of recording MEAs under various conditions, stimulations
and configuration files.

• Cells’ ability to move: The neuronal cells can move a bit around in the MEA during its
development. This is challenging for analysis of development of the culture.

• Floating offsets: It might be that the electrode voltage measurements are based on an offset
in reference electrode/plate that can happen to change. This is challenging for comparing
different experiments. However, variance analysed in this report are not affected by an
offset by mean centering or removal of 0 Hz components.

• Broken or miscalibrated electrodes: Perhaps is electrode 54 in #4 just a broken electrode?
This was the single electrode with the most variance. Perhaps is it just more sensitive than
the others from calibration.

• Impossible to detect neural information propagation: Helge-André Langåker calculated
the minimum information transfer speed in the electrodes to be 11 m/s. This was based on
an insight that almost all spike detections from action potentials on MEA 2 occurred at a
single and same timestamp for all electrodes that detected the spike. This means that the
used sampling rate of 10000 Hz is not fast enough to detect propagation of information in
the neural network.

• Compatibility problems: Use of , in decimals instead of .: Actually, The Unscrambler
X uses comma (,) in the representation of decimals instead of punctuation (.) which is a
lot more normal these days. This resulted in manually programming in string manipula-
tion to substitute . for , in the Python script used for PSD computation 6.14 so that The
Unscrambler X recognized the decimals as numerical variables.
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Chapter 5

Conclusion and further work

In general, two different kinds electrode activity seem to be spatially spread in the MEA. This
seems to be caused by the placement of the one-electrode stimulation at electrode 74 as well as
the placement of the reference electrode. The first kind of activity was variation in power over
frequencies. The second kind was variation in number of detected spikes over spike frequencies,
as well as detected spike activity. Activity by means of total detected spikes is regarded simi-
lar to activity by means of variation in number of detected spikes over spike frequencies, hence
both being referred to as the second kind of activity (however, they are colored differently in
Figure 4.1a. Description in figure text). The first kind occurred in electrodes closer to the stimu-
lation electrode opposed to the second kind that occurred closer to the reference point of voltage
measurement (with some exceptions). When stimulation was removed, less of the first kind was
observed, while some new electrodes recorded more of the second kind. In this experiment (#4),
activity seemed to obey less of the spatial difference in activity as was observed in experiments
with stimulation (#1-#3). There exist research that has managed to control the occurrence of
bursts, hence controlling spatial and rate coding.

A general trend of increasing power at high frequencies (f ∈ [500, 2000] Hz) as well as de-
creasing power at low frequencies (2 − 4 Hz)) was observed along with the age of the culture,
including the experiment that received no external stimulation. The experiment with the most
developed properties in this trend was in fact the non-stimulated experiment #4. It is discussed
whether this has a connection with the oscillations (in-phase activity visible in #2 at the low fre-
quencies during bursts) de-synchronizing into dispersed anti-phase activity (visible in #4 most of
the time) as a result of development in the culture. This behavior can not singularly be caused by
external stimulation, but also by development of intrinsic properties in the culture along with age.
In other words, the neural coding seem to have gone from rate to temporal (and perhaps still rate)
coding. Various kinds of external and internal/intrinsic stimulation has been reported to invoke
high-frequency oscillations in neuronal cells in existing research.

Power was also shown to decrease in the beta-band f ∈ [13, 30〉 Hz (Figure 3.13), a band in
which oscillations have a connection to DA depletion and PD progression from extensive research.
A course work on 2 second segments of electrode 47 from the same experiments also verifies
decreasing power in beta-band trend, as well as an interesting peak in gamma-band power in
#3. (Figures 4.2 and 4.3). Previous research reports that gamma oscillations might be related to
transient cell assemblies.
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5.0.1 Further work

The ongoing goal is to better understand signaling, dynamics, change and learning in biological
neural networks. In this report, analysis of PD-related neuronal data was done to resemble to
those aspects as well as to cell replacement therapy for PD.

There is a lot of approaches in further analysis and control

• Sliding window implementation of FFT, CWT, or HHT (Huang, 1998) on noise reduced
data streams, for example Short-Time Fourier Transform (STFT) or real-time Continuous
wavelet transform (Bömers, 2000), into the existing near real-time reservoir closed-lopp
computing Scala framework SHODAN (Aaser, 2017a).

• Specialized mother wavelet functions of Continuous wavelet transform (CWT) for using on
sliding window. Morlet Wavelet gives good frequency resolution when analyzing gamma
activity. Bi-scale wavelet for 1-4 Hz asynchronous BCIs during imaginary movement.
Daubechies wavelet for Slow Cortical Potentials (SCPs) f < 1 Hz Nicolas-Alonso (2012).

• Analysis of firing rate, phase delay or temporal coding using histograms techniques.

• Analysis of frequency-temporal information of spikes by dividing STFT spectrum into bins
and counting spikes separately in each bin. Then creating ISI histograms of each of the bins.

• Evolving PCA (Vitale, 2017; Martens, 2015) on FFT windows (STFT+MVA).

• Multivariate Empirical Mode Decomposition (MEMD) for functional analysis of ex. multi-
variate beta-oscillations. Empirical Mode decomposition based time frequency analysis of
multivariate signals. (Rehman, 2009; Mandic, 2013). (Bueno-López, 2016) (Bueno-López,
2017)

• Effective connectivity analysis such as Dynamic Casual Modeling (DCM, generative model,
Friston (2003)), Granger Casuality (GC, Roebroeck (2005)) and Transfer entropy (TE, Vi-
cente (2011); Orlandi (2014); Zuo (2013); Li (2015)).

• Functional (predictive model) vs effective (generative model) connectivity analysis com-
parison (Friston, 2011).

• Computational models (Bassett, 2017; Kuznetsova, 2010; Cohen, 2016).

• iPSC derived astrocyte recordings as noise profiles (Kuijlaars, 2016)

• Other types of cells: Motor neurons (Shimojo, 2015) (Moser, 2014; Bjerknes, 2014)

• More MVA: Sparse PCA (Zou, 2012). Variable influence on projection (VIP) for orthog-
onal projections to latent structures (VIP for OPLS) (Galindo-Prieto, 2014). Independent
component analysis (ICA). L-PLS as a way to build in more preferences of interpretation
of the data. Multilinear PLS (N-PLS).

• Data visualization such as with the Python library Glumpy.

• Self-organizing maps and similar.

• Feedback stimulation: Dynamic Clamp DA bursting simulations (Paladini, 2014). Intraburst-
based stimulation (Wagenaar, 2005).
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• Implementation of existing data intensive processing systems: Apache Spark framework
for mapping, example: two-photon imaging brain activity mapping of zebrafish (Freeman,
2014). Spike sorting framework (Rossant, 2016). Examples of specific hardware imple-
mentations (Imfeld, 2008; Ballini, 2014).

• Further investigation of dopamine system for Bio Reinforcement learning in the culture
(Holroyd, 2002). Support Vector Machines (SVMs), Naive Bayes, Decision trees, Linear
Discriminant Analysis (LDA) or various regression methods for feature classification.

• Hidden Markov Models (HMM) or Dynamic Bayesian Networks (DBN) for modeling dy-
namics in the neural network.

• Particle filter (Sequential Monte Carlo (SMC)) or Kalman filter (linear quadratic estimation
(LQE)) as time-domain prediction-update estimators of imagined position of the robot.

The next section tries to describe a possible complete set-up of appliance of combined theory for
near real-time bio-robotic control. It is a particle filter based closed loop control of a robot with
the MEA in the loop. The section was included as a naive attempt to discuss a possible scenario
in the future. Have in mind that there might be misconceptions in the interpretations of the theory.

Closed-loop particle filtered casually modelled MEA robot behavior

First, the 60 electrophysiological MEA signals are noise reduced so that as much as possible of
the rate and temporal neural coding are visible as seen in Figure 3.19b.

A sliding window spectrum method (based on FFT, CWT or HHT) is then applied on the electrode
signals before or after possible removal of non-important electrodes using MVA approaces such
as Variable influence on projection (VIP) for orthogonal projections to latent structures (VIP for
OPLS) (which is used either on electrode signals in time, or frequency domain from spectrum of
the sliding window) (Galindo-Prieto, 2014, 2015).

The time window is 5 seconds. In any time window, temporal and rate dynamics is recorded.
Using STFT or similar, the frequency range in the spectrum is divided intoB number of bins. For
each of the bins, total number of action potentials in the bin within the time window is recorded.
Also for action potentials in each of the bins, ISI histograms are constructed. The result is that
for each time window of 5 seconds, maximum 60 × B total spike counts and ISI histograms are
recorded.

Then, effective connectivity analysis using transfer entropy (TE) connectivity graphs (Vicente,
2011; Zuo, 2013) as illustrated in Figure 5.1 is applied from discrete spike data of treshold based
spike detection on the windowed time signals of maximum 60. A specific discrete type of TE con-
nectivity analysis is used (Pastore, 2017). For each electrode in the connectivity graph, rate and
temporal neural coding are maintained trough number of inputs and edge weights, respectively.

TE is an alternative approach to Dynamic Casual Modeling (DCM) (Friston, 2003) for measuring
effective connectivity. DCM is essentially based on a Bayesian framework (Friston, 2003) and
uses bilinear approximation to describe interactions in nonlinear dynamics, while TE introduces
entropy measures from information theory and hence a way to describe nonlinear dynamics with-
out interaction models. TE bases its casual measures on the Markov condition (Vicente, 2011).
Another more used casual model is Granger Casuality (GC) and has been used on Functional
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magnetic resonance imaging (fMRI) (Roebroeck, 2005). GC, DCE and TE are all casual models
and associated with Directed Acyclic Graphs (Janzing, 2013).

(Orlandi, 2014) did a TE study on calcium traces from in-vitro neuronal cultures, while (Li, 2015)
did a similar study on calcium traces using fluorescence indicators on mice under anesthetics.
Hence, fluorescence signals from individual neurons are evaluated as alternatives to electrodes
signals in TE connectivity analysis, if available.

The dynamics of change in the TE connectivity graphs is modelled with a Hidden Markov Model
(HMM) or Dynamic Bayesian Network (DBN). Results of functional analysis on each time win-
dow are used to update the parameters of the dynamical model. The 60 × B total spike counts
and ISI histograms are used for this purpose. MVA methods such as evolving bilinear subspace
modeling / evolving PCA (Vitale, 2017) complement in the further interpretation of what changes
to update in the model.

Training is attempted on the biological neural network / MEA using closed-loop varying rate and
temporal-changing multi-electrode stimulation as in Wagenaar (2005), where different parameters
in the stimulation are tested and improved consecutively using a heuristic. The heuristic is to find
an optimal set of stimulation parameters in order to find the most discriminating features in the
dynamical model when the robot is approaching and leaving a distance to a wall, respectively.
(Barter, 2015) reports that distributions of firing rate in DAergic neurons in-vivo in rats were
positively correlated to vector components of velocity and acceleration. Such information is what
we are looking for in the ISI histograms. The control of the robot is based on a particle filter in
top of the discriminating features of the updated dynamical model.

The last sections sum up some additional thoughts about future work.

Stimulation triggered DA release as the real reward feedback?

The presence of electrical stimulation itself is perhaps not working sufficiently enough for any
induced learning in the biological neural network, if it is not trying to mimic some neural coding.
Perhaps more concrete rewards in the form of DA releases has to be controlled to induce learning.
Given that the intrinsic potential of releasing DA in DAergic neuronal cultures exist, optimal
learning-inducing stimuli could be suspected to be of the types of neural coding that leads to DA
release.

Use of parametric models

For the cyborg project, it would be important to not use too non-parametric models, but instead
rely on a fixed complexity on the interpretations of neural coding. This is because the primary
task of controlling the robot to not run into walls should not require never-ending training in the
biological network. If somehow this is learned in the network, it the network should be able to
repeat what it has learned autonomously in a way that does not require much further learning.
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Figure 5.1: TE Connectivity graph from MEA 2 from a recording 29th October 2017. It contains some
errors, but it suffices as an illustration. Helge-André Langåker pointed out that it was based on a connectivity
matrix that was transposed, and that the arrows point in the wrong direction. Work by Helge based on
(Pastore, 2017)
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Biology and brain-computer interfaces for taming Artificial General Intelligence

In a learning perspective, making use of biological neural networks in closed-loop circuits (such
as brain-computer interfaces (BCIs)) could perhaps be seen as an attempt to counteract the possi-
ble threat of Artificial Strong Intelligence (AGI) by making the AI more human-like. AGI is the
intelligence of a machine that could successfully perform any intellectual task that a human being
can. Many people see AGI as a threat to humanity.

In computer science, research on Artificial Neural Networks (ANNs) have seen significant progress
in learning data representations in recent years. ANNs was in fact closely inspired by the biologi-
cal neural network, leading to simplified models of graphical models of weighted neurons, where
the magnitude of a weight represents the ability of information propagation over a synapse. Learn-
ing data representations can be effectively accomplished by supervised and unsupervised training
in computers using weight updating algorithms such as back-propagation and gradient descent.
With the help of the parallel processing abilities of Graphics processing units (GPUs), this algo-
rithm has made ANNs able to learn features in data faster.

The field of ANNs with many hidden layers, called deep learning (DL), has been recently com-
bined with concepts of learning agents using reinforcement learning (RL) techniques, as well as
further speeding up the ANN learning processes with more parallelization. Promising learning
performances with high-speed learning, resulting in deep reinforcement learning (DRL) tech-
niques such as the system described in (Mnih, 2016) is perhaps the closest research has come in
realizing AGI.

Opposed to state-space and action-space modeling in traditional reinforcement learning, deep
reinforcement learning discards this modeling in favor of ANNs trained on general rewards. This
video from (Mnih, 2016) shows the potential of deep reinforcement learning by letting a trained
agent optimally drive a race car on a race-track using only raw pixels as input. The reward here
was proportional to the agent’s velocity along the center of the track at the agent’s current position.

The downside of DRL is that the learned data representations are in a black-box in the form of
weights and gates, etc. in complex ANNs, hence hiding dynamic relationships of latent variables
that would have been described in differential equations in traditional control systems. Such
hidden representations is a major reason for skepticism about DL, as it is basically a ”blind”
machine learning technique. However, it has been very successfull by external metrics, although
we don’t exactly know how it works.

If such systems get too much impact in important processes such as decision making and control
of important infrastructure (ex. self-driving cars, image- or Natural Language Processing (NLP)
expert systems used in forensics, judgemental processes, recommender systems on the web for
marketing and personalization, or diagnostization in medical sciences), it can have a negative
impact on humans if it is wrongly used. Perhaps could future BCIs help humans in controlling
and understanding these systems, as well as understanding more about our brain.

Ethics

The neurons analysed in this report were developed from human stem cells. However, rat cells
could probably be used instead in the Cyborg project. The reason for using human cells was likely
because of the PD research.
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Although the general idea of making a cybernetic organism may seem unethical, the benefits from
insights and progress along the way will certainly benefit at least the medical sciences.

More controversially, future cyborg-like appliances may be seen as attempts to keep humans in
the loop of controlling AGI. Examples can be invasive or non-invasive BCIs for humans that
enable high bandwidth communication with computers. Hence it may introduce faster ways of
Human-computer interactions (HCIs). Some recent innovations in HCIs today are Virtual reality
(VR) headsets and Augmented reality (AR) smartglasses.

HCIs can have the potential to change human behavior and it is important to discuss what kinds
of human futuristic behavior we could value. For example, HCIs might challenge the notion of
physical presence among other humans in close proximity. What are the most valued types of
communications in humans, how can they change and how do we want them to change? From a
human perspective, do we want new HCIs what change our ways of communicating?

43



Chapter 6

Acknowledgements

All MEA data were obtained and made available by Ioanna and Axel Sandvig´s laboratory, De-
partment of Neuromedicine and Movement Science (INB), Faculty of Medicine and Health Sci-
ences, NTNU, based on dopaminergic neuronal networks engineered in the lab. Special thanks
to PhD students Vibeke Devold Valderhaug, INB, Ola Huse Ramstad, INB, and Rosanne van de
Wijdeven, IKOM, for all relevant experimental work and useful discussions.

Also, thanks to Cyborg coordinator PhD Martinius Knudsen for occasional advices and Beatriz
Galindo-Prieto for help on PCA theory. Thanks to CAMO Software AS and Frank Ove Westad
for ”The Unscrambler X” license.

44



Bibliography

Aaser, P., December 2017a. Investigating in-vitro neuron cultures as computational reservoir.
URL https://github.com/PeterAaser/semproj/blob/master/
semesterrapport%20peter%20aaser.pdf

Aaser, P., 2017b. Towards making a cyborg: A closed-loop reservoir-neuro system.

Allen, J., 1977. Short term spectral analysis, synthesis, and modification by discrete fourier trans-
form.

Arenas, E., 2015. How to make a midbrain dopaminergic neuron.

Bagar-Eroglu, C., 1996. Gamma-band responses in the brain: a short review of psychophysiolog-
ical correlates and functional significance.

Bai, Q., 2001. Single-unit neural recording with active microelectrode arrays.

Ballini, M., 2014. A 1024-channel cmos microelectrode array with 26,400 electrodes for record-
ing and stimulation of electrogenic cells in vitro.

Barker, R., 2015. Cell-based therapies for parkinson disease —past insights and future potential.

Barter, J., 2015. Beyond reward prediction errors: the role of dopamine in movement kinematics.

Bassett, D., 2017. Small-world brain networks revisited.

Beaulieu, J., 2011. The physiology, signaling, and pharmacology of dopamine receptors.

Bellucci, A., 2016. Review: Parkinson’s disease: from synaptic loss to connectome dysfunction.

Beninger, R., 1983. The role of dopamine in locomotor activity and learning.

Bernheimer, H., 1973. Brain dopamine and the syndromes of parkinson and huntington.

Bjerknes, T., 2014. Representation of geometric borders in the developing rat.
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Buzsáki, G., 2012b. The origin of extracellular fields and currents — eeg, ecog, lfp and spikes.
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Appendix
A top-down collection of background information.

6.1 Principal Component Analysis (PCA)

In this section, the mathematical foundation of PCA is explained using eigen decomposition.
The relation of eigen decomposition and Singular Value Decomposition (SVD) for PCA is then
explained. The concept of scores and loadings comes from PCA using SVD, which is later ex-
plained.

W from 6.11 is the input matrix used in The Unscrambler X software, which is selected to use
SVD for the PCA (CAMO, 2017a). It is the transpose of the following X

X =


x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xM1 xM2 . . . xMN

 =


x1

x2

...
xM

 ∈ RM×N (6.1)

with M variables and N objects.

Each variable sequence are first mean centered as in 6.23. From linear algebra, we know that
any object in X can be expressed by a linear combination of Rank(X) orthonormal (unit length,
linearly independent) basis vectors.

PCA on X finds new variables that form a new basis for the objects, on the criteria that they
in decreasing order express the variance in the objects. The new latent variables no longer hide
information about covariances between objects, as the original variables did, because they are
orthogonal.

6.1.1 Derivation using Eigen Decomposition

The expression of the data in orthonormal basis vectors follows from the linear transformation
(Shlens, 2014; Richardson, 2009)

Y = PX (6.2)

where the rows of P are the latent variables, or the Principal Components (PCs). Hence, the new
variables are linear combinations of the original variables.

The most straight-forward method for finding P is based on eigen decomposition (6.24) of the
covariance matrix of X, CX, with an additional requirement that the eigenvectors of CX are
principal components and row vectors of P. This results in a diagonal covariance matrix of Y.
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The covariance matrix of Y is
CY =

1

n− 1
YYT (6.3)

Inserting 6.2 into 6.3 and recognizing CX results in

CY = PCXPT (6.4)

Eigen decomposition 6.24 is now done on CX and substituted into 6.4.

CY = P(EDE−1)PT (6.5)

Finally, since it is required that the principal component row vectors of P are the eigenvector
colums of E, and since the inverse of an orthogonal matrix is its transpose

E ≡ PT (6.6)

6.6 is then inserted into 6.5 resulting in

CY = D (6.7)

Consequently, the covariance matrix of the linear orthonormal transformation Y, CY is a diago-
nal square matrix with its variance expressed along the diagonal equal to D. The diagonal of D
are the eigenvalues from the eigen decomposition of the covariance matrix of CX.

6.1.2 Relation of Eigen Decomposition to SVD for PCA

The eigendecomposition of CX is related to Singular Value Decomposition (SVD) by defining
(Shlens, 2014; Richardson, 2009)

Z =
1√
N − 1

XT ∈ RN×M (6.8)

ZTZ =
1

N − 1
XXT = CX (6.9)

and performing SVD (6.25) on Z. This results in non-zero singular values of Z equal to the square
roots of the non-zero eigenvalues of ZTZ (Richardson, 2009; Wold, 1987)

√
λi = si , i ∈ Rank(Z) (6.10)

However, when solving PCA with SVD, the input matrix is more typically just the transpose of
X

W = XT ∈ RN×M (6.11)
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with N objects and M variables (Jolliffe, 1986; Wold, 1987).

The lack of 1√
N−1

in 6.11 when performing SVD on W results in scaled principal components
(Dellaert, 2008), or a scaled version of non-zero singular values of W equal to the square roots
of the non-zero eigenvalues of ZTZ.

√
λi =

si√
N − 1

, i ∈ Rank(W) (6.12)

λi in 6.12 are the eigenvalues following from PCA using SVD (Jolliffe (1986), p. 38). Naturally,
Rank(Z) = Rank(W), since Z and W only differ by a scalar value.

Since in a practical scenario only the first k principal components are selected to display the
variance in X, the reconstruction of W using SVD introduces an error term, or residual Ek

Wk = SkLk + Ek = Structure+Noise (6.13)

where

Sk = UkDk , Lk = VT
k and k <= Rank(W) (6.14)

denoted as scores S, loadings L and number of selected principal components k (Wold, 1987;
Martens, 2016; CAMO, 2017a). SkLk is the Structure part, while Ek is the Noise part. Natu-
rally, the Noise part includes less of the variance in X when k is increased.

Typically, only the first k principal components of the projection account for most of the variance
in the objects. This is because eigenvalues and convectors of the SVD are Rank-ordered, meaning
that less variance in X, or less magnitude of eigenvalues, is explained when adding a principal
component to the model. For this reason, the other ”less important” principal components are
discarded in further analysis. According to this procedure, the reconstruction of the original data
matrix would not be lossless, but the significant activity in the data regarding variance is hopefully
included along the existing principal components.

6.1.3 Scores and map of objects

A map of objects that describes how they relate to each other. The first column of S is the score
of the first PC for all objects. The term ”Scores” are the elements in the S matrix (Risvik, 2007).
The scores can be plotted against each other in a scores plot, which is scores plotted against each
other.

6.1.4 Loadings and map of variables

A map of variables. L contains the weights (or influence) of the variables in X on the scores S.
Displays which variables that are responsible for patterns found in scores when using a loadings
plot. The loadings plot is the loadings of a PC plotted against the loadings of another PC.
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6.1.5 Residuals and explained variance plot

The part of X that is not explained by the model. The model is the Structure part of Wk when
a k number of PCs are used. If the model expresses 100% of the variance in X, then Ek = 0 and
k = Rank(X). This means 100% explained variance and 0% residual variance from the relation

ExplainedV ariance+ResidualV ariance = 100% (6.15)

The residual variance is calculated from residues in Ek. A residue for an object ei is a distance
between the object in variable space and the representation of the object in PC space. It is impor-
tant that variable segments in X are mean-centered. Then the residual variance is relative to the
average object of X, and is calculated using the formula (Risvik, 2007)

ResidualV ariance = e2
tot =

N−1∑
n=0

e2
i (6.16)

6.15 and 6.16 is used to make a plot of explained variance, which can be used to select an appro-
priate number of PCs for the model.

6.2 The covariance matrix CX

Given the M ×N data matrix with M variables and N objects

X =


x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xM1 xM2 . . . xMN

 =


x1

x2

...
xM

 ∈ RM×N (6.17)

the covarance matrix is defined to be (Richardson, 2009):

CX =
1

N − 1
XXT =

1

N − 1


x1x

T
1 x1x

T
2 . . . x1x

T
M

x2x
T
1 x2x

T
2 . . . x1x

T
M

...
...

. . .
...

xMxT
1 xMxT

2 . . . xMxT
M

 ∈ RM×M (6.18)

which expresses covariances between all the different variables. Hence,

CX =
1

N − 1


Cov(x1,x1) Cov(x1,x2) . . . Cov(x1,xM )
Cov(x2,x1) Cov(x2,x2) . . . Cov(x1,xM )

...
...

. . .
...

Cov(xM ,x1) Cov(xM ,x2) . . . Cov(xM ,xM )

 ∈ Rm×m (6.19)
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6.3 Covariance

The covariance between the two variable sequences of length N , x1 and x2, is defined as

Cov(x1,x2) = E[(x1 − E[x1])(x2 − E[x2])] (6.20)

Assuming equiprobable outcomes, the covariance formula becomes (Smith, 2002)

Cov(x1,x2) = E[(x1 − x̄1)(x2 − x̄2)] =
1

N − 1

N∑
i=1

(x1i − x̄1)(x2i − x̄2) (6.21)

6.4 Variance

The variance is a measurement of variation on a single variable sequence x, or the covariance
between x and x

V ar(x) = Cov(x,x) =
1

N − 1

N∑
i=1

(xi − x̄)2 (6.22)

6.5 Mean

The mean x̄ of x is defined as (Smith, 2002)

x̄ =
1

N

N∑
i=1

xi (6.23)

6.6 Eigen Decomposition Theorem

Let E be a matrix of eigenvectors of a given square matrix A and D be a diagonal matrix with
the corresponding eigenvalues on the diagonal. Then, as long as E is a square matrix, A can be
written as an eigen decomposition

A = EDE−1 (6.24)

where D is a diagonal matrix. Furthermore, if A is symmetric, then the columns of E are orthog-
onal vectors.

If E is not a square matrix, then it cannot have an inverse and eigen decomposition is not possible.
However, if E ∈ RM×N where M > N, Singular Value Decomposition can be used instead to
decompose A.

Source: (Weisstein, 2017a)
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6.7 Singular Value Decomposition (SVD)

Let A ∈ RM×N be a real matrix with M > N. Then A can be written on the form

A = UDVT (6.25)

where U ∈ RM×M D ∈ RM×N V ∈ RN×N

and U and V have orthogonal columns so that

UTU = I (6.26)

and
VTV = I (6.27)

where I is the identity matrix. The two identity matrices can have different dimensions.

Source: (Weisstein, 2017b)

6.8 Parseval’s relation for discrete periodic signals

Parseval’s relation is an application of the Plancherel theorem on the Fourier transform. The
discrete version yells for the Discrete Fourier Transform (DFT), used in the project, and tells the
relation of total energy in a discrete signal in time and frequency domain, where the frequency
domain is the DFT of the time domain signal. (Proakis, 2014)

EN =

N−1∑
n=0

|x(n)|2 =
1

N

N−1∑
k=0

|X(k)|2 (6.28)

where X(k) = DFT (x(n)).

6.9 Power Spectral Density (PSD)

PSD is a scaled version of the Fast Fourier Transform (FFT), which represents power in the dis-
crete signal independently of the sampling rate. Said differently, PSD is the auto power spectrum
of x(n) scaled by the frequency resolution, 1

∆f = N × ∆t = N
Fs

(this equation is called the
golden equation of digital signal processing).

PSD =
N

Fs
Sxx =

1

Fs×N
|X(k)|2 and Sxx =

1

N2
|X(k)|2 (6.29)

where Fs is the sampling rate, X(k) is the FFT of x(n), Sxx is the auto power spectrum andN is
the length of the discrete signal, following from 6.28 (Siemens, 2017b,a,c; NationalInstruments,
2017; Scipy, 2017).
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6.10 Detecting spikes from raw signals

A spike on sample n on the time domain signal x(n) is detected if

x(n) > 5
√
V ar(x(n)) or x(n) < −5

√
V ar(x(n)) (6.30)

where the variance was calculated in MultiChannel Systems Analyzer (MultiChannelSystems,
2017b) using a selected sample segmentN . In the PCA spike recordings,N = TimeDuration[s]×
SampleRate[ 1

s ] = 10[s]× 10000[ 1
s ] = 100000.

6.11 DFT, FFT, STFT and window functions

The Discrete Fourier Transform (DFT) is the frequency-amplitude spectrum of discrete periodic
time-domain signals (Proakis, 2014).

The Fast Fourier Transform is an efficient software implementation of DFT (Cochran, 1967).

The Short-Time Fourier Transform (STFT) is a time-frequency analysis of time-domain signals.
It computes multiple DFTs from a small sliding window, resulting in a frequency-amplitude-time
representation (Allen, 1977).

There exist many types of windows that can be used in STFT (Harris, 1978). A typical window
is the ”Hamming” window. This window is used in the electrode sound STFT analysis.

6.12 Cross-validation

A common way to evaluate the fitness of the model during training (or statistical modeling) by
dividing the training data to N segments, then training the model N times on N − 1 segments,
each time validating the model with the single segment that was not used for training at that time.

6.13 Software used

6.13.1 MultiChannel Systems Lab Software

• MultiChannel Experimeter, on-line MEA recorder and analyzer. Used to record the data at
Sandvigs’ lab at St. Olav University Hospital.

• MultiChannel Analyzer, off-line analyzer. Used to re-run the recorded data to do spike
detection with new standard deviation estimation for spike detection 6.30.

• MultiChannel DataManager, Used to convert the proprietary raw format to comma-separated
(csv) format.
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6.13.2 The Unscrambler X

Licensed access to a multivariate analysis software called ”The Unscrambler X” (CAMO, 2017b)
was given for use in a course in the master’s studies (TTK19 Big Data Cybernetics) as well as in
project works for related students.

It is typically used in the Chemometrics industries, and provides with a fast way to analyse not so
heavy but pre-processed multivariate data.

Although neuronal data is a little heavy in this program, it presents all the PCA plots and model
calibration and validation metrics in an organized way. Most of the plots in the report were made
with this software.

6.13.3 Microsoft Excel

Used for simple pre-processing of spike data from from MultiChannel Analyzer and Experimeter.

6.13.4 Open-source scientific computing and visualization software

• Python 2 and 3 with the following python libraries used to make script to convert raw
csv time domain recordings to frequency down-scaled Power Spectral Densities for each
electrode.

– os

– glob

– numpy

– pandas

– scipy

– matplotlib

– pytftb

– pyhht

– PyEMD

– datetime

• Jupyter Notebook, a programming web server. Used during programming to plot data.

• Audacity, an audio editor. Used for noise reduction for converted audio signals from elec-
trodes.

• Baudline, a scientific spectrogram analyzer. Used to analyze the noise reduced audio sig-
nals.

• Ubuntu Linux, used with all mentioned software except The Unscrambler X, MultiChannel
Software and Microsoft Excel.
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6.14 Python script

When placed in the same folder as the existing converted MEA 2 raw electrode csv files (files
such as in Figure 3.3), it computes the PSDs of the electrode raw data in the csv files and com-
bines them into a combined experiment format described in section 3.6.1 that The Unscrambler
X understands. It also adds some additional metadata colums for each experiments. The header
in the unscrambler-friendly PSD data is described in Table 6.1.

Header column Description
Hz 1− 5000
PSD for Electrode 1-60 [pV 2/Hz] 1− 60
Average Power Density per Hz [np.mean(P[Hz])] decimal
Duration [s] decimal
Total Energy [sum(Average Power Density per Hz[Hz]*(Fs/df))] decimal
Experiment average signal mean [pV] decimal
Experiment average signal min [pV] decimal
Experiment average signal max [pV] decimal
Day nr. from seeding date 2016-10-11 integer
Experiment date [yyyy-mm-dd] string
Stimulation info string
Frequency band EEG bands or unspecified

Table 6.1: The header of the combined PSDs for PCA analysis in The Unscrambler X. The Average Power
Density per Hz column was used to group objects into sections in Figures 3.11, 3.12, 3.13b and 3.16

The script works on Ubuntu Linux with the imported dependencies installed.

1 import os

2 import glob

3 import pandas

4 import numpy as np

5 from scipy import signal

6 from datetime import datetime

7
8 # raw csv or modified (difference in line number start of file, header_row)

9 raw_csv = True

10
11 # the date that MEA2 was seeded

12 date_seeded = "2016-10-11"

13
14 # simple low pass filter f <= c

15 frequency_treshold = 5000

16
17 # get filenames

18 raw_filenames = sorted(glob.glob('*.csv'))

19
20 # sampling info

21 Fs = 10000 # [1/s] # 10 kHz

22 dt = 1/float(Fs) # [s]

23
24 # create output directory PSD if it doesn't exist

25 if not os.path.exists("PSD"):

26 os.makedirs("PSD")

27
28 # define functions

29 def find_index_of_list_containing_string(l, s):

30 for e in l:

31 if s in e:

32 return l.index(e)
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33
34 def extract_experiment_stimulation(file_to_import):

35 start_string_type_1 = "MEA 2 "

36 start_string_type_2 = "MEA2 "

37
38 if start_string_type_1 in file_to_import:

39 index_start = file_to_import.index(start_string_type_1) + 6

40 elif start_string_type_2 in file_to_import:

41 index_start = file_to_import.index(start_string_type_2) + 5

42 else:

43 raise ValueError('could not find start string patterns in %s' % (file_to_import))

44
45 stop_string = "Recording-0"

46
47 if not stop_string in file_to_import:

48 raise ValueError('could not find stop string pattern in %s' % (file_to_import))

49
50 index_stop = file_to_import.index(stop_string) - 1

51
52 return file_to_import[index_start:index_stop]

53
54 def lies_in_frequency_band(Hz):

55 # return conventional frequency band for Hz

56 # according to neuro science:

57
58 # delta: [0.5, 4>

59 # theta: [4, 8>

60 # alpha: [8, 13>

61 # beta: [13, 30>

62 # gamma: [30, 120>

63 # unspecified: [0, 0.5> or [120, inf>

64
65 # assuming appropriate preprocessing

66
67 if Hz >= 0.5 and Hz < 4:

68 return "delta"

69 elif Hz >= 4 and Hz < 8:

70 return "theta"

71 elif Hz >= 8 and Hz < 13:

72 return "alpha"

73 elif Hz >= 13 and Hz < 30:

74 return "beta"

75 elif Hz >= 30 and Hz < 120:

76 return "gamma"

77 elif Hz >= 0 and (Hz >= 120 or Hz < 0.5):

78 return "unspecified"

79 else:

80 raise ValueError("could not identify frequency band of %i" % Hz)

81
82 def extract_experiment_date(file_to_import):

83 try:

84 index_start = file_to_import.index("/") + 1

85 except ValueError:

86 index_start = 0

87 return file_to_import[index_start:index_start+10]

88
89 def days_between(d1, d2):

90 d1 = datetime.strptime(d1, "%Y-%m-%d")

91 d2 = datetime.strptime(d2, "%Y-%m-%d")

92 return abs((d2 - d1).days) + 1 # regard one day experiment as one day long

93
94 def make_unscrambler_friendly_list(numpy_array_or_list):

95 # converts number into string and replaces . comma with , comma

96 return np.array([ str(number).replace('.',',') for number in numpy_array_or_list ])

97
98 def unmake_unscrambler_friendly_list(numpy_array_or_list):

99 # converts number into string and replaces . comma with , comma

100 strings = [ str(number).replace(',','.') for number in numpy_array_or_list ]

101 return np.array([ np.float64(string) for string in strings ])

102
103 def calculate_signal_duration(L, dt):

104 # return signal duration in seconds using

105 # L: the number of samples in the singal S. len(S)

106 # dt: the periodic time of the sampling. 1/Fs

107 return L*dt

108
109 def calculate_signal_mean(S):

110 return np.mean(S)
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111
112 def calculate_signal_min(S):

113 return np.min(S)

114
115 def calculate_signal_max(S):

116 return np.max(S)

117
118 # --- outer loop start ---

119
120 for experiment_index in range(0, len(raw_filenames)):

121
122 # select experiment index

123 #experiment_index = 0

124
125 # make empty pandas DataFrame to later save to csv file

126 P_pandas_total_df = pandas.DataFrame()

127
128 # chose file to import

129 file_to_import = raw_filenames[experiment_index]

130 print("Experiment info: Select experiment " + file_to_import)

131
132 if raw_csv:

133 header_row = 5

134 elif not raw_csv: # modified 1s samples A-E (TTK19)

135 header_row = 0

136
137 # Load the 61 column file

138 print("Experiment info: Load the experiment")

139 raw_file = pandas.read_csv(file_to_import, sep=",", header=header_row, low_memory=True)

140
141 # Extract header. All colums except timestamp column

142 header = list(raw_file.head(0))[1:]

143
144
145 # --- Inner loop start

146
147 for electrode_index in range(0, len(header)):

148
149 # select electrode index

150 #electrode_index = 0

151
152 # Load the selected column signal

153 print("Electrode info: Select electrode " + header[electrode_index])

154 S = np.array(raw_file[header[electrode_index]])

155
156 # compute length of signal in samples

157 L = len(S) # [#samples]

158 # compute length of signal in seconds

159 signal_duration = calculate_signal_duration(L, dt)

160
161 # compute power spectral density (PSD) with scipy (DFT using FFT)

162 print("Electrode info: Compute PSD")

163 f_fft_scipy, Sxx_fft_scipy = signal.periodogram(S, fs=Fs, scaling="density")

164
165 # downsample PSD so that len(P) ˜ 5000

166 df = f_fft_scipy[1]-f_fft_scipy[0]

167 f_downsampled = f_fft_scipy[::int(1/df)]

168 P_downsampled = Sxx_fft_scipy[::int(1/df)]

169
170 # select subset of colums using

171 # simple low pass filtering using frequency_treshold

172 P_downsampled_selected = P_downsampled[0:frequency_treshold+1]

173 f_downsampled_selected = f_downsampled[0:frequency_treshold+1]

174
175 # convert elements into string 1.2345e-12 format into 1,2345e-12 because of unscrambler

176 P_unscrambler_friendly_list = make_unscrambler_friendly_list(P_downsampled_selected)

177
178 # make pandas series of PDF signal

179 P_pandas_s = pandas.Series(P_unscrambler_friendly_list)

180
181 # make pandas dataframe of P_pandas_s with associated electrode number

182 # removing [pV] part of header string

183 # and adding [pVˆ2/Hz] (Power density in PSD)

184 P_pandas_df = pandas.DataFrame( {header[electrode_index][0:-5] + " [pVˆ2/Hz]" : P_pandas_s} )

185
186 # concatenate the coloumn in P_pandas_df into P_pandas_total_df

187 P_pandas_total_df = pandas.concat([P_pandas_total_df, P_pandas_df], axis=1)

188
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189 # delete things

190 del P_pandas_s

191 del P_pandas_df

192
193 # --- inner loop end, go to next electrode_index

194
195
196 # add other colums with other data and metadata extracted from file_to_import

197
198 # add average PSD per frequency column

199 PSD_averages = np.array([])

200 for row in P_pandas_total_df.itertuples():

201 PSD_average = np.mean(unmake_unscrambler_friendly_list(np.array(row)[1:]))

202 PSD_averages = np.append(PSD_averages, np.array([PSD_average]))

203
204 # convert elements into string 1.2345e-12 format into 1,2345e-12 because of unscrambler

205 PSD_averages_unscrambler_friendly_list = make_unscrambler_friendly_list(PSD_averages)

206
207 PSD_averages_s = pandas.Series(PSD_averages_unscrambler_friendly_list)

208 PSD_averages_df = pandas.DataFrame( {"Average Power Density per Hz [np.mean(P[Hz])]" : PSD_averages_s} )

209
210 # nb adding!

211 P_pandas_total_df = pandas.concat([P_pandas_total_df, PSD_averages_df], axis=1)

212
213
214 # add signal duration column

215 length_time_list = make_unscrambler_friendly_list([signal_duration]*len(P_downsampled_selected))

216
217 l_s = pandas.Series(length_time_list)

218 l_df = pandas.DataFrame( {"Duration [s]" : l_s} )

219
220 # nb adding!

221 P_pandas_total_df = pandas.concat([P_pandas_total_df, l_df], axis=1)

222
223
224 # add total energy of average PSD signal column

225 PSD_averages = unmake_unscrambler_friendly_list(np.array(P_pandas_total_df["Average Power Density per Hz [np.mean(P[Hz])]"]))

226 E_PSD = np.sum(PSD_averages*(Fs/df)) # Fs/df because the PSD was scaled by unit Hz using df

227 E_PSD_list = make_unscrambler_friendly_list([E_PSD]*len(P_downsampled_selected))

228 E_PSD_s = pandas.Series(E_PSD_list)

229 E_PSD_df = pandas.DataFrame( {"Total Energy [sum(Average Power Density per Hz[Hz]*(Fs/df))]" : E_PSD_s} )

230
231 # nb adding!

232 P_pandas_total_df = pandas.concat([P_pandas_total_df, E_PSD_df], axis=1)

233
234
235 # add mean of mean of signals column

236 means = np.array([])

237 for electrode_index in range(0, len(header)):

238 S = np.array(raw_file[header[electrode_index]])

239 means = np.append(means, np.array([calculate_signal_mean(S)]))

240 mean_list = make_unscrambler_friendly_list([calculate_signal_mean(means)]*len(P_downsampled_selected))

241
242 mean_s = pandas.Series(mean_list)

243 mean_df = pandas.DataFrame( {"Signal mean [pV]" : mean_s} )

244
245 # nb adding!

246 P_pandas_total_df = pandas.concat([P_pandas_total_df, mean_df], axis=1)

247
248
249 # add mean of min of signals column

250 mins = np.array([])

251 for electrode_index in range(0, len(header)):

252 S = np.array(raw_file[header[electrode_index]])

253 mins = np.append(mins, np.array([calculate_signal_min(S)]))

254 min_list = make_unscrambler_friendly_list([calculate_signal_mean(mins)]*len(P_downsampled_selected))

255
256 min_s = pandas.Series(min_list)

257 min_df = pandas.DataFrame( {"Signal min [pV]" : min_s} )

258
259 # nb adding!

260 P_pandas_total_df = pandas.concat([P_pandas_total_df, min_df], axis=1)

261
262
263 # add max of signal column

264 maxes = np.array([])

265 for electrode_index in range(0, len(header)):

266 S = np.array(raw_file[header[electrode_index]])
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267 maxes = np.append(maxes, np.array([calculate_signal_max(S)]))

268 max_list = make_unscrambler_friendly_list([calculate_signal_mean(maxes)]*len(P_downsampled_selected))

269
270 max_s = pandas.Series(max_list)

271 max_df = pandas.DataFrame( {"Signal max [pV]" : max_s} )

272
273 # nb adding!

274 P_pandas_total_df = pandas.concat([P_pandas_total_df, max_df], axis=1)

275
276
277 # metadata extracted from the string file_to_import

278
279 # add day number of experiment

280 day_list = make_unscrambler_friendly_list([days_between(date_seeded, extract_experiment_date(file_to_import))]*len(P_downsampled_selected))

281
282 day_s = pandas.Series(day_list)

283 day_df = pandas.DataFrame( {"Day nr. from seeding date " + str(date_seeded) : day_s} )

284
285 # nb adding!

286 P_pandas_total_df = pandas.concat([P_pandas_total_df, day_df], axis=1)

287
288
289 # add date of experiment yyyy-mm-dd

290 date_list = make_unscrambler_friendly_list([extract_experiment_date(file_to_import)]*len(P_downsampled_selected))

291
292 date_s = pandas.Series(date_list)

293 date_df = pandas.DataFrame( {"Experiment date [yyyy-mm-dd]" : date_s} )

294
295 # nb adding!

296 P_pandas_total_df = pandas.concat([P_pandas_total_df, date_df], axis=1)

297
298
299 # add stimulation type

300 stimulation_list = make_unscrambler_friendly_list([extract_experiment_stimulation(file_to_import)]*len(P_downsampled_selected))

301
302 stimulation_s = pandas.Series(stimulation_list)

303 stimulation_df = pandas.DataFrame( {"Stimulation info" : stimulation_s} )

304
305 # nb adding!

306 P_pandas_total_df = pandas.concat([P_pandas_total_df, stimulation_df], axis=1)

307
308
309 # add conventional frequency bands colums, according to neuroscience

310 f_band_list = make_unscrambler_friendly_list([lies_in_frequency_band(int(np.ceil(freq))) for freq in f_downsampled_selected])

311
312 f_band_s = pandas.Series(f_band_list)

313 f_band_df = pandas.DataFrame( {"Frequency band" : f_band_s} )

314
315 # nb adding!

316 P_pandas_total_df = pandas.concat([P_pandas_total_df, f_band_df], axis=1)

317
318
319 # lastly, add "Hz" as header of index column

320 P_pandas_total_df.index.name = "Hz"

321
322
323 # save P_pandas_total_df to csv

324 print("Experiment info: Save to csv")

325 P_pandas_total_df.to_csv("PSD/" + file_to_import[0:-4] + "_PSD_pV_and_filename_metadata.csv", sep=";", encoding="ascii")

326
327 # delete things

328 del PSD_averages_s

329 del PSD_averages_df

330 del l_s

331 del l_df

332 del E_PSD_s

333 del E_PSD_df

334 del mean_s

335 del mean_df

336 del min_s

337 del min_df

338 del max_s

339 del max_df

340 del day_s

341 del day_df

342 del date_s

343 del date_df

344 del stimulation_s
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345 del stimulation_df

346 del f_band_s

347 del f_band_df

348
349 del P_pandas_total_df

350 del raw_file

351
352 # --- outer loop end, go to next experiment_index

353
354 # combine all files in PSD folder

355
356 # get filenames

357 filenames = sorted(glob.glob('PSD/*.csv'))

358
359 # make empty pandas DataFrame to later save to csv file

360 P_pandas_combined_df = pandas.DataFrame()

361
362 for filename in filenames:

363 # Load the csv file

364 print("load " + str(filename))

365 raw_file = pandas.read_csv(filename, sep=";", header=0, low_memory=True)

366
367 # concatenate

368 print("concatenate")

369 P_pandas_combined_df = pandas.concat([P_pandas_combined_df, raw_file], axis=0)

370
371 del raw_file

372
373 # save P_pandas_total_df to csv

374 print("save combined csv")

375 P_pandas_combined_df.to_csv("PSD/combined.csv", sep=";", encoding="ascii", index=False)

376
377 del P_pandas_combined_df
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