
 

 

Ivar Thokle Hovden 

Structural and functional tracking in 
longitudinal magnetic resonance imaging 
of glioblastoma 
 

Thesis submitted for the degree of Philosophiae Doctor 

 

Department of Physics 

Faculty of Mathematics and Natural Sciences 

 

Department of Physics and Computational Radiology 

Oslo University Hospital 

 

 

 

 

 2022 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Ivar Thokle Hovden, 2023 

 

 

Series of dissertations submitted to the  

Faculty of Mathematics and Natural Sciences, University of Oslo 

No. 2602 

 

ISSN 1501-7710 

 

 
All rights reserved. No part of this publication may be  

reproduced or transmitted, in any form or by any means, without permission.   

 

 

 

 

 

 

 

 

 

Cover: UiO. 

Print production: Graphics Center, University of Oslo. 

 

  



iii 
 

Preface 

This thesis is submitted in partial fulfillment of the requirements for the degree of 

Philosophiae Doctor at the University of Oslo. The research presented here was conducted 

at the University of Oslo and at Oslo University Hospital, under the supervision of Kyrre E. 

Emblem and professor Eirik Malinen.  

This work was supported by the European Research Council ERC through grant 758657, the 

Norwegian Research Council through grant 261984 and the South-Eastern Norway Regional 

Health Authority through grant 2017073.  

The thesis is a collection of three papers, presented in chronological order of writing. The 

common theme to them is structural and functional tracking of magnetic resonance imaging 

data of patients with glioblastoma, with the objective to improve the diagnostic and 

prognostic accuracy of the disease. It presents multidisciplinary work involving medical 

physicists, medical doctors, and computer scientists. The candidate has a background from 

technical cybernetics. The papers are preceded by an introductory, aims, background, 

material and methods chapter that relate them to each other and provides background 

information and motivation for the work.  

The first paper is joint work with Oliver M. Geier, Ingrid Digernes, Elies Fuster-Garcia, Grethe 

Løvland, Einar Vik-Mo, Torstein R. Meling and Kyrre E. Emblem, the second paper joint work 

with Elies Fuster-Garcia, Siri F. Svensson, Christopher Larsson, Jonas Vardal, Atle Bjørnerud 

and Kyrre E. Emblem, and the third paper joint work with Elies Fuster-Garcia, Jingpeng Li, 

Atle Bjørnerud, Christopher Larsson, Siri F. Svensson and Kyrre E. Emblem. I am the first and 

corresponding author of the first and third paper, and second author of the second paper. 
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Summary 

Glioblastoma is a deadly type of brain cancer. It is difficult to treat and has a poor prognosis, 

with most adult patients surviving only 12-15 months after diagnosis. Magnetic resonance 

imaging (MRI) scans are essential for diagnosing and treating this disease, but it can be 

challenging to ensure that the scans provide accurate, clinically useful information. 

In this thesis, we investigate methods for improving the accuracy of MRI scans in brain 

cancer treatment. MRI scans use high-resolution structural images to show doctors the 

location and size of a tumor, and they can also be used to track how well a person is 

responding to treatment. In addition, functional MRI techniques, such as measuring cerebral 

blood volume, can provide additional clinical information. 

However, it is not easy to ensure that these imaging modalities, along with advanced 

postprocessing techniques, correctly present the information that doctors need. For 

example, it is important to have anatomically correct and consistent values for assessing the 

blood supply to a tumor, and to be able to track changes in the tumor over time. 

In this thesis, we focus on tracking image intensity and displacement, which we call "voxel 

tracking". This allows us to extract the most anatomically and physiologically correct 

information from MRI scans. We correct for errors in blood perfusion scans, create 

prognostic tissue markers, and create a model of how cancer grows and affects the brain. 

Our research lays the foundation for more advanced studies of brain cancer, and it has the 

potential to lead to more personalized treatment plans for patients with glioblastoma. By 

understanding the details of how the disease progresses, doctors may be able to develop 

tailored treatment plans that are more effective and have better outcomes for patients. 
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Sammendrag 

Glioblastom er en dødelig type hjernesvulst. Den er vanskelig å behandle og har dårlig 

prognose, med en median overlevelse på 12-15 måneder etter diagnose for voksne. 

Magnetresonanstomografi (MR)-skanninger er viktige for å diagnostisere og behandle 

denne sykdommen, men det kan være utfordrende å sikre at skanningene gir nøyaktige og 

klinisk nyttige opplysninger. 

I denne avhandlingen undersøker vi metoder for å forbedre nøyaktigheten av MR-

skanninger i behandling av hjernesvulst. MR-skanninger bruker høyoppløselige bilder for å 

vise legene plasseringen og størrelsen på en svulst, og de kan også brukes for å spore 

hvordan en person responderer på behandlingen. I tillegg kan funksjonelle MR-teknikker, 

som måling av hjernens blodvolum, gi tilleggsinformasjon. 

Det er imidlertid ikke en enkel oppgave å forsikre at disse avbildnings- og 

postprosesseringsteknikkene presenterer den informasjonen legene trenger. Noen 

eksempler på dette er anatomisk korrekte og konsistente verdier for å evaluere en tumors 

blodforsyning, eller å kunne spore endringer i tumor over tid. 

I avhandlingen fokuseres det på å spore intensiteter og forflytninger i bilde, som vi kaller 

“voksel-sporing”. Denne metodologien gir grunnlag for å hente ut mest mulig korrekt 

anatomisk og fysiologisk informasjon fra MR-skanninger. Vi korrigerer feil i 

blodvolumsmålinger, utvikler prognostiske markører basert på forflytninger i vev, og utvikler 

en modell for hvordan kreften vokser og påvirker hjernen. 

Resultater fra denne forskningen legger et grunnlag for å gjennomføre mer avanserte 

studier av hjernekreft. Et potensielt resultat av forskningen er å utvikle mer 

persontilpassede behandlingsforløp for kreftpasienter. Ved å bedre forstå hvordan 

sykdommen utvikler seg, kan legene sette opp mer effektive behandlingsforløp som 

potensielt gir bedre utfall for pasientene. 
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1. Introduction 

Brain cancer is a deadly form of central nervous system (CNS) cancer within the restricted 

space of the skull in the brain leading to poor treatment options and prognosis. Magnetic 

resonance imaging (MRI) is the preferred method for imaging and assessing response from 

all stages of treatment, involving pre-surgical planning, surgery, chemo, and radiotherapy.  

MRI provides excellent tissue contrast for imaging cancer and treatment specific biological 

processes. Some examples are quantification of volume change in delineated regions of 

interest (ROIs), detecting structural deformations from the mass effect of a growing tumor, 

and detecting intensity increase from active tumor regions because of endogenous 

paramagnetic contrast agent (CA) accumulation on T1-weighted post-contrast (T1wc) MRI. 

Two other examples are intensity image increase on T2-weighted (T2w) fluid attenuated 

inversion recovery (T2w-FLAIR) MRI, as well as cerebral blood volume increase on perfusion 

MRI. 

Because brain cancer diagnostics and prognostics depend on these MRI methods, it is 

essential that they provide stable and comparable images and values. The thesis tackles 

such issues by investigating diagnostic and prognostic aspects and utilities of various image 

geometry and intensity correction methods as well as deformable image registration (DIR).  

Using these advanced computational tools to improve patient care requires adequate 

crosstalk between physicists, computer scientists and oncologists to fulfil the needs of the 

oncologists, and to overcome the technical burden of terminology used by physicists and 

computer scientists.  
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The main outcome of this work is an investigation into tracking clinically meaningful imaging 

properties of single series and longitudinal MRI of brain cancer. It provides methodology to 

achieve fine grained analysis of structural and functional changes as function of disease 

progression and treatment response. This may enable better and earlier stratification of 

brain cancer patients into different treatment regimen and thus more personalized 

treatment options. 

2. Aims 

The three publications which are the main scientific contributions in the doctoral work, 

constitute the following aims: 

Paper 1 

Investigate the impact of magnetic susceptibility distortion correction on geometry and 

intensity of cerebral blood volume estimated from perfusion MRI. 

Paper 2 

Develop tissue displacement biomarkers from deformable image registration associated 

with radiological assessment of brain tumor treatment response and overall survival 

prediction. 

Paper 3 

Develop a tumor tissue deformation model for performing parametric evaluations of 

geometric accuracy of deformable image registration methods in brain tumor MRI. 
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3. Background 

3.1. The brain 

The brain is a vital organ that together with the spinal cord forms the CNS. This is where we 

process and interpret thoughts, memory, emotion, touch, motor skills, vision, breathing, 

temperature, hunger, and every process that regulates our body.  

It runs on chemical energy, mostly glucose transmitted through the blood supply, to process 

and make sense of sensory input using combined electrical and chemical signals within and 

across functional tissue of various brain regions. Sensory information such as touch, vision, 

hearing, and smell are transmitted through spinal nerves from either the spinal cord or 

cranial nerves which make up the peripheral nervous system (PNS).  

Some characteristic properties of the brain are hollow-like cavities called ventricles, which 

are filled with a colorless watery fluid called cerebrospinal fluid (CSF). The brain is also 

immersed in this CSF which can flow from the ventricles through special drainage canals. 

The CSF cushions the brain from injury and is constantly being absorbed and replenished. As 

an effect it washes out waste and impurities as well as delivers additional nutrients [1], [2]. 

3.1.1. Brain matter and cellular composition 

The average adult healthy brain is a mass of about 1.4 𝑘𝑔 consisting of approximately 60 % 

fat and 40 % water, protein, carbohydrates and salts [2]–[4]. On a cellular level, its 

composition is mainly formed by nerve (neurons) and glial cells which carries out 

computation and nourishment tasks, respectively. A study found that on average, the 

human brain contains about 86 billion neurons and about the same amount of non-

neuronal cells [5]. A less than 1: 1 ratio of glia to neurons in the entire human brain was also 
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supported in a recent review [6]. The location of these cells, however, depends on brain 

structure and function. Only about 16 billion neurons exist in the cortical gray and white 

matter, with most of the remaining neurons are located in the cerebellum (hindbrain) [5], 

[7]. Cortical gray and white matter may take up as much as 80 % of the total brain volume 

[3], [5]. 

In general, neurons have their cell body (the soma) located in outer layers of the various 

brain regions and structures. This describes the gray matter of the brain. Within the gray 

matter, neurons can pick up messages from other nerve cells from dendrites, over synaptic 

gaps. Neurons transmit signals through long nerve fibers called axons, which connect brain 

regions to each other. These nerve fiber tracts make up the white matter, which is the 

lighter inner section underneath gray matter.  

Some types of glial cells are astrocytes which are involved in numerous functions such as 

blood-brain barrier (BBB), homeostasis and neuronal growth [8], and oligodendrocytes 

which are involved in insulating neuronal axons for faster signal transmission [9]. 

Oligodendrocytes do this by creating and adding a myelin (fat) layer to axons within the 

white matter. The color difference between gray and white matter in the brain mainly arises 

from the whiteness of myelin. Unlike most cell bodies of neurons existing in gray matter, 

their axons exist in both white and gray matter. However, only axons in white matter are 

myelinated. Some other cell types in the brain are endothelial cells [10] (in blood vessels) 

and ependymal cells [11] (in ventricular walls) (Figure 1 [12]). 
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Figure 1: The different types of neurological cell classes (ependymal cells, purple and endothelial 
cells, red)), subpopulations (A=astrocytes, blue; M=microglia, brown; N=neuron, green; 

O=oligodendrocytes, orange), and subcellular locations (axon, dendrite, synapse, and glia endfeet). 
Used with permission from proteinatlas.org. 

3.1.2. Brain structure  

The brain is divided into the cerebrum (main part), cerebellum (hindbrain) and brain stem. 

The cerebrum and cerebellum have a symmetric structure consisting of left and right 

hemispheres. The hemispheres of the cerebrum are connected through a c-shaped nerve 

fiber structure called the corpus callosum. Each cerebrum hemisphere has four distinct 

parts; the frontal, parietal, temporal and occipital lobe as seen in Figure 2 [13]. 
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Figure 2: The major parts of the brain. The colored parts are the cerebrum. Used with permission 
from teachmesurgery.com. 

The outer gray matter of the cerebrum is the cortex (latin for “cork or “bark”), for which 

Figure 3 [14] shows the various cortical regions. The cortex has many ridges (gyri) and folds 

(sulci), which leads to a large total cortical surface within the confined area of the skull. 

Cortical regions are also found along the mid/medial coronal cross section of the brain as 

shown in Figure 4 [14]. Figure 3 and Figure 4 was generated by a recent three-dimensional 

(3D) brain atlas application [15]. Moreover, deep brain structures are further classified into 

subcortical regions, most of which are located within the cerebrum. Gray matter exists also 

in some subcortical regions in deep gray nuclei (Figure 5) [16]. For further description of 

brain structure, see the reference for the Figure 5 [16]. 
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Figure 3: Cortical regions in the left-brain hemisphere. Most of these regions have right-brain 
counterparts. Used with permission from nowinbrain.org. 

 

Figure 4: Mid-sagittal (medial) section, showing the beginning of the right-hemisphere brain. 
Multiple cortical and subcortical regions are shown. Opposed to the cerebellum and brainstem, the 
cerebrum right and left hemisphere consists of gyri and sulci folding inwards before they are joined. 
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Corpus callosum is the main structure connecting the left and right brain hemispheres of the 
cerebrum. Used with permission from nowinbrain.org. 

 

  

Figure 5: Deep gray nuclei embedded into the brain (top) and shown in isolation (bot). Used with 
permission from Springer Nature (License number: 5434900686146) and corresponding author 

(nowinbrain.org). 
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3.1.3. Brain function 

Various brain regions are known to carry out specific tasks [2], [7], [17], [18]. The frontal 

lobes are associated with higher-level functions such as personality characteristics, decision 

making, complex body movement (motor strip), producing speech and short-term memory. 

Occipital lobe is primarily associated with vision, while the parietal lobe is associated with 

interpreting language and words, sense of touch and smell, and spatial and visual 

perception among others. The temporal lobe is associated with language understanding, 

hearing, navigation, and long-term memory among others. Some important subcortical 

regions are hypothalamus for controlling body temperature and hunger, hippocampus (in 

the temporal lobes) for long-term memory and midbrain for hearing and movement control, 

among others. Last, the cerebellum is associated with lower-level functions such as muscle 

movement and posture. 

Language and speech are some of the functions that occur commonly in only one of the 

hemispheres, such as the left hemisphere typically for right-handed people [19]. Also, 

communication between the various regions is necessary in performing some tasks, such as 

speech and learning.  

A neuron-centric description of brain function is that gray matter is responsible for 

processing and interpreting information (through neurons), while white matter transmits 

that information to other parts of the CNS (through axon fiber bundles). Neurons and their 

interconnections are the most essential parts in the computational description of the brain, 

attempting to explain all mental processes known as cognition.  

The brains’ functional characteristics are however not limited to sensory processing by 

neurons. For instance, blood vessels and non-neuronal cells play essential roles in 
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nourishment, protection, and structural support. Much is yet to be discovered about the 

brain. The glymphatic system [1] is another example of brain function which was recently 

classified as a system for waste clearance in the CNS [20]. 

3.1.4. Eloquent areas 

In treatment such as neurosurgery, it is important to avoid damage to areas that are 

essential for the kinds of functional sensory processing described previously. An eloquent 

area or eloquent cortex is a region that, if removed, will result in loss of sensory processing, 

or linguistic ability, or paralysis [21], [22]. The most common eloquent areas are in the left 

temporal and frontal lobes. Some examples are Wernicke’s area of speech comprehension 

in the temporal lobe, and Broca’s area of speech production in the frontal lobe. Moreover, a 

surgeon must make sure to not damage important axon fiber bundles between regions. 

3.1.5. Conventional imaging planes 

Like other tomographic medical imaging techniques, brain MRI follows conventions in axial, 

sagittal and coronal sections as illustrated in Figure 6. The most common image view is the 

axial view of a brain (termed “horizontal section” in Figure 6), which typically shows the 

characteristic symmetric brain structures. 
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Figure 6: Conventions in brain imaging planes and naming. Used with permission from My-MS.org. 

3.1.6. Imaging brain structure and function 

There are various techniques for imaging brain structure and function, such as MRI, 

computed tomography (CT) and positron emission tomography (PET). The thesis focuses on 

MRI, which will be described later. Most of these techniques image tissue on a macroscopic 

level due to limitations in spatial resolution (0.5 to 5 𝑚𝑚3). They are generally non-invasive 

methods, meaning that no physical procedure (such as surgery) is necessary for imaging. 

Intravenous injection of a CA is common to increase image contrast in regions where it 

accumulates, which then makes the imaging method an invasive method. 

3.1.6.1. Imaging brain structure 

T1w MRI directly presents gray matter as having lower intensity values (are grayer) than the 

white matter regions. This is a result of differences in 𝑇1 relaxation times whereby grey 

matter exhibit longer 𝑇1-times than white matter. The concept of relaxation times and 
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weighting in MRI is explained in section 3.3.3 and 3.3.4, respectively. Typically, various 

combinations of T1w and T2w in MRI result in imaging the brain structure of interest, which 

may involve imaging with an intravenous MR active (paramagnetic) compound (=CA) to 

highlight pathology such as tumors. This is due to the fact the CA tends to accumulate in 

regions with cancerous tissue, for reasons such as disrupted BBB and abnormal vessel 

formation (angiogenesis). Moreover, diffusion tensor imaging (DTI) based tractography is an 

advanced technique to map and track the white matter axon fiber bundles, which is useful 

in surgical planning. This kind of tracking is not investigated in the thesis. The structural 

tracking methods addressed in the thesis focuses on tracking and interpreting intensity 

values and displacement of signal as seen on high-resolution MRI that are of clinical interest 

(such as structural deformations) from longitudinal MRI of cancer progression and 

treatment follow-up. 

3.1.6.2. Imaging brain function 

Functional imaging typically acquires images with lower spatial resolution than structural 

imaging due to the requirement for high temporal resolution. Blood oxygenation level 

dependent (BOLD) imaging is the most common functional MRI technique where small 

variations in blood oxy/deoxygenation levels related to sensory or auditory processing is 

detected based on their differential magnetic susceptibility (deoxygenated hemoglobin is 

paramagnetic and oxygenated hemoglobin is diamagnetic) [23]. This is called the 

hemodynamic response resulting from delivering nutrients (like oxygen and glucose) to 

neuronal tissue through blood flow. BOLD fMRI may be applied to determine eloquent areas 

prior to surgical removal of brain tumors [24], [25]. Electroencephalography (EEG) [26] and 

Magnetoencephalography (MEG) [27] are two complementary non-invasive techniques for 



13 
 

directly recording electric and magnetic field potentials, respectively, resulting in higher 

temporal resolution signals than BOLD fMRI. EEG and MEG are not imaging methods but 

may accompany medical imaging to further elucidate brain function. The functional side of 

brain cancer MRI is not focused on direct imaging of cognitive processes, but rather on 

imaging vascular properties of the brain and disease that may aid diagnostics and 

treatment. One such method, blood perfusion MRI, is the functional imaging method 

investigated in the thesis. Here, the consistency of cerebral blood volume (CBV) values from 

perfusion MRI during geometric susceptibility distortion correction, is investigated through 

careful tracking their pixel-wise intensity value and displacement. 

3.2. Brain cancer 

Brain cancer is cancer in the CNS characterized by various abnormalities in cell growth and 

death occurring within the brain, either as primary tumors where the cancer originates from 

cells within the brain, or as secondary tumors originating from cancer in other parts of the 

body and then spreading to the brain and forming secondary tumors as metastases [28]. 

Glioblastoma, the main type of cancer investigated in the thesis, is the most common and 

most deadly type of primary brain tumor in adults [29]. 

3.2.1. Incidence 

Although incidence is low compared to other types of cancers [30], brain and other CNS 

tumors are among the leading causes of cancer deaths for young adults with only one-third 

of individuals surviving at least 5 years after diagnosis [31], [32]. The overall age-adjusted 

incidence rate (AAIR [33]) of glioblastoma in the United States is 3.22/100000 persons and 

increases with age. Moreover, the 5-year relative survival varies by age at diagnosis and by 

sex (Figure 7 [29]). 
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Figure 7: Age distribution of incidence (A) and 5-year relative survival probability (B) of Glioblastoma. 
Used with permission from Oxford University Press and corresponding authors (License number: 

5431381256692). 

In general, AAIR of malignant brain and other CNS tumors are higher in western and 

European countries than in other parts of the world (roughly 𝐴𝐴𝐼𝑅/100000 ~6 vs. ~3), and 

dominated by astrocytic tumors in males [31], [34]–[36]. Moreover, cancers in other parts of 

the body such as lung cancer with ~7 times higher incidence than primary CNS tumors in 

2020 [30], may also contribute to increased mortality of CNS tumors when causing 

secondary brain tumor metastases.  

3.2.2. Characterization and grading 

There are more than 100 different subtypes of CNS tumors, of either malignant or benign 

type [37]. Gliomas consist of multiple subtypes of astrocytic tumors originating from glial 

cells of the brain and make up approximately 80 % of all malignant brain tumors. They are 

the most common primary CNS brain tumors [38]. Of gliomas, glioblastoma is the most 

aggressive type, and it compromises of approximately 57 % of all gliomas and 48 % of all 

primary malignant CNS tumors [39].  
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The 2016 World Health Organization (WHO) guidelines [37], [40] uses a combination of MRI, 

histopathological and molecular features for CNS tumor characterization, which typically 

involves determining the presumed cell of origin and a grade of aggressiveness (I-IV) 

together with various genotype and phenotype markers. Grade III and IV gliomas are 

commonly referred to as high-grade gliomas (HGG), with grade IV being a glioblastoma. The 

grade of aggressiveness of a glioma is traditionally determined by comparing cells of origin 

with different levels of tumor cell differentiation on light microscope of histology tissue 

samples. An important molecular feature is mutation in the gene coding for the enzyme 

isocitrate dehydrogenase (IDH), to further distinguish subtypes of glioma. In general, the 

prognosis of an IDH-mutant glioma is better than the IDH wild-type counterpart.  

The 2021 WHO guidelines [41] consist of revised tumor characterization and grading by 

incorporating additional genetic parameters, such as telomerase reverse transcriptase 

(TERT) gene promoter mutation or epidermal growth factor receptor (EGFR) gene 

amplification for identifying IDH-wild-type glioblastoma. Roman numerals describing tumor 

grade (I-IV) is also revised to using Arabic numerals (1-4) to eliminate possible misdiagnosis 

from typographical errors. Another important revision is eliminating the term IDH-mutant 

glioblastoma in favor of IDH-mutant astrocytoma. Further descriptions of the 2016 and 2021 

WHO grading systems and their differences for glioma grading, can be found in this recent 

thesis [42]. Due to limited molecular data for our patients, our data is described in line with 

the 2016 WHO guidelines.  

3.2.3. Treatment 

The standard treatment for glioblastoma is known as the Stupp regimen [43] and consists of 

tumor resection (stereotactic surgery) followed by stereotactic radiation therapy and 
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concomitant and adjuvant chemotherapy (CRT with temozolomide (TMZ)). Stereotactic 

(word roots stereo- meaning “solid” and -taxis meaning “arrangement”), here refers to the 

use of a three-dimensional coordinate system to accurately locate small targets inside the 

brain. Still, this treatment leads to a dismal median overall survival of 12 − 15 months with 

less than 5 % of all patients surviving 5 years after diagnosis [44]–[46]. High quality imaging 

methods are important to ensure the best suited treatment regimen and follow-up, and 

thereby highest possible quality of life for the patient. Maximal surgical resection of the 

tumor according to high intensity regions on T1wc MRI is the standard practice and 

associated with survival benefits [47]. However, resecting also larger regions with high 

intensity value on T2w-FLAIR surrounding the high intensity T1wc regions may also lead to 

increased survival [48]. Biopsies may be collected both before and during treatment for 

optional histopathological assessment [49]. 

3.2.4. Presentation on MRI 

On T1wc MRI, a glioblastoma usually presents as an irregularly shaped mass with a dense 

hyperintense ring of enhancement, and with a hypointense center of necrosis (Figure 8 and 

Figure 9). The supplementary files animation.mp4 and animation-multi.mp4 provided with 

the thesis, visualize longitudinal T1w, T1wc, T2w and T2w-FLAIR for the patient in Figure 9. 

They are also available at the following URLs (as accessed December 3rd, 2022): 

https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/animation.mp4 

https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/animation-multi.mp4 

To further visualize the disease, the supplementary file rbf-interp-animation.mp4 

approximates a smooth time evolution of the T1wc scans as will be explained later. It is also 

https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/animation.mp4
https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/animation-multi.mp4
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available at the following URL (as accessed December 3rd, 2022): 

https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/rbf-interp-

animation.mp4 

 

Figure 8: Time-lapse of contrast enhanced T1w MRI of standard treatment of glioblastoma with 
infiltrative recurrence. A 47-year-old male with confirmed glioblastoma received stereotactic surgery 
for removal of most of the tumor tissue at day 0 (not shown). About four weeks later (day ~28), the 

post-surgical cavity in the left temporal lobe was visible and surrounded by contrast enhancement of 
excess or new tumor tissue. Repeated chemoradiotherapy (CRT) and imaging presented shrinkage of 

the tumor cavity and surrounding regions (days 46 and 73 at completion of CRT). Then following 
chemotherapy with temozolomide (TMZ) only presented images with infiltrative recurrence with 
edema (day 158) and with contrast enhancement (day 326). Some tissue deformations were also 
seen in subcortical regions such as the basal ganglia and midbrain. Overall survival for this patient 

was around 16 months (480 days). This is subject nine from our second cohort (SAILOR, MRI 
1,2,4,6,8). 

 

Figure 9: Time-lapse of contrast enhanced T1w MRI of standard treatment of glioblastoma with 
strictly nodal (“pushing”) phenotype. A 64-year-old female with confirmed glioblastoma received 

stereotactic surgery for removal of most of the tumor tissue at day 0 (not shown). About four weeks 
later (day ~28), the post-surgical cavity in the left temporal lobe was visible and surrounded by 
contrast enhancement of excess or new tumor tissue. Repeated chemoradiotherapy (CRT) and 

imaging presented expansion of the tumor cavity resulting in compression of surrounding tissue 
regions (days 41 and 70 at completion of CRT). Then following chemotherapy with temozolomide 

(TMZ) images further showed cavity expansion, compression of surrounding tissue and edema (days 
104 and 132). Overall survival for this patient was around 33 months (990 days), which may indicate 
that the treatment response and tumor recurrence represented pseudoprogression. This is subject 

one from our second cohort (SAILOR, MRI 1,2,4,5,6). 

https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/rbf-interp-animation.mp4
https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/rbf-interp-animation.mp4
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The tumor may also be surrounded by vasogenic edema, hemorrhage, and ventricular and 

midline shifts [44], [46]. Figure 9 presents midline shift as well as edema as dark peritumoral 

regions in T1wc MRI. In addition, T2w and T2w-FLAIR MRI are usually hyperintense at 

pathology such as edema (Figure 10). Tumoral and peritumoral CBV may provide additional 

clinical information in follow-up of glioblastoma such as prediction of survival and cancer 

progression [50], or differentiation of glioblastoma and brain metastasis [51]. One or more 

of T1w, T1wc, T2w, T2w-FLAIR and CBV MRI (Figure 9) are thus frequently used together as 

follow-up scans during standard treatment of glioblastoma. 

 

Figure 10: Various sequences in brain cancer MRI. GBCA: Gadolinium-based contrast agent, CBV: 
Cerebral blood volume. Overlaid in red is a segmentation mask of the hyperintense regions from 

accumulation of GBCA on T1w (upper row, middle). Normal appearing white matter regions (lower 
row, right) is used to normalize CBV maps. 

3.2.5. Treatment response assessment 

3.2.5.1. RANO 

Response Assessment in Neuro-Oncology (RANO) is a consensus for how to categorize 

treatment response of HGG into the classes complete response, partial response, stable 
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disease and progression [52] as shown in Table 3. In general terms, response is working 

treatment leading to less cancer, while progression is the opposite leading to more cancer.  

At its core, the assessment is performed at some time point during treatment by measuring 

the length of the two longest perpendicular diameters of the contrast enhanced tumor at a 

two-dimensional T1w scan, then computing the product of the diameters. This product is 

then compared to the corresponding product from a pretreatment baseline scan to 

determine response, and to the smallest product (at either baseline or a later time point) to 

determine progression. The required pretreatment baseline scan must be performed shortly 

after surgery, but before initiation of concomitant and adjuvant CRT. 

Percentage thresholds of change of the products as well as complementary and clinical 

information are used in the assessment. Measuring perpendicular diameters of contrast 

enhanced tumor is not always feasible for reasons such as presence of cystic or necrotic 

tumor, surgical cavities, or lack of disruption of the BBB. RANO imposes guidelines for 

handling such cases by distinguishing between measurable and non-measurable lesions 

[52], [53]. A highly infiltrative tumor may for instance be non-measurable from lack of 

contrast enhancement on T1wc scans but still presenting as large regions on T2w or T2w-

FLAIR scans. RANO classification is difficult for this scenario. Some other important clinical 

factors used in RANO are usage of corticosteroids and general clinical (Karnofsky 

performance) status [54] of the patient.  
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Table 3: Response Assessment in Neuro-Oncology (RANO) criteria. 

Response Criteria 

Complete response Requires all of the following: complete 
disappearance of all enhancing measurable 
and nonmeasurable disease sustained for 
at least 4 weeks; no new lesions; no 
corticosteroids; and stable or improved 
clinically 

Partial response Requires all of the following: ≥  50 % 
decrease compared with baseline in the 
sum of products of perpendicular 
diameters of all measurable enhancing 
lesions sustained for at least 4 weeks; no 
new lesions; stable or reduced 
corticosteroid dose; and stable or improved 
clinically 

Stable disease Requires all of the following: does not 
qualify for complete response, partial 
response, or progression; and stable 
clinically 

Progression Defined by any of the following: ≥  25 % 
increase in sum of the products of 
perpendicular diameters of enhancing 
lesions; any new lesion; or clinical 
deterioration 

 

Presence of pseudoprogression and complex tumor behavior from novel and advanced 

treatment such as immunotherapy challenge the accuracy of RANO. It is likely that more 

robust methods such as automatic volumetric measurements and analysis from 

segmentation pipelines [55], [56] will replace RANO in the future. No patients in the 

longitudinal exams used in the second publication (our second cohort) experienced a 

complete response from the standard treatment. Here the following combined 

RANO+pseudoprogression classes were used instead; stable disease, pseudoprogression, 

partial response and progression. More information about our second cohort can be found 

in original data sources [50], [57]. 
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3.2.5.2. Progression vs. pseudoprogression 

Pseudoprogression is a type of classification of treatment response where it is not possible 

to distinguish between true (early) progression of the cancer and treatment effects (from 

e.g. radiation) on conventional follow-up MRI of glioblastoma [58], [59, p. 1]. One such 

scenario is when it is difficult to determine whether an intensity increase in the T2w-FLAIR 

image is caused by an increase in amount of cancer cells (thereby progression of non-

enhancing tumor), or by inflammatory effects of the chemo- and radiotherapy 

(pseudoprogression) [60], [61]. Or, detecting intensity increase from CA accumulation in 

T1wc MRI that is not caused by cancer progression (enhancing tumor) but likely by 

increased permeability of the tumor vasculature from irradiation [52]. Mass effect, 

peritumoral edema, and CA enhancement due to BBB breakdown may appear in both 

progression and pseudoprograssion on conventional MRI [62]. Figure 9 illustrates a likely 

case pseudoprogression in our second cohort, partly due to the long survival of this patient. 

Genetic data and fine-grained analysis of changes associated with the disease and treatment 

on conventional and advanced MRI as well as on histopathological images, may lead to 

insights for better distinguishing progression from pseudo-progression. Methylated O-6-

methylguanine-DNA methyltransferase (MGMT) promoter methylation status has been 

valuable for this task [63], [64]. Some other valuable features are T1wc contrast-enhanced 

and T2w/T2w-FLAIR edema tumor shapes from radiomics analysis on conventional MRI [65], 

as well as histopathological radio-phenotypic signatures [58]. Advanced MRI techniques 

such as perfusion, diffusion and spectroscopic MRI have also proven useful in distinguishing 

progression from pseudoprogression [66]. For instance, relative CBV from dynamic 

susceptibility contrast (DSC) perfusion MRI studies have been reported to be significantly 
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lower in radiation-induced brain injury (pseudoprogression) than in glioma recurrence 

(progression) groups [67]–[69]. However, these are controversial results [69], [70]. 

Incorporating diffusion and perfusion MRI into a radiomics model also led to improved 

diagnostic performance for identifying pseudoprogression [71]. 

3.3. MRI physics 

Medical MRI [72], [73] is a mainly non-invasive imaging method that exposes a near field 

magnetic interaction between tissue and external magnetic fields, to capture signals that 

are proportional to the proton density at various locations in the tissue. This interaction is 

called nuclear magnetic resonance (NMR), which is based on the fact that certain atomic 

nuclei with non-zero angular momentum (spin) absorb and re-emit electromagnetic 

radiation when exposed to a magnetic field [74], [75]. One such atomic nucleus is the single 

proton contained inside the hydrogen atom, which in the body is well represented in water 

(𝐻2𝑂). This section provides a short introduction to the physics of MRI, such as weighting 

and pulse sequences. The book by Vlaardingerbroek et al. [73] is provided as reference to 

this section, unless a reference is explicitly given at the end of a sentence. 

3.3.1. Spinning protons 

Varying concentration of water (and to a lesser extent lipids) in tissue is responsible for 

making up the MRI signal. A spinning proton has a magnetic dipole moment which is a 

vector quantity that is defined by its spin. When experiencing magnetic induction through a 

magnetic vector field 𝑩, a proton is capable of spinning in either a low or high energy 

quantum state with the magnetic dipole moment vector aligned either parallel or 

antiparallel to 𝑩. This effect is best seen in a static uniform magnetic field (𝑩 = 𝑩0). The 

angular frequency of the spin 𝜔 (the Larmor frequency), is proportional to the magnetic 
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field 𝑩 according to 𝜔 = 𝛾𝑩 (Larmour equation), where 𝛾 is the gyromagnetic ratio. This is 

called Larmour precession. 

3.3.2. Transversal magnetization 

The basic principle of MRI is to control, spatially localize and record net proton spin 

densities by utilizing Larmour precession using spatially encoding spin dephasing magnetic 

field gradients and additional sender and receiver coils for emitting and receiving 

radiofrequency (RF) signals. When only exposed to a strong magnetic vector field 𝑩 (e.g., 3 𝑇𝑒𝑠𝑙𝑎), protons are aligned in their low energy (equilibrium) state and not emitting 

electromagnetic radiation. However, when a well-defined sequence of RF excitation pulses 

with intrinsic frequency equal to the Larmor frequency for a given spatial location, is 

emitted through a transversal (orthogonal) weaker dynamic magnetic field, net proton spins 

are knocked out of their equilibrium state. A net transversal spin magnetization vector field 𝑴𝑇  can then be recorded by induced currents in orthogonal receiver coils during the 

timespan that the spins return to equilibrium. This process is called relaxation.  

3.3.3. Relaxation 

Let 𝒊, 𝒋, 𝒌 be the orthonormal basis vectors of three-dimensional 𝑥, 𝑦, 𝑧 space, i.e. 𝒊 =[1 0 0]𝑇, 𝒋 = [0 1 0]𝑇 and 𝒌 = [0 0 1]𝑇. The Bloch equations [74], [76] describe 

the relation between the magnetic field (flux density) 𝑩, total spin magnetization 𝑴 and 

transversal (𝑇2) and longitudinal (𝑇1) relaxation time constants according to 

𝑑𝑀𝑥𝑑𝑡 = 𝛾(𝑴 × 𝑩)𝒊 − 𝑀𝑥𝑇2 = 𝛾(𝑀𝑦𝐵𝑧 − 𝑀𝑧𝐵𝑦) − 𝑀𝑥𝑇2  

(3.1) 
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𝑑𝑀𝑦𝑑𝑡 = 𝛾(𝑴 × 𝑩)𝒋 − 𝑀𝑦𝑇2 = 𝛾(𝑀𝑧𝐵𝑥 − 𝑀𝑥𝐵𝑧) − 𝑀𝑦𝑇2  

(3.2) 𝑑𝑀𝑧𝑑𝑡 = 𝛾(𝑴 × 𝑩)𝒌 + 𝑀0 − 𝑀𝑧𝑇1 = 𝛾(𝑀𝑥𝐵𝑦 − 𝑀𝑦𝐵𝑥) + 𝑀0 − 𝑀𝑧𝑇1  

(3.3) 𝑇1 and 𝑇2 are tissue-specific constants and MRI sequences (a given combination of RF 

pulses, magnetic gradients and received coil signal readouts) can be designed to maximize 

image contrast between different tissues of interest. Broadly speaking, 𝑇1 results from 

thermal agitation while 𝑇2 results from nuclear interactions. The relaxations occur 

exponentially and during Larmor precession and for which the solutions to the Bloch 

equations are 

𝑀𝑥(𝑡) = 𝑒− 𝑡𝑇2[𝑀𝑥(0) cos(𝜔0𝑡) + 𝑀𝑦(0)sin (𝜔0𝑡)] 

(3.4) 𝑀𝑦(𝑡) = 𝑒− 𝑡𝑇2[𝑀𝑦(0) cos(𝜔0𝑡) − 𝑀𝑥(0)sin (𝜔0𝑡)] 

(3.5) 𝑀𝑧(𝑡) = 𝑀𝑧(0)𝑒− 𝑡𝑇1 + 𝑀0(1 − 𝑒− 𝑡𝑇1)  
(3.6) 

Equilibrium is found with 𝑡 → ∞ where 𝑀𝑥(∞) = 𝑀𝑦(∞) = 0 and 𝑀𝑧(∞) = 𝑀0. 𝑇1 

relaxation is called spin-lattice relaxation since 𝑇1relaxation ends in thermodynamic 

equilibrium with its surroundings (the “lattice”). Comparingly, 𝑇2 relaxation is called spin-

spin relaxation since it is caused by the spins interacting with each other, leading to 

dephasing.  
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In practice, spins are also phase distorted due to inhomogeneities in the magnetic field (Δ𝐵) 

caused by internal and external factors. In general, external factors are related to the 

scanner itself, while internal factors are related to the imaged object. Some external factors 

may be various scanner imperfections such as static field inhomogeneities [77], poor RF coil 

uniformity or eddy currents from switching gradients, which can be corrected for by 

shimming techniques and specialized imaging sequences, etc., as reviewed elsewhere [78]. 

Moreover, the N4 algorithm is a popular preprocessing method for correcting for intensity 

inhomogeneities in the image arising due to such a bias field [79]. Some examples of 

internal factors are presence of high water density, air and iron leading to rapid spatial 

transitions in magnetic susceptibility. Correction for distortions caused by factors of the 

imaged object may be more challenging than correcting distortions caused by external 

factors, since the extent of distortions increases linearly with field strength according to the 

Larmor equation. The field inhomogeneities leads to the more rapid 𝑇2∗ relaxation, which is 

called free induction decay (FID). It can be decomposed into  

𝑅2∗ = 1 𝑇2∗⁄ = 1 𝑇2⁄ + 1 𝑇2′⁄  

(3.7) 

where 𝑇2′ is affected by Δ𝐵. 

For a visual demonstration video of relaxation and the associated 𝑇1, 𝑇2 and 𝑇2∗ time 

constants, see the supplementary video file Proton_spin_MRI.webm. It is also available at 

the following URL (as accessed November 18th, 2022): 

https://upload.wikimedia.org/wikipedia/commons/1/11/Proton_spin_MRI.webm  

https://upload.wikimedia.org/wikipedia/commons/1/11/Proton_spin_MRI.webm
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3.3.4. 𝑻𝟏 and 𝑻𝟐 weighting 

In case of a two-dimensional image acquisition sequence with a slice-selective magnetic z-

gradient applied to only collect transversal magnetization from a single slice of tissue, the 

total recorded data may be regarded as snapshots of this relaxation process (for a selected 

time 𝑡 leading to a particular “weighting” of 𝑇1 and 𝑇2 in the image). Thus, the timing of 

acquisition during these relaxation processes, combined with tissue specific relaxation 

constants 𝑇1 and 𝑇2, determines the amount of 𝑇1 and 𝑇2 weighing in the MRI.  

The two most basic parameters for timing acquisition of snapshots (or “echoes”) during 

relaxation processes are repetition time (TR) and echo time (TE). These are integral parts of 

the RF pulse sequence. An effective image acquisition results in complex transversal 

magnetization values that were recorded from multiple repeated relaxation processes in a 

reference frame rotating around the z-axis (i.e. 𝑴𝑇 = 𝑴𝑥𝑦). The selection of TR and TE 

affects the weighting [80] of the tissue specific 𝑇1 and 𝑇2 relaxation constants after applying 

a 90 degree RF pulse according to 

|𝑴𝑇| ∝ 𝑀0(1 − 𝑒−𝑇𝑅𝑇1 )𝑒−𝑇𝐸𝑇2  

(3.8) 

T1w MRI is achieved when TR is short relative to the various 𝑇1 tissue constants so that the 

degree of longitudinal magnetization recovery is highly tissue dependent. TE affects the 

degree of T2w MRI similarly. The most dominating weighting is used to describe the image. 

Compared to T1w, T2w is known to better express intensity differences outlining pathology, 

but T2w also presents homogenous and high intensity values in fluid regions. T1w and T2w 

MRI are typically high-resolution structural images, depending on the pulse sequence 

(Figure 10). 
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3.3.5. k-space frequency domain 

For two-dimensional (2D) MRI, the total recorded transversal magnetization is the 

composite magnetization from all spatial positions in the 2D slice. The degree of frequency 

and phase modulation is position dependent (through use of magnetic gradients), and the 

resulting complex spatial frequency domain is named k-space [81] and can be written as 

𝑴𝑇(𝑘𝑥, 𝑘𝑦) = 𝑀𝑥(𝑘𝑥, 𝑘𝑦) + 𝑗𝑀𝑦(𝑘𝑥, 𝑘𝑦) 

(3.9) 

where 𝑗 is the imaginary unit. 

 𝑴𝑇  contains signals that are induced in receiver coils and are naturally in the complex 

spatial frequency domain if additional time-varying spin dephasing magnetic field gradients 

are used to restrict the signals to specific locations in the tissue and k-space. In particular, 

the signals induced in the receiver coils are called “echoes” and they are initiated by either 

RF pulses directly (spin echo (SE)) or by specific time-varying field gradients (gradient echo 

(GE)) in the pulse sequence. An MRI scan typically acquires signals from SE or GE. 

3.3.6. Spin echo and gradient echo 

These are the essential building blocks of a pulse sequence. RF pulses centered at the 

Larmor frequency knocks spins out of equilibrium to precess with a certain angle around the 

field direction. Slice, phase, and frequency (readout) encoding magnetic field gradients are 

then utilized to encode echo signals to various z-slices, as well as to various x and y- 

locations of k-space, respectively. 

A SE is initiated by a 90-degree RF pulse under the influence of a slice-selective gradient. 

This leads to transversal magnetization (an echo) that gets phase encoded to a y-location in 
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k-space. An additional 180-dergree RF pulse is then applied on the same slice, which leads 

to re-focusing away most unwanted spin phase distortion from Δ𝐵. After a designated TE, a 

new echo forms that is read into a single horizontal line of k-space with a frequency 

encoding gradient. A spin echo thus contains only the 𝑇2 component of spin-spin relaxation 

(Figure 11). 

 

Figure 11: The spin-echo pulse sequence diagram (left) and corresponding k-space acquisition (right). 𝑅𝐹: radiofrequency pulses and echo, 𝐺𝑧: slice-selective (phase-encode) gradient, 𝐺𝑥: frequency-
encode gradient, 𝐺𝑦: phase-encode gradient, 𝑘𝑥: x-axis in k-space controlled by 𝐺𝑥, 𝑘𝑦: y-axis in k-

space controlled by 𝐺𝑦. A spin-echo is induced by 1. a slice-selective RF pulse, 2. frequency and 

phase-encode gradients to control the spin orientation to certain locations in k-space, 3. a 180-
degree slice-selective 𝑅𝐹-pulse, then 4. a frequency-encode gradient during formation of the spin 
echo. The 180-degree RF pulse removes unwanted dephasing among the spins, which achieves a 
T2w transversal magnetization. This will record the echo as a single horizontal like in k-space. In 

addition to containing a specific T1w, the resulting echo will contain T2w transversal magnetization 
due to the 180-degree pulse. Used with modifications and permission from E. Grøvik. 

The GE is induced more directly using a RF pulse with variable flip angle and similar slice and 

phase-encode gradients to the SE. Here, a small opposite sign frequency gradient is applied 

just before formation of the echo, to ensure that the echo is read into a complete horizontal 
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line in k-space. For SE, the same effect is achieved with the 180-degree RF-pulse. GE has no 

re-focusing RF-pulse, so it reads the raw 𝑇2∗ (FID) signal (Figure 12). 

 

Figure 12: The gradient-echo pulse sequence diagram (left) and corresponding k-space acquisition 
(right). 𝑅𝐹: radiofrequency pulse and echo, 𝐺𝑧: slice-selective (phase-encode) gradient, 𝐺𝑥: 

frequency-encode gradient, 𝐺𝑦: phase-encode gradient, 𝑘𝑥: x-axis in k-space controlled by 𝐺𝑥, 𝑘𝑦: y-

axis in k-space controlled by 𝐺𝑦. A gradient-echo is induced by 1. a slice-selective RF pulse, then 2. 

frequency and phase-encode gradients to control the spin orientation to certain locations in k-space, 
then 3. a frequency-encode gradient during formation of the gradient echo. This will record the echo 
as a single horizontal like in k-space. In addition to containing a specific T1w, the resulting echo will 

contain (FID) T2*w transversal magnetization. Used with modifications and permission from E. 
Grøvik.  

3.3.7. Pulse sequence 

An inherent challenge in MRI is to record as much as possible of transversal magnetization 

in reasonable time, while also spatially encoding the signals so that an image can be 

reconstructed with enough spatial resolution. This is the task of the MRI pulse sequence and 

is characterized by the way k-space data is acquired. It consists of repetitive applications of 

RF pulses and magnetic field gradients to achieve and record either spin or gradient echoes. 
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As illustrated in Figure 11 and Figure 12, k-space encoding is achieved by applying additional 

spatial gradients on the magnetic field. Not only the strength but also the time-duration of 

the applied magnetic field gradient 𝐺 dictates where to spatially localize spin densities and 

their corresponding entries in k-space. Hence the 𝑘-variables in equation (3.9) are expressed 

in forms of the time integrals 

𝑘 = 𝛾 ∫ 𝐺(𝜏) 𝑑𝜏𝑡
0  

(3.10) 

In general, a pulse sequence has certain TR and TE values resulting in specific formation of 

T1w and T2w echoes. 

3.3.8. Spatial image domain 

For three-dimensional MRI, the final imaging volume 𝐼 (in complex form) is the inverse 

Fourier transform [82] of k-space as follows 

𝐼(𝑥, 𝑦, 𝑧) = 12𝜋 ∭ 𝑴𝑇(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)𝑒𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧) 𝑑𝑘𝑥𝑘𝑥𝑘𝑦𝑘𝑧 𝑑𝑘𝑦𝑑𝑘𝑧 

(3.11) 

where 𝑴𝑇  is the k-space encoded transversal magnetization for all z-slices of the imaged 

object. Note that for three-dimensional MRI, phase encoding is applied in two dimensions, 

where the second phase encoding direction replaces the slice selection gradient used for 

two-dimensional MRI. An intensity image is found by taking the complex modulus of 𝐼. 
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3.3.9. Contrast agent 

The pulse sequence acquisition may be accompanied by intravenous injection of a 

Gadolinium (Gd) based CA (GBCA) targeted to alter the intensity values in or around tissue 

where is it present. This is due to GBCA having paramagnetic properties, which leads to both 

shorter 𝑇1 and 𝑇2 relaxation times [83], [84]. Consequently, T1w MRI with BGCA increases 

the image intensity values in regions where the CA is accumulated. T1w MRI with GBCA 

typically reveals active tumor regions since the CA tends to accumulate in regions with 

disrupted BBB associated with active tumor. The corresponding intensity decrease arising 

due to 𝑇2 shortening is usually smaller than the intensity increase that arise due to 𝑇1 

shortening [83, p. 2], [84]. Post-contrast T2w and T2*w MRI is investigated in the thesis in 

terms of perfusion MRI. Here, the shorter 𝑇2 and 𝑇2∗ relaxation times are ideally caused by 

the intravascular GBCA bolus passage [85], leading to a dynamic susceptibility contrast 

(DSC). If the  𝑇2 and 𝑇2∗ relaxation times are additionally affected by CA accumulation, a 

specialized leakage correction method is needed. This will be described in the next section. 

3.3.10.Advanced MRI 

There exist specialized MRI pulse sequences developed for maximizing image contrast 

differences in tissue and regions that are of medical interest.  

3.3.10.1. Fluid-attenuated inversion recovery 

FLAIR is a specialized MRI sequence for suppressing the signal in T1w or T2w images 

originating from pure fluids such as CSF. In simplest form, the technique flips the 

longitudinal magnetization vector of spins and reads transversal magnetization with 

appropriate timing (inversion time (TI)) such that known magnetization for CSF is zero at 
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image readout. Water-like CSF is thus dark in T2w-FLAIR images whereas pathological tissue 

associated with edema remains bright, thereby improving the conspicuity of the pathology. 

In cancer MRI, such pathological tissue can be peritumoral regions with inflammation 

(edema) (Figure 10). 

T2w-FLAIR is a popular method in cancer MRI because it is sensitive to detecting a range of 

localized brain pathologies and is thus suited for efficient screening. Moreover, combining 

multiple sequences (multiparametric MRI) in an analysis may lead to increased elucidation 

of disease, such as differentiating between IDH mutant and wild-type glioblastoma [86].  

3.3.10.2. Dynamic susceptibility contrast MRI 

One advanced MRI technique used to quantify cerebral hemodynamic parameters, like CBV, 

cerebral blood flow (CBF) and mean transit time (MTT) [87], is DSC-MRI [88]. DSC-MRI is a 

perfusion MRI method consisting of rapidly acquired T2w or T2*w volumes during 

intravenous injection of a GBCA. The imaging method trades some spatial resolution in favor 

of increased temporal resolution to capture vessel dynamics from a rapid GBCA bolus 

passage into the brain and is thus called (blood) perfusion MRI.  

The presence of a CA induces magnetic susceptibility differences in or around the blood 

vessels, which are semi-quantifiable through the induced increase in 𝑇2 relaxation rates in 

response to the presence of the CA in tissue according to 

𝑅2 = 1 𝑇2⁄ = 1 𝑇2(0)⁄ + 𝑟2[𝐺𝑑] 

(3.12) 
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where 𝑟2[𝐺𝑑] is the in-vivo transversal relaxation rate for a specific concentration of 

Gadolinium (mmol/L). Visually, this is characterized as a “dip” in voxel intensities on the 

DSC-MRI as the CA passes through the brain vessels and is illustrated in Figure 13 [85].  

 

Figure 13: Cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT) 
maps can be estimated by recording multiple spin-echo (SE) or gradient-echo (GE) echo-planar 

images (EPIs) from dynamic susceptibility contrast (DSC) MRI (a) along with injection of an 
intravenous contrast agent, and then performing mathematical operations on the raw EPIs. In 

simplest form, voxel signals from raw EPIs (b) can be converted to time-concentration curves (c), and 
CBV can be estimated thereof (e). CBV, CBF and MTT may also be estimated more precisely from 

mathematical deconvolution operations on arterial input functions (AIFs), and either from GE EPIs 
(d) or SE EPIs (e). Used with permission from Wolters Kluwer Health, Inc. and corresponding author 

(License number: 5433561360648). 

Disruption of the BBB in brain cancer in or around tumor regions may lead to much of the 

CA leaking into extracellular space (CA extravasation) [89]. This gives rise to unwanted 𝑇1 

effects. CA extravasation may also reduce the magnetic susceptibility difference between 

intra- and extravascular space, which shortens the 𝑇2∗ relaxation [89]. Pharmacokinetic 

modeling in DSC-MRI analysis assumes no disruption of the BBB, and CA leakage correction 

is thus necessary in brain cancer for correctly computing hemodynamic parameters from 

DSC-MRI. CA leakage may lead an underestimation of CBV values in tumoral regions [90]–
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[92].  This may lead to visibly lower CBV values in tumoral regions when compared to 

healthy regions as shown in Figure 10. Although the established leakage correction method 

by Boxerman et al. [90] improves the clinical utility of CBV from DSC-MRI, other techniques 

for estimating CBV without the unwanted 𝑇1 and 𝑇2∗ effects from CA extravasation exist 

[93]–[99]. 

3.3.10.2.1. Pharmacokinetic modeling 

Kinetic modelling assumes knowledge of CA in tissue over time. DSC-MRI measures signal 

change, which then needs to be converted to a metric which is proportional to CA 

concentration. It is commonly assumed the change in relaxation rate is directly proportional 

to CA concentration 

Δ𝑅2 ∝ 𝑟2[𝐺𝑑] 

(3.13) 

By further assuming a mono-exponential relationship between signal and ∆𝑅2, the following 

concentration-time curve, where 𝑆0 is the measured (average) signal prior to CA arrival and 𝑆(𝑡) is the temporal signal (magnitude) measured during CA passage, can be derived: 

Δ𝑅2(𝑡) ∝ − 1𝑇𝐸 ln (𝑆(𝑡)𝑆0 ) 

(3.14) 

CBV can then be semi-quantified by computing the area under the concentration-time curve 

as follows [85], [87] 

𝐶𝐵𝑉 ∝ ∫ Δ𝑅2 𝑑𝑡 

(3.15) 
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Relative CBV (rCBV) can then be defined as CBV normalized relative to a normal-appearing 

white matter (NAWM) mask. 

3.3.10.2.2. Spin-echo vs. gradient-echo DSC and vascularity 

Equation (3.14) and (3.15) are for SE DSC-MRI. While SE DSC-MRI describe 𝑇2 relaxation, GE 

DSC-MRI describe 𝑇2∗ relaxation. It is generally accepted that SE DSC image the 

microvascularity of blood perfusion by utilizing a GBCA to alter relaxation of blood inside the 

vessels. Since GE DSC is made of the FID signal, however, intra and inter-voxel dephasing as 

well as signal loss may result in imaging relaxation processes that are on a spatial scale that 

is larger than the vessels. This may result “dips” in image intensity in regions outside but 

close to vessels induced from GBCA inside vessels. GE DSC is thus known to image 

macrovascularity. The signals from GE DSC are typically stronger than from SE DSC. For this 

reason, CBV typically contains higher image intensity values for GE DSC than for SE DSC. 

There are more precise ways of quantifying CBV from DSC-MRI using deconvolution with an 

arterial input function (AIF) [85], [87], [100], [101]. AIF here refers to the CA concentration 

in blood-plasma in an artery measured over time. These methods were intermitted in the 

thesis due to lack of manual AIF measurements and known limitations and additional 

sources of errors from computerized AIF estimation for DSC-MRI and similar methods [102], 

[103]. Instead, careful intra-patient normalization of CBV with normal-appearing white 

matter (NAWM) masks was performed. 

3.3.10.3. Echo planar imaging 

Single-shot echo planar imaging (EPI) [104] is the technique commonly used in DSC-MRI, DTI 

and BOLD fMRI. It is a two-dimensional fast acquisition method where multiple individually 
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phase encoded echoes are produced from a single spin or gradient echo readout. This 

enables all k-space lines to be recorded from a single SE or GE signal. The most common 

type is SE EPI. Here, the re-focused signal is split into multiple echoes with different phase 

and frequency encoding (Figure 14 [105]).  

 

Figure 14: Spin-echo and gradient-echo pulse sequence diagrams for EPI and corresponding k-space 
capture for gradient-echo EPI. In the left image, 𝑅𝐹 pulses and frequency-encode gradients (𝐺𝑥) for 
gradient-echo (top) and spin-echo (bottom) are shown, while the right image shows frequency- (𝐺𝑥) 
and phase-encode (𝐺𝑦) gradients and corresponding k-space capture for the gradient-echo version. 

For both versions, a slice-selective phase-encode (𝐺𝑧) gradient is assumed applied prior to the 
gradients shown (like the pure spin- and gradient-echo sequences shown previously). Used with 

modifications and permission from A. Bjørnerud. 

The EPI pulse sequence is constructed in such a way that each echo is read by following a 

rectilinear zig-zag path in k-space (Figure 14 (right) and Figure 16 E). More descriptions on 

EPI MRI theory can be found in these relevant Master’s theses [106], [107].  
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3.4. Magnetic susceptibility 

Magnetic susceptibility 𝜒 is a quantitative measure of a material’s ability to become 

magnetized when exposed to a magnetic field, ranging −1 for superconductors to ~105 for 

strongly ferromagnetic materials [108].  

3.4.1. Dia-, para- and ferromagnetism 

Human tissues can either be diamagnetic (𝜒 < 0) or paramagnetic (𝜒 > 0), describing this 

tendency in form of either repelling or attracting the external magnetic field. Repelling or 

attracting may distort the external magnetic field. If a material can retain internal 

magnetization after being exposed to an external magnetic field (such as iron) or even 

without magnetic exposure, it is ferromagnetic (𝜒 ≫ 0). 

In MRI, magnetic susceptibility interacts with the magnetic field 𝑩, leading to a longitudinal 

magnetization of proton spins 𝑴𝑧 according to 

𝑴𝑧 = 𝜒𝜇0𝜇𝑟 𝑩 

(3.16) 

where 𝜇0 = 4𝜋10−7[𝐻 𝑚⁄ ] (Henry/meter) is the permeability of perfect vacuum and 𝜇𝑟 is 

relative permeability [109]. Relative permeability and magnetic susceptibility are related 

according to 𝜒 = 𝜇𝑟 − 1 .  

3.4.2. The susceptibility sensitive EPI sequence 

As described in section 3.3.10.2, presence of an exogenous paramagnetic CA (e.g. Gd with 𝜒 ≅ 0.32) during DSC-MRI will affect 𝑇2 relaxation by altering the susceptibility of the tissue 

and nearby tissue where it is present.  
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Although susceptibility for living tissue is comparingly weak (|𝜒| ≪ 1), local variations in 𝜒 

can lead to minor field inhomogeneities (Δ𝐵) resulting in undesired geometric and intensity 

distortions in MRI. EPI [104], which is the MRI sequence used for each axial slice 

(~100 [𝑚𝑠]) in each volume in DSC-MRI, possesses such distortions. For example, regions in 

and around the sinuses in the frontal lobe or ear canals contain sharp transitions from 

water-heavy regions (water 𝜒 = −9.05 ∗ 10−6) to air (𝜒 = 0.36 ∗ 10−6) [108], which 

typically leads to geometric and intensity distortions in EPI. Geometrically, this can result in 

anteroposterior voxel displacement of a centimeter or more [110]. Figure 15 [111] presents 

simulated distortions for GE EPI along with the inhomogeneity field. 
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Figure 15: Simulated susceptibility geometrical and intensity distortions in GE EPI. Top row left 
shows a baseline GE (non-EPI) image, while top row right shows the inhomogeneity field 𝛥𝐵 as a 

result of varying tissue susceptibility. Middle row left shows the interpolation matrix (𝑲+) between 
non-distorted and EPI distorted GE image, while middle row right shows the associated pixel 

displacements in the y-direction that is evident in EPI. In the top row right image, dark areas indicate 
a downwards displacement and the bright areas an upwards displacement for an EPI acquisition with 

positive (bottom-up) phase-encode k-space traversal. This results in deviations in pixel y-
displacements in EPI that is proportional to the inhomogeneity field (𝑑 ∝ 𝛥𝐵). Deviations in pixel y-
displacement proportional to the intensity profile along the dashed line in the inhomogeneity field, 

is illustrated in middle row right. Resulting geometrical and intensity distortions is seen in the 
simulated EPI image in bottom row right. Bottom row left compares the intensity profile between 

the baseline and EPI GE image (whole and dashed line) in the corresponding locations. It is seen that 
the positive phase-encode EPI contains both deviations in pixel y-displacement (compression) and 
intensity, which is most prominent near water-tissue transitions and ear canals, respectively. Used 

with permission from Elsevier and corresponding author (License number: 5433660486292). 
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The thesis assumes two-dimensional (axial) EPI by applying a slice selective gradient in the z-

direction, so the z-dimension in equation (3.11) can be omitted. An EPI consists of k-space 

magnetization acquired from a single RF excitation pulse (single-shot) in a zig-zag (blipped 

trapezoidal) manner, and with significant longer time spent on traversing from one side to 

the other along the phase-encode (y)-direction than along the frequency-encode (x)-

direction. With one echo to fill in a single horizontal (x) line (readout) of k-space and 𝑁 

echoes to fill all of k-space, this time difference is approximately 𝑁. See Figure 16 for a 

depiction of the resulting EPI distortions and k-space traversal. The next section describes 

the functional cause for these distortions. 

3.4.3. Effect of susceptibility variations on EPI 

The field inhomogeneities from magnetic susceptibility variations are also dependent on 

time [112] 

𝛿𝐵(𝑥, 𝑦, 𝑡) = 𝛾 ∫ Δ𝐵(𝑥, 𝑦, 𝜏) 𝑑𝜏𝑡
0  

(3.17) 

and will affect the k-space encoding gradients (equation (3.10)). In two-dimensional EPI, this 

results in geometrical and intensity distortions according to 

𝐼(𝑥, 𝑦, 𝑡) = 12𝜋 ∬ 𝑴𝑇(𝑘𝑥, 𝑘𝑦)𝑒𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦+𝛿𝐵(𝑥,𝑦,𝑡))𝑒− 𝑡𝑇2∗𝑑𝑘𝑥𝑑𝑘𝑦𝑘𝑥𝑘𝑦  

(3.18) 

The resulting real distortions are shown for GE and SE EPI in Figure 16. 
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Figure 16: Distortions in uncorrected EPI. GE and SE EPI overlaid on a T2w-FLAIR MRI. A: Positive 
(bottom-up) phase-encode GE EPI, B: positive (bottom-up) phase-encode SE EPI, C: negative (top-

down) phase-encode GE EPI, D: negative (top-down) phase-encode SE EPI, E: conceptual illustration 
of a positive phase-encoded image readout (top) and a negative phase-encoded image readout 

(bottom), respectively. Local spin compression is seen in the frontal brain (red arrows) in A and B, 
whereas local spin de-compression (stretching) is seen in the frontal brain in the DSC captures C and 

D. GE EPI contain additional signal loss in the frontal lobe. The underlaid T2w-FLAIR images do not 
possess such susceptibility driven distortions. Figure from our first paper. 

Equation (3.18) also introduces another distortion in EPI which is caused by the 𝑒− 𝑡𝑇2∗  term. 

This leads to blurring and can be corrected for using specialized methods [113] not assessed 

in the thesis. Owing to the zig-zag sampling of k-space in EPI, both spatial and blurring 

distortion is much more prominent in the phase-encode (y)-direction than in the frequency-

encode/readout (x)-direction. The sampling scheme also leads to a weaker effective 

gradient, and thus lower acquisition bandwidth, in the phase-encoding direction than in the 

frequency-encoding direction, which makes the EPI sequence sensitive to minor field 

imperfections, and resulting in distortions, primarily along the phase-encode direction [111]. 
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3.5. MRI preprocessing 

MRI preprocessing describes various image processing carried out to perform the main 

analysis processing in a study. As is seen in the papers, preprocessing methods and their 

order of execution depends on task. Table 4 gives an overview of all preprocessing methods 

encountered in the thesis.  

Our goal with MRI preprocessing is to ensure, for each patient, that all structural (T1w, T2w, 

etc.) and perfusion (DSC) MRI sequences are properly spatially aligned both between 

different series and longitudinally for the same series. This is solved by intra-modal and 

inter-modal rigid image registration (RIR), respectively. Moreover, intensity normalization 

and standardization are important additional steps to ensure intra-subject intensity 

consistency of both structural and perfusion MRI when involving more than one exam per 

subject in the analysis. An important outcome of preprocessing is that a longitudinal series 

of MRI sequences for a patient have identical voxel resolutions and data matrices. This 

involves not only registration, but also resampling (re-slicing) images. As a result, voxel 

tracking methods such as DIR can be more easily applied and analyzed on longitudinal MRI. 

Resampling means in this context that the three-dimensional grid containing the image 

intensity values are modified as an effect of rotation of the image or resolution change of 

the grid. This involves using some interpolation method [114], [115], which is discussed 

later. At last, Montreal neurological institute (MNI) normalization ensures that images can 

be compared (on an approximate spatial scale) across multiple subjects. For an in-depth 

description of MRI preprocessing, see this book chapter [116]. Due to their importance in 

the thesis, separate sections about linear image registration (LIR)/spatial normalization and 

longitudinal intensity standardization are provided below. 
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Table 4: Overview of preprocessing methods in the thesis. Order of applying methods to image data 
may follow according to reading the table from top to bottom. However, exact preprocessing 
methods and order may vary depending on analysis task. Left-centered text: For structural MRI, 
right-centered text: For functional MRI, centered text: For both structural and functional MRI.  

Structural MRI (T1w, T1wc, T2w, T2w-

FLAIR) 

Functional MRI (T2*w/T2w GE/SE DSC EPI) 

Anonymization 

Brain extraction/de-facing 

DICOM->NIFTI conversion 

Intensity inhomogeneity/nonuniformity correction (N4ITK) 

De-noising 

EPI correction (EPIC, TOPUP, paper 1) 

CA leakage correction 

NAWM normalization 

Field-of-view reduction 

Linear image registration/spatial normalization 

Isotropic resampling/re-slicing 

Longitudinal intensity standardization (PLHM) 

Segmentation pipelines (cortical/subcortical atlas, tumor lesions) 

MNI (spatial) normalization 

 

Anonymization is the process of removing patient-sensitive information, such as personal 

identification number, name, birth date, and name of person carrying out the exam. This 

information may be contained within the header of the scanner DICOM files (as DICOM 

tags) and can be removed by software. Brain extraction, skull stripping, or de-facing may be 

regarded as types of anonymization since it removes the possibility of identifying the patient 

in terms of face or general appearance. DICOM to NIFTI conversion is necessary to perform 

a lot of processing steps, which also involves preprocessing. N4ITK [79] is a popular 

improvement of the famous nonparametric nonuniform intensity normalization (N3) 

algorithm [117]. Here, the image is corrected for intensity nonuniformity caused by a bias 

field that arises mainly due to variations in sensitivity of the receiver coil and nonuniform RF 

excitation [117]. De-noising removes noise in the image using for instance a spatially 

adaptive filter [118]. EPI correction corrects for intensity and geometric distortions due to 
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variations in magnetic tissue susceptibility, while CA leakage correction and NAWM 

normalization can be described as intensity correction and normalization methods in 

perfusion MRI, respectively. These methods are described elsewhere in the thesis. A 

reduction of field-of view ensures that parts of the image not targeted for analysis are 

removed, such as the neck. This leads to a smaller data matrix and resultingly faster 

processing. Isotropic resampling or re-slicing simplifies the physical interpretation of 

intensity values and may be the last part of LIR. An interpolation method is used in re-

slicing, such as trilinear or nearest neighbor (NN) interpolation. Segmentation pipelines such 

as FastSurfer [119] and ONCOHabitats [120], may be best run on minimally preprocessed 

images. Moreover, segmentation pipelines may involve their own preprocessing. As an 

example, FastSurfer performs both N4 correction and voxel isotropic re-slicing before 

segmentation. It is thus reasonable that segmentation pipelines, when included as a 

preprocessing step, are performed early in the preprocessing to ensure optimal 

performance. Spatial normalization using linear and possibly DIR methods, may then follow 

to transform images and segmentation masks to the same reference space. 

3.5.1. The optimization problem in image registration 

Registration (or co-registration) describes the process of spatially aligning an image with 

another image, by matching anatomical structures within or across patients, or to a 

template. This is an essential preprocessing step in multiparametric image analysis.  

For any type of image registration, a moving image 𝑀 is registered to a fixed image 𝐹 by 

optimizing an objective function 𝑓 with respect to a transformation model 𝑇; 

𝑓(𝑇) = 𝐴(𝐹, 𝑀 ∘ 𝑇) + 𝑅(𝑇) 

(3.19) 
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where 𝐴 is a function quantifying the spatial alignment (alignment function or loss metric) 

between the images (e.g., mutual information (MI) or cross-correlation (CC) which are 

described later as statistical methods) and 𝑅 is a regularization term [121]. Registered 

images are achieved by finding a 𝑇 by either maximization or minimization of 𝑓 depending 

on the definition of 𝐴 and 𝑅 and applying it to 𝑀.  

3.5.2. Linear image registration 

For LIR, 𝑇 describes a global transformation of the physical homogenous coordinates of the 

intensity values in the moving image (𝑇𝑙𝑖𝑛𝑒𝑎𝑟: ℝ4 → ℝ4) involving scaling, rotation, shearing 

and translation as follows [122] 

𝑇𝑙𝑖𝑛𝑒𝑎𝑟(𝒙𝒉) = 𝑀𝒙𝒉 

(3.20) 

where 𝒙𝒉 = [𝑥 𝑦 𝑧 1]𝑇 and 

𝑀 = [𝑅00 𝑅01 𝑅02 𝑡0𝑅10 𝑅11 𝑅12 𝑡1𝑅20 𝑅21 𝑅22 𝑡20 0 0 1 ] 

(3.21) 

is a transformation matrix. In the matrix 𝑀, the 𝑅’s control the scaling, rotating, and 

shearing, while the 𝑡’s control the translation. RIR and affine image registration (AIR) are 

thus subgroups of LIR. Equation (3.20) is called a homogenous coordinate transformation 

because the translation parameters are included in the matrix 𝑀. LIR is performed in 

physical coordinates and not in voxel coordinates [123], unlike our definition of voxel 

tracking. 
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It is important to emphasize that LIR only involves coordinate transformation and does not 

modify intensity values. However, intensity values may disappear of appear because of 

interpolation when re-slicing of the image or with image viewing software. As an example, it 

is may be preferred to transform a high-resolution tumor segmentation mask created in the 

image space of a T1wc scan, to low-resolution perfusion space using NN interpolation. Very 

small lesions in the high-resolution mask may resultingly disappear because of the NN 

interpolation method when re-slicing the mask to low resolution perfusion space. 

Intra-subject longitudinal RIR is an important preprocessing step to enable displacement-

based voxel tracking analyses in the thesis. Head motion correction is another similar 

application of longitudinal RIR where each time-point volume scan in DSC-MRI is registered 

to a fixed time-point volume, to remove possible head movement during DSC capture. 

MNI normalization, which involves registering images to a common reference template, 

may be realized by AIR or DIR. A possible benefit of only using AIR in MNI normalization is 

that the characteristic anatomy of each patient’s brain is kept, while achieving a brain in 

approximate MNI space. In large-scale studies, this may be preferable rather than warping 

each brain to become more equal to a template brain (using DIR such as the statistical 

parametric mapping (SPM) MNI normalization [124], [125]). AIR may however, like DIR, alter 

the physical interpretation of the image. One such example may be a compression of tumor 

stiffness maps from elastography, thereby distorting their physical interpretation and 

usefulness. 

3.5.3. Longitudinal intensity standardization 

Longitudinal intensity standardization is an important aspect of MRI analysis for voxel 

tracking, since it is expected that intensity values of non-changing tissue stay the same 
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across scans. However, this cannot be assumed in longitudinal MRI, since varying sequence 

parameters and existing preprocessing may lead to varying intensity values even for the 

same tissue type. The most basic intensity standardization method may be subtracting from 

all voxel values the mean, followed by dividing by the standard deviation (Z-score 

standardization [126]). Intensity values used in calculating the mean and standard 

deviations may preferably only be the values within a brain extraction mask, thus excluding 

non-brain, zero, and not-a-number (NaN) intensity values in the computation of mean and 

standard deviation. However, this may lead to inconsistent longitudinal intensity values 

since temporal image changes such as changing pathology may still alter the mean and 

standard deviation calculations significantly. Instead, piecewise linear histogram matching 

(PLHM) [127], [128] was investigated as a group-based intensity standardization method. 

This technique normalizes each image in a longitudinal series of MRI scans according to an 

average histogram calculated from all images. The histogram of each scan is then matched 

to this average histogram, thereby achieving consistent image intensity values across the 

time points. Some alternative techniques achieving consistent intensity values [126], are 

Least squares tissue mean normalization and removal of artificial voxel effect by linear 

regression (RAVEL) [129]. 

3.6. Data organization 

3.6.1. Brain imaging data structure 

Keeping conventions on file and folder organization of the research data is an important 

requirement when running various scripting tasks for analysis, improving quality, or adding 

to existing datasets. This involves most of the preprocessing and analysis methods described 

in the thesis.  
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BIDS [130] is a collaborative effort establishing a bare-bones standard for organizing and 

sharing data in neuroimaging experiments. It is supported by a large number of 

neuroscientists and comes with useful tools such as the BIDS-Validator [131] for minimally 

processed rawdata. It suggests a way to link raw, minimally processed, and processed data 

without mixing them by having the tree folders sourcedata, rawdata and derivatives with 

near-identical structures (Figure 17). This means that it is easier to visualize and process raw 

and processed data with little modifications of scripts. Sourcedata is intended for original 

DICOM files from the scanner, rawdata contains minimally processed NIFTI files converted 

from sourcedata, while derivatives contains processed data as well as derived data from 

experiments and analysis. The BIDS standard is therefore a practical guideline for how work 

with MR images within a consistent file structure, from original source DICOM files to 

derived NIFTI files and results. BIDS guidelines on longitudinal MRI for fMRI was used as a 

baseline for organizing and processing the research data. 

 

Figure 17: BIDS is a folder and file naming convention for neuroimaging experiments, enabling 
reproducible and shareable datasets. A typical neuroimaging experiment may involve DICOM to 

NIFTI conversion, thereby producing the rawdata from sourcedata. Then followed by analysis of the 
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NIFTI files in rawdata and producing results in derivatives. These results may involve registered 
images to a common reference space. A central point is to avoid having both raw and processed 

data in the same folders, which may increase the complexity and manageability of the datasets over 
time. 

3.6.2. Data version control 

Tracking of changes in the BIDS datasets is enabled by using Data version control (DVC) 

[132]. DVC is a Python-installable package that runs on top of Git to enable commit-based 

tracking of dataset changes. This means for instance, that the exact state of a dataset (the 

files, folders, and code) that was used in a publication, can be recovered (in BIDS form) in 

the same way as recovering an earlier version of scripts in a software Git project.  

The information needed to get a specific version of the dataset, is having access to the Git 

repository for the DVC project, a self-hosted storage backend and knowing the commit 

string describing specific dataset version.  

Modifications and improvements in datasets are logged/tracked by DVC in form of re-

computing and summarizing MD5 hash sums from files, which is then tracked by Git in the 

usual manner. DVC is privacy oriented since the actual data is stored using a backend which 

can be hosted locally. Such a storage backend can be a local storage server providing SSH 

access or scalable self-hosted object storage such as S3/MinIO. A local SSH backend was 

used in the thesis. 

3.7. MRI visualization 

Different visualization tools are used for different steps in the preprocessing and analysis 

processing pipelines to quality control (QC) data and results. Volumetric longitudinal data is 

much heavier to handle than many other types of data such as text and tabular data. It is 
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suggested that a suited visualization tool is one that is efficient in visualizing a specific stage 

of the processing.  

3.7.1. Raw DICOM and NIFTI 

nordicICE/nICE (NordicNeuroLab, Bergen, Norway) provides fast simultaneous visualization 

of multiple raw images in both DICOM and NIFTI format. Since images are not overlaid by 

default, but displayed side-by-side, it is a good solution to get an overview of raw data 

without preprocessing such as LIR. If registered, however, synchronized scrolling through 

slices can be enabled for easy comparison of images. Since being available in our software 

environment and running on Windows, and most hospital computers with data access run 

Windows, it is suited for visualizing data close to its source. nICE is paid software but 

support was recently discounted, making it accessible for free. 

3.7.2. Raw and processed DICOM and NIFTI 

Aliza Medical Imaging & DICOM Viewer (Aliza Medical Imaging, Bonn, Germany) is used for 

efficient volumetric visualization (for instance maximum intensity projection) of longitudinal 

raw and registered images. Two strengths are its adaptive histogram-based adjustment of 

image brightness and saturation, and that it reads both DICOM and NIFTI formats. Its 

volume visualization capabilities are based on the established visualization toolkit (VTK) 

[133]. Aliza was free software at the beginning of the doctoral period, but later versions 

require payment. It runs on both Windows and Linux. 

3.7.3. Processed NIFTI 

ITK-SNAP [134], [135] is the preferred tool to QC LIR and DIR, since it by default overlays 

multiple images and synchronizes slice locations across all images. This makes it easy to for 
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instance compare structural change for specific anatomical locations across various time 

steps. It can visualize displacement vector fields both in form of individual components, 

vector magnitude and deformation grid. It provides no DICOM import but the NIFTI format 

common for processed images. Like much other NIFTI centric software, ITK-SNAP follows 

internal file handling conventions according to the insight segmentation and registration 

toolkit (ITK) [136]. For instance, it displays images by applying the provided affine 

transformation in the NIFTI header (qform and/or sform). This assures that RIR (and not 

necessarily re-sliced) images are correctly overlaid. Other software may contain incomplete 

handling of sform/qform leading to image flipping problems (like nICE) or requiring 

additional re-slicing to correctly display registered images (like Aliza). ITK-SNAP is free 

software and runs on both Windows and Linux. 

As an alternative FSLeyes [137] from the FMRIB Software Library (FSL) [138] is occasionally 

used to visualize overlaid NIFTI images, for instance for checking the spatial correspondence 

between T2w-FLAIR and CBV. It reads in registered images with affine transformations like 

ITK-SNAP. This is a great visualizer of registered and longitudinal (functional MRI) NIFTI data 

since it is based on open-source software and has extensive documentation. Some strengths 

of FSLeyes are that it integrates well with Python environments (fslpy, pyopengl) and 

provides off-screen rendering. Rendering here means that a given visualization can be saved 

(rendered) to a file. Off-screen means that this process does not require a graphical user 

interface (GUI), but only access to a command-line interface (CLI). When compared to other 

viewers, it has good automatic adjustment of image contrast and saturation when opening 

images. Moreover, the exact visualization settings involving input images, layout, and 

visualization parameters, can be saved, and re-produced as a large CLI command. These 
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properties of FSLeyes make it suited for being automated in shell scripts. FSLeyes is most 

easily run in Linux environments.  

At last, MATLAB® (Mathworks, Natick, Massachusetts, USA) with the well-known SPM 

software [124] provides good visualization tools for verification of MATLAB centric 

processing results in the first paper (e.g. SPM). 

3.7.4. Processed numpy arrays 

Through experimental image processing in the Python [139] programming language was a 

need for visualizing images directly from numpy arrays. Python is the most popular free 

programming language in data science and competes with other high-level languages such 

as MATLAB. Luckily, Python has good support for both DICOM and NIFTI file import using 

the pydicom and nibabel packages, which read images to numpy arrays.  

Jupyter notebook and Jupyter lab are popular cross-platform client-server web-based 

interactive frameworks for rapid prototyping of Python code [140], which was done in the 

preliminary work of the first publication. For these cases, the easiest visualization of two-

dimensional images was accomplished with the Matplotlib package.  

Three-dimensional volumetric visualization within the Jupyter frameworks (such as 

ipyvolume) quickly shows suboptimal performance for full-resolution MRI data on a 

conventional computer, when compared with established NIFTI MR image viewers. An 

example of sub-optimal volumetric visualization performance is “lagging” when interactively 

using the mouse to rotate a visualized MRI volume. For this task, the Python software 

spimagine, using OpenGL graphics processing unit (GPU) accelerated volume rendering with 

pyopengl, provides efficient in visualizing full-resolution MRI. It also supports longitudinal 
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(four-dimensional) numpy arrays. Spimagine can be used from the Jupyter frameworks if the 

Jupyter server is run on a computer with GUI, from standard Python scripts, or as a 

standalone program. 

3.8. Statistical methods 

The following section contains a short description of the various statistical methods 

encountered in the thesis. Wilcoxon, Kruskal-Wallis, and one-way analysis of variance are 

statistical hypothesis tests for measuring differences among populations of measurements, 

while Bonferroni and Benjamin and Hochberg are correction methods for multiple 

hypotheses tests. Dice similarity coefficient is a metric measuring spatial alignment of two 

binary segmentation masks. Neighborhood CC and MI are two similarity loss metrics 

commonly used in image registration. Last, survival analysis describes a collection of 

statistical methods to model and predict the time to death typically from longitudinal 

patient data. 

3.8.1. Wilcoxon signed rank test 

This is a nonparametric statistical hypothesis test if two dependent paired samples come 

from the same distribution [141]. It accepts non-normally distributed data and tests 

whether the distribution of differences in median between the paired samples is symmetric 

about zero. A parametric analog to the Wilcoxon test that assumes normally distributed 

data is the paired Student’s t-test. 

3.8.2. Kruskal-Wallis test 

Another nonparametric statistical hypothesis test for significance in median differences 

between two or more independent populations of observation data. It accepts non-



54 
 

normally, but similarly shaped distributed data. It is an extension of the Mann-Whitney U 

test for more than two groups. The parametric equivalent of the Kruskal–Wallis test is the 

one-way analysis of variance (ANOVA). 

3.8.3. One-way analysis of variance 

A parametric statistical hypothesis test for whether the population means of two or more 

groups differ. With the null hypothesis that samples in all groups are from populations with 

the same mean values, it estimates variances and produces an F-statistic to test for 

significance. One-way ANOVA assumes independent and identically normally distributed 

values. Tukey’s method for multiple comparisons is used in ANOVA to create confidence 

intervals for all pairwise differences between the group means. By setting a family-wise 

error rate (probability of making at least one type I error) of typically 0.05, significant 

difference in population means is indicated if a confidence interval does not include zero. 

3.8.4. Bonferroni 

This is a simple method to correct for multiple hypotheses tests that could otherwise result 

in type I errors (e.g., falsely rejecting a true null hypothesis, or false positive). When 

performing 𝑁 tests and with a significance cutoff of 𝛼 = 0.05, the corrected cutoff for each 

test 𝑖 is 𝑝𝑖 ≤ 𝛼/𝑁. It controls the family-wise error rate at ≤ 𝛼. The correction is 

conservative and gives a greater risk of failure to reject a false null hypothesis, or false 

negative, (type II errors) than more advanced methods. 

3.8.5. Benjamin and Hochberg 

A correction for multiple hypotheses tests that controls the false discovery rate, i.e., rate 

of type I errors. First an accepted false discovery rate is determined, e.g., 𝑞 = 0.2. 
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Then, the 𝑝-values from all 𝑁 tests are ranked from smallest to largest with rank 𝑟 =1 given to the smallest, rank 𝑟 = 2 to the second smallest, etc. A Benjamin-Hochberg 

critical value for each test is then computed according to 
𝑟𝑁 𝑞. The corrected cutoff for 

each test is then determined from the test with the largest 𝑝-value that is less than its 

Benjamin-Hochberg critical value. All tests with this or lower 𝑝-value are considered 

significant. 

3.8.6. Dice similarity coefficient 

Dice similarity coefficient [142], or F1-score, can be used to measure spatial alignment of 

two binary segmentation masks. It ranges between 0 and 1 and can be viewed as a 

similarity measure over sets. Assume that mask 𝑋 and 𝑌 is defined as a collection of voxels. 

The Dice coefficient between the two masks can be computed as 

𝐷𝑖𝑐𝑒 = 2|𝑋 ∩ 𝑌||𝑋| + |𝑌| 
(3.22) 

where the numerator is two times the count of intersecting voxels between the masks and 

the denominator is the total count of voxels for the masks. 

3.8.7. Neighborhood cross-correlation 

An image intensity-based statistical measure of local spatial alignment between two 

volumes where CC is computed for multiple sub volume (neighbor) pairs using a sliding cube 

method. It is thus suited for DIR tasks and works best for same sequence (monomodal) 

image pairs (e.g., T1w to T1w MRI). For registering the volume 𝑀 to 𝐹, it may be written as 

[143] 
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𝐶𝐶(𝒙) = ∑ ((𝐹(𝒙𝑖) − 𝜇𝐹(𝒙))(𝑀(𝒙𝑖) − 𝜇𝑀(𝒙)))2𝑖∑ (𝐹(𝒙𝑖) − 𝜇𝐹(𝒙))2𝑖 ∑ (𝑀(𝒙𝑖) − 𝜇𝑀(𝒙))2𝑖  

(3.23) 

where the voxel coordinate vector 𝒙 is at the center of a 𝑁3 cube, 𝜇 is the mean value 

within the cube and 𝒙𝑖 iterates through the voxel coordinates of that cube. The cube 

dimension (or neighborhood size) when using the ANTs SyN algorithm in the thesis was the 

default of 𝑁 = 9 𝑚𝑚3. Using neighborhood CC as a DIR loss metric involves computing its 

gradient, which is described in the ANTs SyN CC paper [144]. 

3.8.8. Mutual information 

An image intensity-based statistical measure of global spatial alignment between two 

volumes based on information theory. Here, the intensity values of the two volumes are 

regarded as samples from two random processes. This leads to an interpretation of the area 

under curve normalized intensity histogram of a volume 𝐹 as an empirical probability 

density function 𝑝𝐹 of the most likely intensity values. MI is a measure of how well a 

spatially localized intensity value 𝑀𝑗 in the second volume 𝑀 can be predicted given the 

corresponding intensity value 𝐹𝑖  in the first volume 𝐹. Specifically, it is the difference 

between the information contained in each volume and the joint information contained in 

the volumes according to [145] 

𝑀𝐼(𝐹; 𝑀) = ℋ(𝐹) + ℋ(𝑀) − ℋ(𝐹, 𝑀) 

(3.24) 

where ℋ(𝐹) and ℋ(𝑀) is entropy of the fixed and moving volumes, 
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ℋ(𝐹) = − ∑ 𝑝𝐹(𝐹𝑖)log (𝑝𝐹(𝐹𝑖))𝑖  

(3.25) 

and ℋ(𝐹, 𝑀) their joint entropy, 

ℋ(𝐹, 𝑀) = − ∑ ∑ 𝑝(𝐹𝑖, 𝑀𝑗)log (𝑝(𝐹𝑖 , 𝑀𝑗))𝑗𝑖  

(3.26) 

where 𝑝 is the joint (2D) probability density function of the volumes. Mutual information 

can also be described in terms of relative entropy (Kullback-Leibler divergence). It is well 

suited for multimodal (e.g., T2w to T1w MRI) registration tasks. For DIR, 𝑀𝐼 can be extended 

to a voxel-vise variant as described in [143], which leads to faster but less accurate DIR 

when compared to using neighborhood CC. To optimize for registration transformation 

parameters, ANTs uses a variational method to compute the gradient of voxel-vise 𝑀𝐼 [143], 

[146]. 

3.8.9. Survival analysis 

Survival analysis [147] is a collection of statistical methods for modeling and predicting the 

time to which an event occurs. The predicted event in the thesis is patient death due to 

progression of disease. These models investigate the survival prediction capability of pre-

selected input data (explanatory or predictor variables). The survival time of a patient after 

being included in a survival study is modeled by the random variable 𝑇. Some examples are 

months until death (overall survival) or progression of disease (progression-free survival 

(PFS)) or patient age at death. If the survival time of a patient is not known exactly for 

reasons such as end or study or patient lost to follow-up or withdrawn from study for other 
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reasons, it is censored (Figure 18 [147]). The analyses incorporate specific ways to handle 

censored data by introducing the censorship variable 𝛿 (0=censored, 1=death). 

 

Figure 18: Examples of various types of data for survival analysis. Rows A-F describe patients 
included in the analysis. For each patient, 𝑇 describes the time to an event. An 𝑋 describes 

occurrence of the event of interest, which is typically death. Other events such as study end without 
death or patient lost or withdrawn from study for other reasons, leads to right-censored data. 

Survival analysis is focused on modeling and predicting the event of interest. Used with permission 
from Springer Nature (License number: 5434171145925). 

3.8.9.1. Survivor and hazard functions 

The probability density function of death at a specific time 𝑡 is described by the transition 

time distribution 𝑓(𝑡). The actual probability of surviving until a time 𝑡 (the survival curve or 

survivor function 𝑆(𝑡)) is found by integrating over 𝑓(𝑡) for all times larger than 𝑡 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝑓(𝑡)𝑑𝑡∞
𝑡  

(3.27) 

In theory, 𝑆(0) = 1 and 𝑆(∞) = 0. However, in practice, 𝑆 is a step function since it is 

based on obtaining survival probabilities for different values of 𝑡. Central in survival analysis 

is computing the failure rate or hazard function ℎ(𝑡), which is the chance of death for the 

next time interval, given that the patient has not died already, 
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ℎ(𝑡) = limΔ𝑡→0 𝑃(𝑇 ≤ 𝑡 + Δ𝑡|𝑇 > 𝑡)Δ𝑡 = 𝑓(𝑡)𝑆(𝑡) = − 𝑑𝑑𝑡 ln (𝑆(𝑡)) 

(3.28) ℎ(𝑡) is a conditional failure rate, or the instantaneous potential of death per unit time, given 

that the patient has survived until time 𝑡. It is not a probability, and the obtained value will 

give a different number depending on the units of time used and may even be greater than 

1. There is a relationship between 𝑆(𝑡) and ℎ(𝑡); if one knows the form of 𝑆(𝑡), one can 

derive the corresponding ℎ(𝑡) and vice versa as follows [147] 

𝑆(𝑡) = 𝑒− ∫ ℎ(𝑢)𝑑𝑢𝑡0  

(3.29) 

ℎ(𝑡) = − 𝑑𝑆(𝑡)𝑑𝑡𝑆(𝑡)  

(3.30) 

There are different ways to model the survival and hazard functions, dividing methods into 

nonparametric, semiparametric and parametric methods. Each impose different 

assumptions about the survival data.  

3.8.9.2. Concordance index 

𝐶 − 𝑖𝑛𝑑𝑒𝑥, or Harrell’s concordance index [148], is a performance metric for survival 

models. It is a generalization of the area under the receiving operating characteristic curve 

(AUC-ROC) that considers censored survival data and is computed by summarizing the 

survival times and risk scores for all pairs of patients 𝑖 and 𝑗 (𝑖 ≠ 𝑗) as follows: 
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𝐶 − 𝑖𝑛𝑑𝑒𝑥 = ∑ 1𝑇𝑗<𝑇𝑖 ∙ 1𝜂𝑗>𝜂𝑖 ∙ 𝛿𝑗𝑖,𝑗 ∑ 1𝑇𝑗<𝑇𝑖 ∙ 𝛿𝑗𝑖,𝑗  

 (3.31) 

where 𝜂𝑖  is the risk score for patient 𝑖 and 

1𝑇𝑗<𝑇𝑖 = {1, 𝑇𝑗 < 𝑇𝑖0, 𝑒𝑙𝑠𝑒  

(3.32) 1𝜂𝑗>𝜂𝑖 = {1, 𝜂𝑗 > 𝜂𝑖0, 𝑒𝑙𝑠𝑒  

(3.33) 

Like AUC-ROC, 𝐶 − 𝑖𝑛𝑑𝑒𝑥 = 1 corresponds to the best model prediction, while 𝐶 −𝑖𝑛𝑑𝑒𝑥 = 0.5 corresponds to a random prediction. It represents the model’s ability to 

correctly provide a reliable ranking of the survival times based on the individual risk scores. 

Continuous explanatory variables may be used as risk scores. In the second paper, the 

various displacement biomarkers were used as risk scores. 

3.8.9.3. Kaplan-Meier 

This is a nonparametric method where the survival curve 𝑆(𝑡) is estimated directly from the 

data by ordering the survival times (from smallest to largest) and estimating survival 

probabilities according to the product limit formula 

�̂�(𝑡) = ∏ �̂�(𝑇 > 𝑡𝑖|𝑇 ≥ 𝑡𝑖)𝑖|𝑡𝑖≤𝑡 = ∏ (1 − 𝑑𝑖𝑛𝑖)𝑖|𝑡𝑖≤𝑡  

(3.34) 

where 𝑑𝑖 is the number of deaths that happened at time 𝑡𝑖 and 𝑛𝑖  the number of patients 

known to have survived up to time 𝑡𝑖 (i.e. not diseased or censored). Kaplan-Meier (KM) 
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allows only categorical explanatory variables. For testing significance in differences in KM 

survival time prediction capability between two subgroups (e.g. using a placebo vs. 

treatment explanatory variable, or stratification thresholds of our biomarkers for low and 

high survival subgroups), the log-rank test can be used. 

Log-rank test for two subgroups 

This is a nonparametric large-sample chi-square test for comparing the survival curves of 

two subgroups. With the null hypothesis that the two subgroups have a common survivor 

function, it tests for significance with the approximate formula 

𝜒2 = ∑ (𝑂𝑖 − 𝐸𝑖)2𝐸𝑖
2
𝑖  

(3.35) 

where 𝑂𝑖 and 𝐸𝑖 are formulas for observed and expected deaths for subgroup 𝑖 as explained 

elsewhere [147]. 

3.8.9.4. Cox proportional hazards regression 

This is a semiparametric method assuming a proportional hazards model. It separates time 

dependency (𝑡) from explanatory variable dependency (𝑥) in the hazards function such that 

ℎ(𝑡|𝑥) = ℎ0𝑒𝛽𝑥 

(3.36) 

where ℎ0 is a parametric baseline hazard function (e.g. a Weibull hazard model). Unlike KM, 

it allows continuous explanatory variables, and the hazards function is estimated in terms of 

regression. Additive effects of categorical variables can be included in the model like KM 

analyses. Moreover, it is possible to estimate the 𝛽’s (in terms of maximum likelihood) in 
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the exponential part of the model without deciding ℎ0. These are some reasons why Cox 

proportional hazards regression is a popular survival analysis. 

4. Materials 

4.1. Patient population 

Two cohorts of adult glioblastoma patients were analyzed in the thesis. The first cohort 

included 45 patients (age range 40– 84 years, median 61 years) imaged before first-time 

surgery and with histopathological diagnosis confirmation (Intervention Centre (IVS)). The 

study was approved by the Institutional Review Board (ref: LOOPS) and the Regional 

Committee for Medical and Health Research Ethics (ref: 2013/1033). All patients signed a 

consent form before being included in the study.  

The second cohort included 27 patients (age range 32– 68 years, median 56 years, 

female/male ratio of 7/20) with histologically confirmed HGG (SAILOR). Among the 27 

patients, 24 were originally diagnosed as glioblastoma (3 with IDH mutation, 2 with wild-

type IDH mutation, 19 with unknown IDH mutation status) based on the 2016 WHO 

Classification of CNS Tumors. The remaining 3 were diagnosed as 1 anaplastic 

oligodendroglioma and 2 anaplastic astrocytoma. The study was approved by the 

Institutional Review Board and the Regional Committee for Medical and Health Research 

Ethics (ref: 2009/1867b). Patients were included only if informed consent was signed. 

Both cohorts received the standard treatment described previously. Longitudinal data 

collected during treatment was included in the second cohort, as illustrated in Figure 19. 

This resulted in a total of 229 MRI exams from the 27 patients in the second cohort. Most of 
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these patients had cancer recurrence as described elsewhere [50], [57]. The median overall 

survival was 19 months. 

 

Figure 19: Illustration of longitudinal MRI protocol during standard treatment for our second patient 
cohort. CRT: chemoradiotherapy. The first scan (week 0 in the figure) was taken four weeks after 

surgery, before three successive follow-up scans during CRT and one during a pause in the 
treatment. Twelve-week interval scans were then performed within the six rounds of chemotherapy 

(adjuvant temozolomide). Some patients received more than six rounds of chemotherapy, 
depending on treatment response and clinical status. Used with permission from C. Larsson, M. 

Kleppestø and J. Vardal. 

4.2. MRI and annotations 

The data analyzed in this thesis consisted of multi-sequence/series (multiparametric) 

structural and functional MR images together with tumoral lesion segmentations, RANO 

classes and overall survival numbers. A structural MRI volume may be described as a three-

dimensional grid consisting of equally (isotropic) or unequally (anisotropic) spaced integer 

or floating-point values, representing the imaged gray scale intensity value at various 

anatomical locations. A lesion segmentation can be described similarly, but with integer 

values describing different lesion tissue classes. Longitudinal, multi-sequence and functional 

MRI result in an additional fourth dimension (representing either time or image channel) of 

the volume after having performed necessary pre-processing steps.  
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4.2.1. MRI 

MRIs were performed on two different 3 𝑇𝑒𝑠𝑙𝑎 Philips scanners (Philips Medical Systems, 

Best, The Netherlands); Ingenia for the first cohort and Achieva for the second cohort. The 

structural MRI included in the first cohort was 3D T2w-FLAIR (TE/TR/TI (𝑚𝑠) = 311/4800/1650, voxel size 0.5𝑥0.49𝑥0.49 𝑚𝑚, flip angle of 90 degrees and pixel 

bandwith around 936 𝐻𝑧) and T2w SE (TE/TR = 84/3800 𝑚𝑠, voxel size 0.3𝑥0.3𝑥5 𝑚𝑚). For 

the second cohort, structural images included 3D T2w-FLAIR (TE/TR/TI (𝑚𝑠) = 424/8000/2400, voxel size 1.07𝑥1.07𝑥0.6 𝑚𝑚), 3D T1w GE before and after contrast CA 

injection (T1w, T1wc, TE/TR = 2.3/5.1 𝑚𝑠, voxel size 1 𝑚𝑚3 and flip angle of 8 degrees) and 

T2w SE (TE/TR (𝑚𝑠) = 70/1349, voxel size 1.88𝑥1.88𝑥4.0 𝑚𝑚 and flip angle of 90 degrees). 

T1wc was acquired following injection of 0.1 𝑚𝑚𝑜𝑙/𝑘𝑔 body weight dose of gadobutrol 

(Gadovist, Bayer, Sweden) and saline flush. Acquisition times were 400, 400, 112 and 520 𝑠 

for T1w, T1wc, T2w and T2w-FLAIR respectively in the second cohort.  

The functional MRI included in the first cohort was DSC with dual echo (GE-SE), single-shot 

EPI sequences (GyroToolsLLC, Zürich, Switzerland) (TR = 1300 − 1500 𝑚𝑠, GE: TE = 25 −30 𝑚𝑠, SE: TE = 105 − 115 𝑚𝑠, echo train length = 78, partial Fourier acquisition of 0.61, 

SENSE factor 2, voxel size 1.8𝑥1.8𝑥6 𝑚𝑚 and flip angle of 90 degrees followed by a 190 

degree RF pulse for inducing SE). Initially, 5 time points (image volumes) were acquired 

before CA injection (pre-scan), subsequently a DSC of 100 time points was acquired with 

opposite phase-encode direction during CA injection (0.1 𝑚𝑚𝑜𝑙/𝑘𝑔 body weight dose of 

contrast (Gadovist, Bayer Pharma AG, Germany), followed by a 20 𝑚𝐿 saline flush (BB. 

Melsungen AG, Melsungen, Germany)). Unlike the structural MRI, DSC included only 9 − 11 

axial slices to cover the tumor. Acquisition times were ∼ 15 − 22 𝑠 for the pre-can GE-SE 
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EPIs and 135 − 161 𝑠 for the GE-SE DSC. The functional MRI in the second cohort was SE 

DSC (TE/TR = 70/1349 𝑚𝑠, voxel size 1.88𝑥1.88𝑥4 𝑚𝑚) consisting of 13 axial slices and 

with acquisition time of 112 𝑠, and within the same CA injection and saline flush as the first 

cohort. 

4.2.2. Annotations 

Lesion segmentation of tumoral regions with contrast accumulation in T1wc, necrosis, as 

well as hyperintense regions on T2w/T2w-FLAIR, were provided for both cohorts. In the first 

cohort, ONCOhabitats [120] delineated edema, necrotic, and contrast enhanced tumor 

regions based on intra-patient T1w, T1wc, T2w and T2w-FLAIR exams, while in the second 

cohort, edema, necrotic and contrast enhanced tumor were delineated based on T1wc and 

T2w-FLAIR exams using a ONCOhabitats (paper 3) or a semi-automatic method with QC 

from an experienced neuroradiologist (paper 2) [50], [57]. See Figure 20 for an overview of 

lesion volume at baseline scans. In the first cohort, NAWM tissue masks used in CBV 

normalization were automatically generated using a k-means (𝑘 = 5) clustering method 

[149], while in the second cohort they were generated as part of ONCOhabitats. Overall 

survival times and the combined RANO+pseudoprogression classes previously described 

were included in the second cohort, as well as number of days in-between the longitudinal 

exams (extracted from DICOM scan dates). Similarly, age was extracted for both cohorts 

from DICOM information or from Excel sheets provided to the author.  
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Figure 20: Variations in baseline lesion volume for the 27 patients diagnosed with HGG in our second 
cohort. The huge variation in lesion volume illustrates the heterogeneity of the disease. Figure from 
our third paper. 

5. Methods 

5.1. Preprocessing and organization 

With the main objective of investigating how geometric distortion from a specific type of 

functional MRI sequence impacts CBV, paper one performed analysis in native low-

resolution functional (perfusion) space. The preprocessing carried out for structural MRIs 

were 1. removal of facial structures (spm_deface), 2. DICOM to NIFTI conversion and 3. RIR 

and DIR to transform structural MRIs and a template of brain regions to patient-specific low-

resolution DSC space. The de-facing and registrations were performed with SPM 12 

(Statistical Parametric Mapping; spm_deface) [124] and ANTs [150], while DICOM to NIFTI 
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file format conversion was performed with dcm2niix [151]. NN interpolation was used at all 

relevant steps. The DSC-MRIs were corrected for head motion using nordicICE 4.0.0 

(NordicNeuroLab, Bergen, Norway), before applying either TOPUP [111] or EPIC [110] 

geometric susceptibility distortion correction as the main analysis methods to investigate. 

CBV maps from DSC-MRI were corrected for CA extravasation using the Boxerman leakage 

correction method [90] and normalized relative to healthy NAWM values. 

The objectives of paper two and three were to quantify and model tumor-induced structural 

changes. Thus, the focus here on structural effects, incentivized to work with the MRIs in 

high-resolution structural (anatomical) space. The MRI preprocessing steps follow much of 

the scientific recommendations for developing clinical imaging biomarkers [116], with some 

additional steps for approximate MNI (spatial) normalization and longitudinal intensity 

standardization. The full preprocessing pipeline for structural MRI can be summarized as 1. 

DICOM to NIFTI conversion, 2. denoising, 3. correction for nonuniform intensities, 4. 1 𝑚𝑚3 

voxel isotropic resampling, 5. brain extraction, then 6. longitudinal intensity standardization 

and 7. Spatial MNI normalization. DICOM to NIFTI file format conversion were, again, carried 

out with dcm2niix [151], then the NIFTI files were de-noised with a spatially adaptive filter 

[118] and corrected for nonuniform intensities with the N4ITK algorithm [79]. Voxel 

isotropic resampling for the cases of anisotropic MRI voxels, were performed with FLIRT 

[152] using linear interpolation, brain extraction with BET [153], and longitudinal intensity 

standardization by piece-wise linear histogram matching within brain masks [127], [128]. 

Lastly, all MRIs were intra-patient rigid registered (RIR) based on a structural MRI, then 

inter-patient spatially normalized by RIR and AIR to the MNI-International Consortium for 

Brain Mapping (ICBM)-152 2009c nonlinear symmetric T1w or T2w template [154], [155]. All 

registrations were performed using ANTs. 
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Version controlled datasets [132] following brain imaging data structure (BIDS) [130] 

recommendations were standards of practice in most of the thesis’ work. Moreover, suited 

visualization tools were important and dependent on the preprocessing and analysis steps 

as described previously. The perfusion module of nordicICE was used in the thesis to 

generate CBV maps from uncorrected and TOPUP and EPIC corrected DSC-MRI. 

5.2. RBF interpolation 

Interpolation with radial basis functions (RBFs) in four dimensions is investigated as a 

method for visualizing and understanding high-resolution longitudinal MRI. It is used to 

create an approximate MRI volume for each day estimating the general cancer and 

treatment patterns. An example of RBF interpolated MRI was presented in section 3.2.4. 

RBF interpolation is a form of Gaussian process regression (“kringing”), or interpolation with 

Gaussian kernels. A Gaussian process may be described as an infinite dimensional 

generalization of a multivariate normal distribution. A parallelized version of this method 

was implemented. This is a meshfree in approximation method [156], [157] that takes 

scattered data points in arbitrary dimensions as input and describes them as a weighted 

linear combination of strictly positive definite [158] radial functions (Figure 21 [159]). 

 

Figure 21: One-dimensional Gaussian RBF interpolation. A continuous function passing through all 
the red dots is a weighted linear combination of Gaussians with varying center offset and width. The 

source code for this figure is openly available at the figure reference. 
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Longitudinal MRI of a single patient (with isotropic voxel dimensions and irregular amount 

of days between the scans) may be regarded as scattered data in four dimensions. Assume 

that the spatial coordinate and time point for a given voxel in linearly registered longitudinal 

MRI for a patient is 𝒙𝑗 = [𝑥, 𝑦, 𝑧, 𝑡] and its intensity value is 𝑦𝑗. Then, all 𝑁 𝒙𝑗-𝑦𝑗 pairs can be 

fitted to a linear combination of certain basis functions 𝐵𝑘 creating the continuous function 

𝒫𝑓(𝒙) = ∑ 𝑐𝑘𝐵𝑘(𝒙)𝑁
𝑘=1  

(5.1) 

  

The number of basis functions 𝐵𝑘 is the number of data points 𝑁 and 

𝐵𝑘(𝒙𝑗) = 𝜑(||𝒙𝑗 − 𝒙𝑘||) = 𝜙(𝒓) 

(5.2) 

  

is a RBF centered at 𝒙𝑘 where 𝒓 = ||𝒙𝑗 − 𝒙𝑘|| is the radial distance from its center position 𝒙𝑘 to the true data point 𝒙𝑗. 𝐵𝑘 is radial because its output value is only dependent on the 

magnitude of the input vector 𝒓. 𝐵𝑘 is thus symmetric. A common RBF is the Gaussian 

function 𝜙(𝒓) = 𝑒−(𝜖𝒓)2
 where 𝜖 is a positive shape parameter (Figure 22 [157]). 
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Figure 22: Gaussian radial basis function for two dimensions. 

RBF interpolation amounts to finding the appropriate center 𝒙𝑘, shape parameter 𝜖𝑘 and 

weighting 𝑐𝑘 for all 𝑁 RBFs by solving the linear equation system 𝐴𝒄 = 𝒚 where 𝐴𝑗𝑘 =𝐵𝑘(𝒙𝑗), 𝑗, 𝑘 ∈ [1, 𝑁], 𝒄 = [𝑐1 ⋯ 𝑐𝑁]𝑇, 𝒚 = [𝑦1 ⋯ 𝑦𝑁]𝑇. An interpolated value 𝑦 can 

be obtained by sampling 𝒫𝑓 on any desired input value 𝒙. 

5.3. Voxel tracking 

Voxel tracking is the common denominator in the three publications in the thesis, where the 

objective is tracking displacement and possibly intensity shift of voxels between two MRI 

scans. The true track of a voxel restricted piece of tissue may be complex. This thesis focuses 

on tracking only the final displacement vector and intensity shift between MRIs (Figure 23). 
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Figure 23: Illustration of tracking the final displacement and intensity change of a pixel. Final 
displacement is the dotted line. Voxel tracking is achieved by adding a third dimension 𝑧. 

Assume that the displacement 𝒅(𝒙), 𝒙, 𝒅 ∈ ℝ3 (i.e. 𝒙 = [𝑥 𝑦 𝑧]𝑇 and 𝒅(𝒙) =[Δ𝑥(𝒙) Δ𝑦(𝒙) Δ𝑧(𝒙)]𝑇) and intensity change Δ𝐼 of a voxel restricted piece of tissue is 

known between two MRI scans 𝐼𝑡, 𝐼𝑡+1 with sufficient high isotropic voxel resolution (e.g. 1 𝑚𝑚3). If allowing any displacement and intensity change of voxels, the macroscopic 

spatiotemporal transformation of MRI 𝐼𝑡 to MRI 𝐼𝑡+1 can be written as  

𝐼𝑡+1(𝒙) = (𝐼𝑡 + Δ𝐼) ∘ 𝑇 

(5.3) 

where ∘ is the function composition operator, i.e. 𝑔 ∘ 𝑓 = 𝑔(𝑓(𝒙)) and 𝑇: ℝ3 → ℝ3 is a 

non-linear dense transformation of voxel coordinates, 

𝑇(𝒙) = 𝒙 − 𝒅(𝒙) 

(5.4) 
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In equation (5.4), 𝒅(𝒙) is a displacement vector field describing the tissue displacement 

from MRI 𝐼𝑡 to MRI 𝐼𝑡+1 at starting voxel coordinate position 𝒙. Equation (5.3) assumes that 

the voxel intensity change Δ𝐼 is known in the frame of the first MRI 𝐼𝑡, i.e., before applying 

the nonlinear displacement transformation 𝑇.  

5.4. Voxel displacement path tracking 

This is a longitudinal extension of voxel tracking when focusing on displacement only. The 

trajectory of a voxel or piece of tissue originating from the first (or last) image directly 

follows the pathline computed from the time-varying displacement vector field described by 

the consecutive dense voxel coordinate transformations 𝑇1, 𝑇2, … , 𝑇𝑁. If 𝒅(𝒙(𝑡), 𝑡) describes 

the displacement fields evaluated at voxel coordinate 𝒙 for the time duration 𝑡 ∈ [1, 𝑁], 

pathlines can be computed by solving 

𝑑𝒙𝑑𝑡 (𝑡) = 𝒅(𝒙(𝑡), 𝑡) 

(5.5) 

Typically, a specific region (e.g., CA mask) is defines from where to start computing 

pathlines. If ignoring intensity changes (Δ𝐼 = 0), equation (5.3) may be interpreted as the 

resampling (re-slicing) step in DIR (section 5.6). For this case, 𝐼𝑡 and 𝐼𝑡+1 in equation (5.3) is 

equivalent to the moving and fixed image equation (3.19). An example of DIR pathline 

visualization (cancer-sim.com) is presented below in Figure 24 using the X toolkit [160]. 
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Figure 24: Voxel displacement path visualization with cancer-sim.com. Pathlines computed from 
estimated displacements from backwards-in-time ANTs SyN CC deformable image registration. A 

subset of 512 voxels in the contrast-enhanced ring of the last T1wc MRI was tracked backwards in 
time, many of which ended up in the contrast-enhanced ring shown in the first T1wc MRI in the 

figure. Pathlines are visualized like DTI fiber lines. This is subject one from our second patient cohort. 

5.5. EPI correction 

As described in section 3.4.3, EPI geometric susceptibility distortion occurs primarily due to 

the low bandwidth in the phase-encode direction. This means that Δ𝐵 causes additional 

shifts in phase of the nuclear spins, which translates into to pixel shifts along the y-axis in 

the axial EPI by a factor that is proportional to Δ𝐵. In comparison, high bandwidth would 

mean that the phase shifts caused by Δ𝐵 would instead translate into intravoxel dephasing 

(leading to signal decay). 

Specifically, both sign and magnitude of Δ𝐵 as well as direction of phase-encode traversal of 

k-space during EPI acquisition contributes to the final distortion in the EPI. A common EPI 

acquisition consists of positive (bottom-up) phase-encode traversal and for this type phase 

distortions results in a compression or squeezing effect along the y-axis in the EPI in addition 
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to intensity distortions (Figure 16 A, B). Moreover, opposite phase-encode transversal 

results comparingly in a stretching effect, which was the case for our DSC-MRI EPIs (Figure 

16 C, D).  

Generally correct assumptions are: 

1. Pixel displacement 𝑑 along the axial y-direction of the EPI is proportional to Δ𝐵 

2. The associated pixel intensity distortion Δ𝐼 is proportional to Δ𝐵 

3. 𝑑 and Δ𝐼 is equal in magnitude but have opposite sign when describing an EPI pair 

with positive and negative phase-encode direction 

The correction methods in the thesis (FSL TOPUP [111] and EPIC [110]) make these 

assumptions in order to formulate EPI distortion correction as a voxel tracking problem. 

5.5.1. The voxel tracking problem for EPI correction 

Let 𝒙+ and 𝒙− be the voxel position coordinates for a positive and negative phase-encode 

EPI, and 𝒙 the corresponding coordinates for a distortion corrected EPI. The opposite sign 

assumption of the displacement inherent in the EPIs (assumption 3.) can be described by 

the transformation pair 𝑇+, 𝑇−: ℝ3 → ℝ3 

𝑇+(𝒙): 𝒙 → 𝒙+ = [𝑥 𝑦 + 𝑑(𝒙) 𝑧]𝑇  

(5.6) 𝑇−(𝒙): 𝒙 → 𝒙− = [𝑥 𝑦 − 𝑑(𝒙) 𝑧]𝑇 

(5.7) 

Furthermore, the relation between the EPIs in terms of geometrical and intensity distortions 

can be formulated similar to equation (5.3), 
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|𝜕𝑇+𝜕𝒙 | |𝒙+(𝐼+ ∘ 𝑇+) = |𝜕𝑇−𝜕𝒙 | |𝒙−(𝐼− ∘ 𝑇−) 

(5.8) 

where 𝐼+ and 𝐼− is the positive and negative phase-encode (distorted) EPI. The derivative 

terms (|𝜕𝑇𝜕𝒙|) may be called Jacobian intensity modulations. 

FSL TOPUP and EPIC use the formulation in equation (5.8) in slightly different ways to 

estimate a field that can be used to distortion correct the EPI. The difference between the 

methods is the type of field as well as the type of model used together with the field to 

perform correction. TOPUP estimates the off-resonance (scalar) field Δ𝐵, while EPIC 

estimates the y-displacement (scalar) field 𝑑 (Figure 25). 
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Figure 25: CBV estimated from A, B: uncorrected, D, E: TOPUP corrected, and G, H: EPIC corrected 
DSC-MRI for a patient. After CBV estimation, tumorous CBV voxels were excluded based on ground 
truth tumor lesions as described in the first paper. C: T2w-FLAIR as undistorted reference image. F: 

TOPUP-estimated spin-echo geometric distortion in terms of spin off-resonance 
([−10,10] 𝐻𝑧 shown). I) EPIC-estimated spin-echo geometric distortion in terms of anteroposterior 
voxel displacement ([−10,10] 𝑚𝑚 shown). Gradient-echo versions of F and I were also computed 

but are not shown in the figure. For F and I, blue and red illustrates negative and positive units, 
respectively. The window range used was [0,7] for all CBV maps. Figure from our first paper. 

TOPUP and EPIC are termed reverse gradient methods (reversed phase-encode correction 

methods) since the field is estimated by reversing the gradients (the transformations 𝑇) as 

will be explained in the next subsections. Moreover, this type of EPI correction is performed 

retrospectively after having captured two EPI scans with opposite phase-encode direction. 

Other EPI correction methods, such as direct field mapping using a double GE sequence 

[112], DIR [161], [162] or point spread function mapping [163], are not investigated in the 
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thesis. For a comparison of the different methods, see these theses [106], [164]. The reverse 

gradient correction methods can be performed on either SE or GE EPIs. Due to additional 

signal loss (drop-out) associated with GE, it is recommended to estimate the field from SE 

EPIs. As stated in section 2, the aim of the first paper is to investigate the impact of EPI 

distortion correction on CBV estimation (computed from DSC-MRI consisting of EPIs). 

Additional signal loss in GE (not accounted for in the thesis) is seen in the frontal areas in 

the axial CBV maps in Figure 25. 

5.5.2. FSL TOPUP 

TOPUP estimates Δ𝐵 (from equation (3.17)) as a linear combination of spatial basis 

functions consisting of a truncated tree-dimensional discrete cosine transform (DCT). DCT 

can be characterized as a real-valued version of the discrete Fourier transform (DFT), but 

which is asymmetric and has twice the frequency resolution when compared to DFT ([165], 

Chapter 7.4). These characteristics make DCT well suited for modeling Δ𝐵. TOPUP 

specifically estimates 18 · 18 · 7 = 2268 basis weights using a reverse gradient method 

based on equation (5.8). Details of the estimation method is thoroughly explained in the 

reference paper [111]. 

Equation (3.18) can be re-written as 

�̃� ∝ �̃�𝑇 = ∬ 𝐼(𝑥, 𝑦)𝑒−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦+δ𝐵(𝑥,𝑦,𝑡))𝑑𝑥𝑑𝑦𝑥𝑦  

(5.9) 

and further discretized in form of a matrix-based transform ([165], Chapter 7.2) �̃� = 𝐴𝐼, 

where 𝐴 implements the two-dimensional DFT. The main idea of correction in TOPUP is that 
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there exists a transform 𝐹 that is like 𝐴 but which contains zero magnetic susceptibility 

distortions (Δ𝐵 = 0), such that the distorted EPI can be expressed as 

𝐼 = 𝐹𝐴𝐼 = 𝐾𝐼 

(5.10) 

A Moore-Penrose pseudo-inverse 𝐾+ of 𝐾 can be computed to estimate the distortion 

corrected image 𝐼 = 𝐾+𝐼. However, this results in ringing artifacts in areas with large 

compression (due to resulting signal loss). Instead, since capturing both positive 𝐼+ and 

negative 𝐼− phase-encode EPIs it is possible to express the distortion correction problem as 

[𝐼+𝐼−] = [𝐾+𝐾−] 𝐼 

(5.11) 

With 𝐾+ and 𝐾− being the corresponding matrix transforms (termed interpolation matrices). 

A distortion corrected image 𝐼 without artifacts produced by the Moore-Penrose pseudo-

inverse can then be computed by the generalized inverse of the augmented matrix [𝐾+𝐾−] 

𝐼 = ([𝐾+𝑇 𝐾−𝑇] [𝐾+𝐾−])−1 [𝐾+𝑇 𝐾−𝑇] [𝐼+𝐼−] 

(5.12) 

To summarize, TOPUP models Δ𝐵 as a linear combination of DCT spatial basis functions as 

well as the image formation process of positive and negative phase-encode SE EPIs, to 

obtain a distortion corrected EPI from a generalized inverse. TOPUP is the magnetic 

susceptibility distortion correction method provided by the FMRIB Software Library (FSL) 

[138]. 
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5.5.3. EPIC 

EPIC modifies equation (5.8) by reversing the sign of the y-displacement 𝑑 within the 

transformations 𝑇+ and 𝑇−and the Jacobian intensity modulations. It is then re-formulated 

into a cost function of the form 

𝑓(𝑑) = | |𝜕𝑇−𝜕𝒙 | |𝒙(𝐼+ ∘ 𝑇−) − |𝜕𝑇+𝜕𝒙 | |𝒙(𝐼− ∘ 𝑇+)|2 + 𝜆1𝑑2 + 𝜆2∇d
= |(1 − 𝜕𝑑𝜕𝑦) (𝐼+ ∘ 𝑇−) − (1 + 𝜕𝑑𝜕𝑦) (𝐼− ∘ 𝑇+)|2 + 𝜆1𝑑2 + 𝜆2∇d 

(5.13) 

where 𝜆1 and 𝜆2 are added regularization parameters that control the quality of the 

displacement estimation. 𝜆1 = 0 and 𝜆2 = 104 were used as in the reference paper [110]. 

The displacement 𝑑 for each voxel is then estimated using the following Hessian-based 

optimization: 

0. Initialize the displacement field 𝑑 to zero 

1. Smooth the original positive and negative phase-encode EPIs using a Gaussian kernel 

with standard deviation to 3.5 − 4 𝑚𝑚 

2. Compute the Hessian 𝐻𝑓 and gradient ∇𝑓 of 𝑓 for the current displacement field 𝑑 

3. Solve the quadratic form approximation 𝐻𝑓 · 𝑣 = −∇𝑓 for 𝑣 

4. Update the displacement field by 𝑑 = 𝑑 + 𝑣 

5. Decrease the standard deviation (width) of the Gaussian smoothing kernel by 0.25 −0.5 𝑚𝑚 

Step 1.-5. is then repeated until there is no smoothing. Having the final estimated 

displacement 𝑑 for each voxel, a distortion corrected EPI 𝐼 is then computed from either of 

the positive or negative phase-encode EPI according to 
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𝐼 = (1 − 𝜕𝑑𝜕𝑦) (𝐼+ ∘ 𝑇−) = (1 + 𝜕𝑑𝜕𝑦) (𝐼− ∘ 𝑇+) 

(5.14) 

In summary, EPIC estimates the voxel displacement associated with EPI geometric distortion 

by negating the sign of displacement in equation (5.8) in order to describe the mapping 

from distorted to non-distorted space for both positive and negative phase-encode EPIs. 

This allows re-formulating EPI distortion correction to a Hessian-based optimization problem 

as described above. The displacement is iteratively estimated together with Gaussian 

smoothing of decreasing width, to ensure increasingly fine-grained displacement 

estimation, and thus convergence over the iterations. The final estimated displacement field 

is then used to perform EPI distortion correction from either of the positive or negative 

phase-encode EPIs. Like TOPUP, both displacement and intensity shift of voxels is corrected.  

For an example of incorporating EPIC into a clinical workflow, see this recent Master’s thesis 

[106]. TOPUP and EPIC, among others, were also investigated in another recent Master’s 

thesis [166]. 

5.5.4. Relation between displacement and intensity distortions and field 

inhomogeneities  

One important insight in EPI geometric susceptibility distortion correction is that both Δ𝐵, 𝑑 

and Δ𝐼 are related according to 

𝜕𝑑𝜕𝑦 = 𝑇𝛾 𝜕Δ𝐵𝜕𝑦 = Δ𝐼 

(5.15) 

where 𝑇 = 𝑁Δ𝑡 is the total time spent on a single-slice, single-shot EPI k-space recording, Δ𝑡 

is the time used to record an echo into a single frequency-encoded k-space line (readout), 
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and 𝑁 the number of k-space acquisition lines. 𝛾 is the gyromagnetic ratio connecting the 

magnetic field strength to resonance frequency as explained in section 3.3.1. Different from 

equation (5.3), Δ𝐼 here belongs to the displaced (corrected) image space (𝐼). The partial 

derivative of the estimated y-displacement is the shift in voxel intensity and is proportional 

to the field inhomogeneities, EPI acquisition time and gyromagnetic ratio. 

5.6. Deformable image registration 

DIR is a non-linear (non-rigid) alignment of two MRIs that estimates a dense displacement 

field to describe the spatial transformation from one MRI to another. DIR results in 

displacement-only voxel tracking. Non-linear and non-rigid means, opposed to rigid or affine 

[123], that there are non-linear local spatial correspondences in the transformation, such as 

spatial warps. With the aim to estimate physical displacement of tissue voxels, DIR is only 

valid first after having applied LIR to rule out rigid and affine global correspondences 

between two images (Figure 26 [167, p. 14]). These preceding intra-patient rigid 

registrations (RIRs) were performed with ANTs [150] with the well-known MI loss metric 

[143] as the spatial alignment function 𝐴. 
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Figure 26: Deformable image registration for tracking structural deformations between two images 
of the same patient. 1. Linear image registration is performed to achieve global alignment between 
the images 𝐹 and 𝑀 in terms of linear transformations on 𝑀 such as rotation and translation. 2. A 
displacement field 𝒅 describing the remaining local non-linear tissue displacement between the 𝐹 

and the linearly transformed 𝑀 is estimated. Finally, 𝒅 can be used to deform the linearly 
transformed 𝑀 into reconstructing 𝐹 in terms of displacement only. Used with modifications and 

permission from Elsevier (License number: 5433670719364). 

5.6.1. The voxel tracking problem for DIR 

For DIR, 𝑇 in equation (3.19) contains a vector field of the estimated displacement of each 

voxel coordinate from the first MRI to the second MRI, as described by the voxel tracking 

equation (5.4). Hence, 𝑇 is a nonparametric deformation model described by a non-linear 

dense transformation. Only monomodal (e.g. T1w to T1w) DIR is investigated in the thesis. If 

DIR is used to estimate tissue displacement, it is thus reasonable to include intensity shift 

(Δ𝐼) in the voxel tracking problem to model tissue transformation from biological processes 

such as cancer and treatment. The DIR conducted in the thesis is only intended to quantify 

voxel displacement and not intensity shift. DIR thus partly fulfills voxel tracking as it is 

defined in section 5.3. 
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5.6.2. Mathematical terminology 

Medical DIR may be grouped according being based on physical models, interpolation and 

approximation theory, ap-priori knowledge or specific tasks [121], [168]. Some DIR methods 

estimate both the forward and backward displacement field allowing to transform each MRI 

into the other MRI in terms of displacement only (inverse consistency). A mapping preserves 

topology (is homeomorphic) if it is continuous, onto and locally one-to-one both forwards 

and backwards. Topology preserving mappings that are differentiable contain Jacobian 

determinants that are greater than zero. These mappings are termed diffeomorphic if they 

are also invertible. A symmetric mapping is achieved if the forward and backward 

displacement vectors describe the shortest displacement paths possible (are geodesics) and 

are equal in magnitudes [169]. A consequence of symmetric mapping is that the forward 

and backward displacement vectors meet in a midpoint that is half the distance from their 

origins (termed symmetric normalization, SyN) [143]. 

5.6.3. ANTs SyN 

The main DIR method in the thesis is ANTs symmetric diffeomorphic image normalization 

(ANTs SyN) with neighborhood CC as the spatial alignment function 𝐴 [144]. It is bundled 

with the advanced normalization tools (ANTs) software package [150]. ANTs SyN may also 

be used with other alignment functions such as voxel-vise MI [143]. ANTs SyN CC performs 

well compared to ANTs MI and other deformable medical registration algorithms [170], 

which is also shown in the third publication. ANTs SyN extends a physics-based deformation 

model in the Lagrangian specification of a velocity field [171] by using a symmetric 

formulation of forward and backward velocity fields for describing voxel displacement [144]. 

It belongs to a group of registration algorithms called large deformation diffeomorphic 
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metric mapping (LDDMM) [172], [173] in which diffeomorphic mapping is ensured by 

constraining the velocity field to be smooth in the regularization term 𝑅 [121], [172].  

5.6.4. Optical flow 

Optical flow (OF) methods [174] may be described as small deformation monomodal DIR 

methods [121]. An essential assumption in OF is that voxel intensity values does not change 

during displacement (Δ𝐼 = 0 in equation (5.3)). While DIR seeks to find spatial 

correspondences between images, OF seeks to recover the apparent motion of objects 

within images. OF is generally neither inversely consistent, nor homeomorphic, 

diffeomorphic, or symmetric. As a result, it is best suited for estimating motion within 

images that can be described by a displacement vector field having properties similar to 

incompressible flow [168]. In our third paper, however, OF by Farnebäck [175] showed 

similar voxel displacement estimation accuracy to ANTs SyN CC, and outperformed the 

iterative Lucas-Kanade [176] and TV-L1 [177, p.] dense OF methods. This highlights the 

potential utility of Farnebäck OF as a fast method for DIR.  

5.7. Deformation biomarkers 

Voxel-vise displacements estimated from DIR of longitudinal MRI lay the basis for 

longitudinal MRI analysis in the thesis. General quantifications of tumoral displacement and 

peritumoral compression may be obtained by computing displacement magnitudes and 

quantized divergences as follows: By writing out the voxel-vise displacement vector field 𝒅 

to component form (using the 𝒊, 𝒋, 𝒌 orthonormal basis vectors) 𝒅(𝒙) = 𝑀(𝒙)𝒊 + 𝑁(𝒙)𝒋 +𝑃(𝒙)𝒌, divergence is a scalar field computed by summarizing partial derivatives of 𝒅 such 

that [178] 
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𝑑𝑖𝑣 𝒅(𝒙) = ∇ · 𝒅 = 𝜕𝑀𝜕𝑥 |𝒙 + 𝜕𝑁𝜕𝑦 |𝒙 + 𝜕𝑃𝜕𝑧 |𝒙 

(5.16) 

Displacement magnitudes describe a displacement scalar field computed as 

|𝒅| = √𝑀2 + 𝑁2 + 𝑃2 

(5.17) 

In our second paper, divergence and magnitude maps computed from ANTs SyN CC 

displacement fields were used to develop four biomarkers as illustrated in Figure 27. 

 

Figure 27: Developing four deformation biomarkers based on longitudinal consecutive deformable 
image registration using the ANTs SyN algorithm. Here 𝑇1𝑐𝑡 and  𝑇1𝑐𝑡−1 describe the fixed and 

moving scans (forward-in-time registration). Figure from our second paper. 

The divergence and magnitude maps are analyzed within peritumoral ROIs in the second 

paper. Particularly interesting regions are the peritumoral regions presenting with negative 

divergence (i.e., ∇ · 𝒅 < 0) from a longitudinal MRI pair, providing a basis for quantifying 

peritumoral tissue compression. Note that a nonzero divergence implies compressible flow, 

which is tricky for OF methods. However, the third paper presents evidence that Farnebäck 
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OF can perform similar to ANTs SyN CC and that it thus may still be a relevant candidate as a 

faster DIR method than ANTs SyN CC for capturing the tissue imaging biomarkers in our 

second paper. 

5.8. Deformation model 

A simple and robust deformation model of general macroscopic shrink and growth behavior 

in glioblastoma is developed (Figure 28). It models either shrinkage of regions from collapse 

and remodeling of tissue regions from surgery, radiation- and chemotherapy, or 

expansion/enlargement of regions as a result of cancer growth [179]–[181]. In the third 

paper, it is used to generate synthetic expansion deformations for benchmarking DIR 

methods. It is inspired from real-world longitudinal MRI such as Figure 9 presenting tumoral 

expansion from a pushing glioblastoma phenotype, and Figure 8 presenting both shrinkage 

and expansion from an infiltrative phenotype.  

 

Figure 28: Illustration of expansion growth of lesion and cavity area followed by displacement and 
compression of peritumoral tissue. Figure from our third paper. 

For a single execution, the algorithm creates a realistic displacement field 𝒅(𝑀𝑙, 𝑀𝑏 , 𝛼, 𝛽, 𝛾) 

using the information from the outlined lesion 𝑀𝑙  and brain 𝑀𝑏 masks, merged with three 

simulation parameters: 
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1. Maximum tissue displacement 𝛼 [𝑚𝑚] 

2. Infiltration 𝛽 

3. Growth irregularity 𝛾 

By varying these three simulation parameters, it creates displacement fields and associated 

deformed scans as illustrated in Figure 29.  

 

Figure 29: Growth simulations with the deformation model on T1wc MRI in the third paper. A: 𝛼 = 3 [𝑚𝑚], B: 𝛼 = 8 [𝑚𝑚]. Two values of infiltration 𝛽 (A, B horizonzal: low and high infiltration) and 
three values of irregularity 𝛾 (A, B vertical: no, intermediate and high irregularity). The resulting 
deformed T1wc MRI, magnitude of displacement field and deformation grid are overlaid. Figure 

from our third paper. 

See Table 5 for a complete overview of the input data, simulation parameters and output as 

well as internal fixed parameters of the deformation model. 
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Table 5: Parameters of the synthetic deformation model. Shrinkage is modeled with a negative 
maximum displacement 𝛼 < 0, and growth with a positive 𝛼 > 0. 

Input Symbol Range Type Description 

Lesion mask 𝑀𝑙  [0,1]2 Binary 
scalar 
field 

 

Brain mask 𝑀𝑏 [0,1]2 Binary 
scalar 
field 

 

Displacement 𝛼 ℝ Scalar [𝑚𝑚] 
Maximum tissue 
displacement 

Infiltration 𝛽 [0,1] Scalar Intensity decay fraction; 0: most infiltration, 1: 
least infiltration 

Irregularity 𝛾 < 0,1] Scalar Perlin noise resolution; ~0: highest irregularity, 1: lowest irregularity 

Noise 𝛿 ℝ Scalar Perlin noise maximum 
magnitude; fixed default = 0.6 

Standard 

deviation 

𝜎 ℝ Scalar Of 𝑔; fixed default = 5 

Number of 

vectors 

𝑁𝑠 [1, 𝑁] Integer Number of directions for 
computing deformations; 
fixed default = 32 

Angle 

deviation 

𝜃 < 0,90 > Scalar 2𝜃 is the top angle of the 
directional cones; fixed 
default = 7° 

     

Output     

Model 𝒅(𝑀𝑙 , 𝑀𝑏 , 𝛼, 𝛽, 𝛾) |𝒅| ∈ [0, 𝛼 + 𝛿] Vector 
field 

 

 

Let 𝑤, ℎ, 𝑑 be the width, height, and depth of the bounding box for the outlined tumor 

segmentation mask 𝑀𝑙  registered to 1 𝑚𝑚3 voxel approximate MNI space as described in 

section 5.1.  

The algorithm initially takes 𝑤, ℎ, 𝑑 as inputs to compute a three-dimensional Gaussian 

scalar field 𝑔 consisting of 𝜎 standard normal deviations in each dimension, parameterized 

in equally spaced intervals and with resolution 𝑁 according to equations (5.18) and (5.19). 
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𝑔(𝑥, 𝑦, 𝑧) = −𝑒−𝑥2+𝑦2+𝑧22  

(5.18) 

[𝑥𝑦𝑧] ∈ [[−𝜎, 𝜎]𝑁(𝑤)[−𝜎, 𝜎]𝑁(ℎ)[−𝜎, 𝜎]𝑁(𝑑) ] , 𝑁(𝑙) = {𝑙 + 1, 𝑙 𝑜𝑑𝑑𝑙, 𝑙 𝑒𝑣𝑒𝑛 

(5.19) 𝑁(𝑙) in equation (5.19) results in an even number of sampling steps along each bounding 

box dimension of the lesion mask. This negligible simplification is required to be able to 

access the geometric center of the bounding box by simple matrix indexing. A selection of 𝜎 = 5 standard deviations ensures that the elliptic scalar field 𝑔 is within the tumor 

bounding box entirely (~100 %). See Figure 30 for an illustration of the one-dimensional 

(1D) variant of g. 

 

Figure 30: 𝑔 in one dimension with 𝜎 = 5. 

An initial model displacement vector field 𝒅(𝑀𝑙) is then computed from the gradient 

(partial derivatives with respect to 𝑥, 𝑦 and 𝑧) of 𝑔 by 𝒅 = ∇g. Figure 31 illustrates how 𝒅 is 

computed from the tumor mask 𝑀𝑙  for various spatial dimensions. 
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Figure 31: Illustration of computation of initial deformation model 𝒅 based on 1D, 2D and 3D cross-
section of the tumor mask 𝑀𝑙. 𝒅 is the gradient of 𝑔. 

Figure 32 C displays an ellipsoid and multiple directional cone shapes that are computed 

from 𝒅. The purpose of the directional cones is guiding iterative deformation of 𝒅 in terms 

of displacing the vector positions in 𝒅 by 𝒅 itself by an amount defined by the infiltration 

parameter 𝛽, and then linearly interpolating the displaced components of 𝒅 to get a smooth 

displacement field.  

 

Figure 32: The initial deformation model 𝒅 is computed from the tissue mask (B). At later steps, the 
brain mask (A) acts as a boundary for restricting physical displacement when deforming 𝒅 by 

extending the “cones” computed from the initial 𝒅 model (C). 

The inner ellipsoid mask 𝑀𝑒 presenting as the center of the initial deformation model in 

Figure 32 C is defined as 



91 
 

𝑀𝑒 ∶= 𝑔 < −𝑒12 

(5.20) 

The surface of 𝑀𝑒 defines the locations with highest spatial intensity change in 𝑔, and 

resultingly the starting positions of the largest gradient magnitudes in 𝒅. This is the 

inflection surface of 𝐺 defined by ∇2𝑔 = 0. The algorithm then scales 𝒅 to have a maximum 

gradient magnitude of 1 by 𝒅 = 𝒅|𝒅| and finds the approximate unit normal vectors 𝑉 for the 

surface of 𝑀𝑒 in MNI voxel isotropic resolution, by extracting vectors 𝑉 ∈ ℝ𝑁×3 from 𝒅 that 

have starting positions in the center of the voxels in a convex ellipsoid mask 𝑀 according to 

equations (5.21) and (5.22) 

𝑉 = 𝒅[𝑀] 

(5.21) 𝑀 ∶= 𝑀𝑒 𝑤ℎ𝑒𝑟𝑒 ∥ 𝑉 ∥𝐹> 0.99 

(5.22) 

where [] describes tree-dimensional binary mask matrix indexing and ∥ 𝑉 ∥𝐹∈ ℝ𝑁×1 is the 

Frobenius norm of 𝑉 along its second axis dimension, which computes gradient magnitudes. 

To speed up the algorithm, a fixed subset of 𝑁𝑠 maximum spread normal vectors 𝑉𝑠 ∈ ℝ𝑁𝑠×3 

is selected from 𝑉 according to Pseudocode 1. A default 𝑁𝑠 = 32 is selected empirically as a 

good trade-off between directional accuracy and computational efficiency for 1 [𝑚𝑚3] 

isotropic voxel resolution and observed growth cases in the longitudinal MRI data. 

A gradient magnitude threshold of 0.99 is suitable for realistic glioblastoma bounding box 

dimensions in 1 𝑚𝑚3 voxel isotropic space but may possibly need to be lowered with lower 

isotropic resolutions to ensure extraction of ≥ 𝑁𝑠 normal vectors. A cone is then computed 

for each vector in 𝑉𝑠 based on a fixed deviation 𝜃 in angles between each vector in 𝑉𝑠 and 𝒅 
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according to Pseudocode 2. 2𝜃 is the resulting top angle in the generated cones as 

illustrated in Figure 32. A default of 𝜃 = 7° is selected empirically to result in a smooth 

deformation model. 

The final mask 𝑀 displayed in Figure 32 C is the conjunction of the ellipsoid mask 𝑀𝑐 and all 𝑠 computed cone masks 𝑀𝑐 from Pseudocode 2 according to equation (5.23) 

𝑀 = 𝑀𝑒 ∧ ⋀ 𝑀𝑐,𝑖𝑠
𝑖  

(5.23) 

Pseudocode 3 describes the next and main part of the algorithm. Here, 𝒅 is iteratively 

deformed by an amount 𝛽 that is proportional to the maximum distance to the end of the 

brain (Figure 33). This creates the infiltrative displacement field 𝒅𝛽. An infiltrative gaussian 𝑔𝛽 is created similarly. 
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Figure 33: Simplified two-dimensional axial illustration of the infiltration algorithm described in 
Pseudocode 3. The components of the initial displacement field 𝒅 (blue arrows) computed from the 

lesion tissue bounding box is displaced by itself by a fraction 1 − 𝛽 proportional to the maximum 
distance to the end of the brain. Here 𝛽~0.6. 

The final deformation model is then the displacement field computed according to equation 

(5.24) 

𝒅(𝑀𝑙 , 𝑀𝑏 , 𝛼, 𝛽, 𝛾) = |𝛼 · 𝒅𝛽(𝑀𝑙 , 𝑀𝑏) + 𝒑(𝛾)|𝑀𝑏 

(5.24) 

where 𝒑 is a Perlin noise [182] vector field and ||𝑀𝑏 restricts displacement to only occur 

inside the brain mask. For the latter task, displacements surpassing the brain mask are 

shortened to end at the brain mask barrier.  
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6. Summary of papers 

The tree publications perform voxel tracking with the aims described previously. This 

involves, among others, EPI correction for obtaining more accurate estimates of blood 

volumes in the first paper, developing prognostic tissue deformation biomarkers from DIR in 

the second paper, and measuring DIR accuracy in tumoral regions in the last paper. 

6.1. Paper 1 

We performed geometric susceptibility distortion correction to improve the spatial 

alignment of perfusion MRI and structural MRI, as well as consistency of blood volume 

estimates from perfusion MRI. We investigated two methods for correcting EPIs for 

geometric susceptibility distortions, FSL TOPUP and EPIC, as described in previous sections. 

The impact of the correction methods on estimated CBV values in glioblastoma pre-

treatment MRI from or first cohort (𝑁 = 45). 

The raw EPIs in the DSC-MRI contained the stretching type of distortions described 

previously (Figure 16 C, D). Geometric distortion in the raw EPIs and the CBV map computed 

from raw DSC-MRI were various spatial misalignments particularly in frontal regions when 

compared to non-EPI structural MRI. This yielded for both investigated SE and GE DSC-MRI 

(Figure 25). 

Our main result was that this type of EPI distortion resulted in underestimated CBV values. 

By performing either of the TOPUP or EPIC distortion correction methods on the GE and SE 

DSC EPIs and computing CBV from the distortion corrected EPIs, an increase in CBV values 

was observed when comparing to CBV values computed from distorted EPIs (+~0.06 rCBV, 𝑝 < 0.0008). 
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As described in previous sections, both TOPUP and EPIC modifies intensity values of voxels 

in the EPI in addition to displacing voxels when performing corrections. Correcting for the 

stretching type of distortion from a top-down phase encode k-space traversal will lead to an 

increase in EPI intensity values (related to the method of displacement correction) in the 

distortion corrected EPIs. Our work showed that this type of EPI distortion correction also 

leads to significant intensity increase in CBV as measured by paired Wilcoxon signed rank 

tests (+~0.05/~0.05/~0.04/~0.08 rCBV for TOPUP GE/EPIC GE/TOPUP SE/EPIC SE, 

respectively, all with 𝑝 < 0.0008). This effect was most prominent in cortical regions close 

to air-tissue transitions, which experience high variations in local tissue magnetic 

susceptibility and subsequent Δ𝐵 (Figure 34). Of tumoral regions, only TOPUP correction of 

SE EPIs led to significant CBV change (+~0.03 rCBV, 𝑝 = 0.0002). This change was a CBV 

increase in contrast enhanced tumor regions. Second, we analyzed the volume change of 

multiple brain regions and tumor lesions associated with EPI correction. For this we used 

paired Wilcoxon signed rank tests on Dice similarity coefficients. Many regions experiencing 

significant CBV and Dice coefficient change were in cortical areas in the frontal, occipital and 

temporal lobes as illustrated in Figure 34. 
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Figure 34: Cortical regions exhibiting change in CBV or Dice coefficient following EPI distortion 
correction. Temporal and occipital lobe are affected in terms of Dice improvement for GE images 

(p < 0.0007), while the remaining regions are affected in terms of rCBV increase for both GE and SE 
images (𝑝  <  0.0008). Distortion correction leads to rCBV increase in large cortical regions in mid 

frontal, occipital, and temporal lobe as well as in some subcortical regions as presented in the results 
section in our first paper. Only the left side hemisphere is shown. Surface rendering provided by 

Neuromorphometrics, Inc. (https://scalablebrainatlas.incf.org/human/NMM1103). Figure from our 
first paper. 

In summary, this work highlighted the importance of performing EPI correction when 

assessing CBV values together with structural MRI in glioblastoma. An EPI that possesses 

lowered intensity values and stretched geometric distortions along the anteroposterior axis 

does not perfectly correspond to a high-resolution structural MRI. Since perfusion MRI 

utilizes EPIs, correction methods such as FSL TOPUP are warranted to ensure CBV values 

that correspond to tissue seen on structural MRI. Our results indicated that for this type of 

EPI distortion, CBV values from uncorrected EPIs tend to be underestimated and falsely 

displaced when compared to their true values and spatial locations in the cancerous brain. 

https://scalablebrainatlas.incf.org/human/NMM1103
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6.2. Paper 2 

Here we utilized DIR together with regions of interest, survival and RANO status, to derive 

and investigate DIR-based biomarkers. We analyzed their survival prediction capabilities, 

stratification capabilities into low and high survival subgroups, and association with RANO 

status. 

We introduced four biomarkers based on magnitude and divergence maps of DIR 

displacement fields within peritumoral regions: two displacement biomarkers and two 

compression biomarkers (Figure 27). We defined subregions of peritumoral regions that had 

a negative divergence map as peritumoral tissue compression habitats. The displacement 

fields were computed from ANTs SyN CC DIR of consecutive intervals of longitudinal MRI 

pairs of post-operative glioblastoma. A total of 127 longitudinal studies from the 23 

patients in our second cohort with glioblastoma, were incorporated into the study.  

Most of these patients experienced significant tissue deformations at later stages of the 

standard treatment because of recurring cancer and tumor mass effect. We stratified 

patients into low and high survival subgroups according to an optimal threshold value for 

our biomarkers in terms of maximizing the 𝐶 − 𝑖𝑛𝑑𝑒𝑥. In this way, we linked low and high 

survival subgroups with biomarker values describing high and low mass effect. Mean values 

of the biomarkers were extracted from peritumoral regions as well as peritumoral 

compression regions. The analysis was carried out as follows:  

1. Analysis of intrapatient association of the median biomarkers with RANO progression 

status by pairwise Wilcoxon signed rank tests. 
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2. Analysis of the association of biomarkers with interpatient overall survival as well as with 

intrapatient time-to-exitus (defined as the time from each MRI study to death) for each 

interval image pair using Cox proportional hazards regression analyses.  

3. Kaplan-Meier analysis and log-rank tests to investigate stratification capabilities of the 

biomarkers when divided into thresholds for low and high survival subgroups according to 

maximizing the 𝐶 − 𝑖𝑛𝑑𝑒𝑥. 

For 1. we found that all biomarkers had significant higher values for the paired exams 

labeled as progressing compared to the pairs that were labeled with non-progression RANO 

status (𝑝 < 0.05). This effect was most prominent for the compression biomarkers. The Cox 

analyses in 2. returned all biomarkers to be significantly associated with time-to-exitus. Only 

the compression biomarkers had a significant interpatient association with overall survival. 

Moreover, the highest hazard ratios were observed in the peritumoral compression habitats 

and were larger for compression biomarkers than for the displacement biomarkers. Last, 3. 

returned the compression biomarkers to have significant stratification capability for low and 

high survival subgroups. The stratification thresholds that maximized the 𝐶 − 𝑖𝑛𝑑𝑒𝑥 were 3.53/3.19 𝑚𝑚 and 0.09/0.1 for the displacement magnitude and divergence biomarkers 

within perotumoral/peritumiral compression habitats, respectively. Moreover, the 

stratification capability increased when restricting measurements to within peritumoral 

compression habitats. Figure 35 displays the biomarkers for one of the patients. 
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Figure 35: Deformation biomarkers and longitudinal evolution of a patient after start of CRT. A: 
According to RANO criteria, tumor progression started on day 208. However, the displacement maps 

show significant deformations already at day 28. Circles in orange highlight preliminary visual 
evidence of tumor growth. B: Quantification of the displacement magnitude and absolute 

divergence in control and tumor ROIs, respectively. This is subject four from our second patient 
cohort. Figure from our second paper. 

In summary, this work indicated that deformation biomarkers computed from longitudinal 

DIR in glioblastoma, and particularly peritumoral compression biomarkers, may have 

prognostic significance in predicting survival outcomes in patients with glioblastoma 

receiving standard treatment. High peritumoral compression as measured by our 

divergence-based biomarker may indicate reduced survival prognosis. In general, clinically 

relevant effects of tumor growth on tissue may be predicted by these deformation 

biomarkers, such as early detection of recurrence. Moreover, peritumoral regions with 

tissue compression as measured by negative divergence may be particularly relevant 

regions to examine during patient follow-up, as they may provide a causal link between 

solid stress and neurological dysfunction [183]. 

6.3. Paper 3 

In this work we investigated the geometric accuracy of DIR-based tissue displacement 

estimates in tumoral regions. We created a framework for measuring DIR performance in 
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glioblastoma by generating realistic synthetic ground truth tissue deformations as possible 

projections of cancer progression and recurrence on structural MRIs (Figure 29).  

This involved developing a tissue deformation model of cancer growth with a controlled set 

of clinically meaningful simulation parameters: 1. maximum radial tissue displacement 𝛼, 2. 

infiltration 𝛽 and 3. growth irregularity 𝛾 as described previously. The deformation model 

thus allowed us to perform a parametric evaluation of DIR methods for use in tumor growth 

assessment. 

We generated 12 synthetic deformations of early post-operative baseline T1wc MRI from 

the 27 patients with HGG in our second cohort by varying our simulation parameters. We 

selected simulation parameters to describe low and high tumor mass effect, low and high 

infiltration and no, intermediate, and high irregularity. Figure 29 presents 12 displacement 

fields 𝒅(𝑀𝑙, 𝑀𝑏 , 𝛼, 𝛽, 𝛾) and resulting deformed T1wc images for a given patient lesion 𝑀𝑙  
and brain 𝑀𝑏 mask. These synthetically deformed T1wc MRIs were then regarded as 

possible projections of growth as may be seen on future follow-up scans.  

Five well-known DIR methods (ANTs SyN with CC and MI loss metrics, and the Farnebäck 

[175], iterative Lucas-Kanade [176] and TV-L1 [177, p.] OF methods) were then set to 

estimate the voxel-vise displacement between each pair of baseline and synthetic follow-up 

scan. We analyzed the voxel-vise displacement estimation error from comparing our 

synthetic ground truth displacements with the estimated displacements from the DIR 

methods within edematous, contrast-enhanced, and necrotic lesion regions. Pairwise 

Wilcoxon signed rank tests, Kruskal-Wallis tests and ANOVA with Tukey pair comparisons 

were conducted to investigate the significance in estimation errors when varying the 

simulation parameters, as well as performance differences between the registration 
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methods, within the lesion tissue classes. We also performed a grid search [184] (of 𝛼 and 𝛽) to investigate how well our model could fit to describe real follow-up scans at two weeks. 

The evaluation function in the grid search was spatial CC [138] between model deformed 

and true second exam T1c MRI within outer ellipsoid masks defined by 𝑔𝛽 > 0.05. 

Our study returned highest performance of the DIR methods for tumor growth projections 

containing low maximum radial tissue displacement (low mass effect) combined with high 

infiltration phenotypes. Moreover, displacements were most accurate in contrast-enhanced 

and edematous lesions when compared to necrotic lesions. Of the investigated DIR 

methods, ANTs SyN with CC loss metric and Gunnar-Farneback OF performed with lowest 

displacement estimation errors. 

The grid search for the optimal simulation parameters on baseline and real second scans 

pairs from all 27 second cohort patients, revealed some interesting aspects of the early 

treatment regimen. Our deformation model was best fit to describe two-week later scans 

when exhibiting a high infiltration parameter combined with a low maximum radial tissue 

displacement (low mass effect). An example of optimal parameters illustrating simulated 

low mass effect and high infiltration (�̂� = 3.4 [𝑚𝑚] and �̂� = 0.14) is seen for a single 

patient in Figure 36 along with the corresponding estimated displacement field from ANTs 

SyN. Low infiltration was also associated with larger total tumor volume, as described in the 

paper. 
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Figure 36: Example of synthetic and real deformation for a patient. A: First scan with the 
deformation prediction model overlaid as a deformation grid, ellipsoid, and cone masks. B: First scan 
deformed by our deformation model. The deformation grid is the same as in A. C: Real second scan 
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with SyN overlaid as a deformation grid. The main objective of the third paper was the following: We 
tested how well the deformable image registration methods could estimate the synthetic 

deformation grid in B, based on the images in A and B. For assessing how well the deformation 
model conformed to real data, we performed a grid search for optimal model parameters based on 
A and C scans. For comparison, the estimated displacement field from the SyN algorithm between A 

and C is illustrated as a deformation grid in C. 

In summary, this work highlighted the favorable clinical conditions when using DIR to 

develop prognostic displacement-based analyses to patients with glioblastoma. Our results 

indicated that high infiltration and low mass effect phenotypes may lead to the highest 

accuracy of displacement estimates from DIR within tumoral regions. Moreover, early and 

short-interval post-operative longitudinal MRI of glioblastoma is warranted to achieve 

accurate DIR results. DIR methods may accurately quantify small tumoral and peritumoral 

tissue displacements for use in early treatment response assessment. This work provided 

empirical evidence for the well-suitedness of using the prognostic deformation biomarkers 

from DIR in the second paper. Furthermore, our deformation model provided robust 

predictions of near-future tissue displacements based on few simulation parameters. This 

led to insights about the typical low mass effect and high infiltration conditions seen on 

early post-operative longitudinal MRI of glioblastoma. 

Although we did not include more than baseline and single follow-up scans in the paper, we 

performed a complementary grid search on all longitudinal scan interval pairs to check how 

well our model could fit to all examination intervals. This resulted in many best fit 

projections also describing macroscopic shrinkage of regions (accomplished with a negative 𝛼) early in the treatment regimen (Figure 37). Interpreting these results remains as a future 

study. However, an immediate result is that the patients tend to have a general macroscopic 

shrinkage of tumoral and peritumoral regions early in the treatment (possibly as a result if 

CRT), followed by macroscopic expansion upon completion of CRT and onset of TMZ. 
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Figure 37: Additional unpublished results from grid search on all scan interval pairs for all 27 
patients. Top row: Optimal maximum radial displacement simulation parameters revealed both an 

overall shrinkage early in the treatment, followed by expansion of regions as described by the 
deformation model. Bottom row: The days between the scan pairs were about two weeks in the 

early treatment follow-up, followed by about three-month intervals. 

7. Discussion 

7.1. Paper 1 

EPI correction was performed by specialized spatial and intensity tracking methods which 

led to more accurate CBV maps. CBV maps captured from DSC-MRI are imaging features 

with clinical relevance and it is important that CBV is accurately matched with structural 

MRI for optimal treatment assessment. We investigated how spatial and intensity 

distortions caused by varying tissue susceptibility in DSC-MRI with stretching EPI distortions 
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affected CBV in multiple cortical and subcortical brain regions. This led to a 

recommendation for distortion correction to ensure improved spatial and intensity 

consistency of CBV compared with structural MRI in cancer.  

Our main findings were that CBV estimated from the DSC-MRI have the risk of being 

underestimated when not performing EPI correction, and that this effect was most 

prominent in cortical areas in the frontal, occipital, and temporal lobes (Figure 34). As is 

discussed in the paper, the location of a tumor affects the survival prognosis. Moreover, 

several studies have associated the survival prediction capabilities of CBV in brain cancer 

[50], [185]–[187]. In our paper we presented evidence that CBV values of a tumor involving 

multiple brain regions with varying degree of EPI distortion may be underestimated, if not 

corrected for. This can impact the clinical accuracy of CBV. One such example is a recent 

study that associated patients with IDH wild-type glioblastoma with less than 10 % rCBV 

decrease between scans, to have longer PFS [188]. Moreover, this association was most 

prominent for those with MGMT methylation [188]. As mentioned previously, MGMT 

promoter methylation status has shown to be valuable in distinguishing pseudoprogression 

from progression in glioblastoma [63], [64]. 

There are some differences between the correction methods investigated, and in CBV 

values from SE and GE DSC-MRI. In general, TOPUP correction of SE EPIs led to the most 

precise correction and subsequent CBV estimation. A previous study using a 7 𝑇𝑒𝑠𝑙𝑎 

scanner found that when compared to using GE EPIs, TOPUP with SE EPIs led to better 

correction only in the ventromedial prefrontal cortex [189]. This is a region consisting of 

medial orbitofrontal cortex, of medial orbital gyri in Figure 3. It is a region with large signal 

drop-out on GE EPIs. It is widely known that magnetic susceptibility distortions and drop-out 



106 
 

increase with magnetic field strength. Owing to the FID signal in GE EPIs being stronger than 

the pure T2w signal in SE EPIs, GE DSC-MRI also led to generally higher CBV values compared 

to those of SE DSC-MRI in our study, and independent of correction method. 

Another important discussion that affects the impact of correction on CBV is the phase-

encode direction in the EPI sequence. Note that in our paper the words “positive” and 

“negative” for describing phase-encode direction were swapped when compared to the 

images in the thesis. The reason for this was to keep terminology in the thesis more 

consistent with existing literature [111]. Specifically, bottom-up (=positive) and top-down 

(=negative) phase-encode direction results in compression and stretching distortions, 

respectively. To avoid confusion, it is suggested to use only the compression and stretching 

distortion terminology when referring to the two main types of EPI distortion that can occur 

and which depend only on the phase-encode direction in the EPI sequence. We hypothesize 

that the results in the first paper could be different if the EPIs in the DSC-MRI had the 

opposite phase-encode direction (leading to compression distortions). Intuitively, not 

correcting for these compression distortions, may result in overestimated CBV values and 

perhaps an inconsistency in Dice values for another set of brain regions. To investigate this, 

a separate study with EPIs containing the opposite phase-encode direction in the DSC-MRI 

sequence would be needed.  

The impact of other EPI correction methods on CBV estimates could further identify 

potential shortcomings of FSL TOPUP and EPIC. Some relevant methods could the SPM ACID 

HySCO [190] and DR-BUDDI [191] reverse gradient methods, reverse gradient methods for 

specific locations in the brain such as the temporal lobe [192], or DL-based [193]–[195] 

methods. Geometric distortions may also be present on structural MRI [196], challenging 
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correct anatomical alignment of EPI and structural MRI. However, these distortions are 

mostly caused by external factors and corrected for as discussed previously. 

7.2. Paper 2 

DIR of longitudinal MRI of cancer provided robust spatiotemporal tracking. We developed 

four biomarkers based on estimated displacement from longitudinal DIR. The association of 

these deformation-based biomarkers with RANO tumor status, and survival prediction and 

low and high survival stratification capability was investigated. We showed that the 

biomarkers may have prognostic ability in predicting survival as well as being early markers 

for assessing cancer recurrence.  

Compression of peritumoral healthy tissue is known to cause life-threatening neurologic 

symptoms [183]. Our deformation biomarkers may be especially useful for eloquent areas 

because compression in these areas may affect important cognitive functions. The 

stratification thresholds indicate that using our biomarkers within peritumoral regions, a 

displacement and divergence magnitude larger than 3.54 𝑚𝑚 and 0.09, respectively, are 

associated with worse survival prognosis. This association is also stronger when restricting 

the analysis to biomarkers within peritumoral compression regions (i.e., ∇ · 𝒅 < 0), 

although with slightly different stratification thresholds. These results are consistent with 

literature suggesting that a higher mass effect (and subsequent larger peritumoral 

displacement magnitude and midline shift), is generally associated with worse survival 

outcome in glioblastoma [179], [197]. In current practice, a midline shift above 5 𝑚𝑚 usually requires immediate surgical intervention [197], [198]. However, the accuracy 

of these biomarkers highly depends on the accuracy of the DIR method. A discussion of DIR 
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accuracy is thus warranted. Investigating DIR accuracy is our main application of the 

deformation model in our third paper.  

No voxel intensity changes and only spatial deformation between longitudinal MRIs (i.e., Δ𝐼 = 0) may be a favorable scenario for using DIR for voxel displacement tracking of cancers 

with a strictly pushing phenotype or similar types with little voxel intensity changes. For this 

case, tracking peritumoral and non-cancerous regions would closer resemble 

homeomorphic (one-to-one) mapping if no appearance or disappearance of mass (resulting 

in intensity changes) occurs during the tracking. Since diffeomorphic DIR does not shift 

intensity values, only spatial deformation between MRIs may result in the highest possible 

registration accuracy.  

An example of erroneous use of DIR for displacement tracking is when an intensity change 

(Δ𝐼 ≠ 0) leads to a false displacement estimate 𝒅 when no displacement occurred. Selection 

of suited loss metric is an important aspect to achieve accurate DIR. As discussed previously, 

it is well known that CC is best suited for same modality (i.e., monomodal) registration (e.g., 

T1w to T1w), while MI can be used for multimodal registration. Various cases for intensity 

change of a voxel for monomodal longitudinal registration are discussed. First, MRI 

sequence parameters (such as TR and TE) may have been changed by the radiographer 

although the image is of the same weighting type (e.g., T1w), which could alter the intensity 

value for the same type of tissue. Therefore, longitudinal intensity standardization may be 

an important preprocessing step. Second, image intensity depends on water (~proton) 

density. An increase in water density would result in a (lower) darker or brighter (higher) 

intensity value on a T1w or T2w MRI, respectively. Third is the use of CA, which in the 

context of T1w structural imaging selectively increases the voxel intensity value in regions 
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where it is accumulated. Fourth, water density and CA accumulation may depend on cancer 

phenotype. As examples, the T1wc MRIs in Figure 9 clearly shows intensity increase in 

contrast accumulated tumor regions, while Figure 8 and Figure 9 show intensity decrease in 

peritumoral regions as a potential result of tissue inflammation at exams late in the 

treatment. These aspects may impact DIR accuracy and subsequent impact our 

deformation-based biomarkers.  

Changes in tissue mass with cancer and treatment is another aspect that challenges DIR 

accuracy. We hypothesize that with aggressive tumor growth and subsequent intensity 

change from mass increase, DIR may provide the most accurate results if the moving image 

is registered backwards-in-time to a fixed first time-point image. The rationale is that a DIR 

algorithm may more likely track existing mass that disappears than track new mass that 

appears. Non-spatial transformation of tissue may thus be best described by an additive 

intensity term Δ𝐼 in the frame of the fixed image in a DIR problem (i.e., backwards-in-time 

registration). This, to exclude the intensity recording task from DIR.  

Whether performing forward or backwards-in-time registration may however not be crucial 

for correct tracking of displacement, because tissue mass may both disappear and appear 

during brain tumor growth or as results of successful and unsuccessful treatment. New or 

restructured tissue mass resulting in image changes are expected in cancer, which 

challenges the physical accuracy of DIR for use in cancer diagnostics. In addition, how well a 

registration method describes the actual tissue displacement highly depends on the 

mathematical and physical guarantees of the registration method. Some other factors may 

be the selection of regularization method and alignment function for the optimization 

process of the registration algorithm. If the symmetric property of SyN is not required, 
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Greedy [199] may be a better option since it provides diffeomorphic registration at reduced 

computational cost. Farnebäck OF may be a second alternative, as discussed previously. 

Previous studies have investigated the use of DIR for measuring mass effect in form of 

lateral ventricle displacement [179] and peritumoral tissue deformation heterogeneity 

[200], [201]. However, these studies measured mass effect induced deformations relative to 

an MNI brain template and did not incorporate longitudinal exams to perform voxel 

tracking.  

Last, future work could involve developing a method for voxel tracking involving both 

displacement and intensity shift. Optimally, tracking both displacement and intensity change 

should be biologically possible, i.e., the same piece of brain tissue in a patient should be 

identifiable across same modality MRI scans even when exposed to biological 

transformation from treatment or cancer resulting in voxel intensity change on MRI. The 

voxel tracking problem may then be seen as a multimodal image matching problem [202]. 

Correctly quantifying voxel intensity change and displacement, would fully realize voxel 

tracking as it is defined in the thesis. This could lay the basis for developing more imaging 

biomarkers for use in early prediction of treatment response and recurrence. 

7.3. Paper 3 

The third paper investigated the geometric accuracy of DIR methods for MR images. To 

assess this, synthetic voxel displacements were produced by our deformation model. We 

drew inspiration from longitudinal MRI of GBM to model realistic tissue deformations from 

a growing tumor exerting a mass effect on its surrounding tissue.  A radial voxel 

displacement field outward from brain and lesion tissue masks was simulated, with model 

parameters for maximum tissue displacement, tumor infiltration and growth irregularity. 
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We showed that all DIR methods returned the highest accuracy in estimating the 

displacement field when simulating low tissue displacement (low mass effect) and high 

infiltration. The most profound effects were observed within contrast-enhanced and 

edematous lesion tissue types. Moreover, we identified ANTs SyN with CC loss metric as the 

image registration method with overall highest registration accuracy. To this end, our 

findings suggest an increase in true tissue displacement may also lead to a subsequent 

increase in the error (in 𝑚𝑚) of the DIR methods. Hence, we may conclude that DIR 

methods can accurately measure displacements in a scenario of HGG progression with small 

displacements (i.e., low mass effect as defined by a maximum radial tissue displacement 

around the selected 3 𝑚𝑚, opposed to the selected 8 𝑚𝑚 for high mass effect in our 

model). This may be accomplished by short longitudinal time intervals between the MRI 

exams which may be a challenge for routine examinations, but relevant for clinical trials. It is 

generally known that an increase in mass effect is associated with worse survival prognosis 

in glioblastoma [179], [203], [204]. Short longitudinal time intervals between MRI exams 

may thus be especially important for ensuring accurate DIR results, for patients with worse 

survival prognosis and with tumor expressing highly nodal (“pushing”) phenotype. The 

optimal exam frequency of a patient could depend on tumor phenotype. This, to guarantee 

a stable performance of DIR across patients and time points. Otherwise, maintaining a fixed 

exam frequency for all types of cancers could result in unstable and inaccurate displacement 

estimates. This could lower the clinical utility of the deformation biomarkers in the second 

paper. Another important discussion of these results is how realistic the simulated ground 

truth displacement fields were when varying the parameter configurations for mass effect, 

infiltration, and irregularity. Thus, a general discussion about the anatomical correctness of 

the deformation model and its application in evaluating DIR methods follows. 
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The main strength of Paper 3 was, to introduce a robust and interpretable model with the 

ability to efficiently generate and control synthetic deformations from binary segmentation 

masks. Our goal was not to generate the most realistic or physically and biologically 

accurate model of brain cancer deformations. To do so, we modeled the most typical 

deformations as seen on MRI of patients with GBM MRI receiving standard treatment. This 

also included segmentation annotations from expert readers (neuroradiologists). Compared 

to reaction-diffusion [180], [205] and DL [206], [207] based models, our model was 

methodically simpler and computationally more efficient. The most typical deformations 

include structural compression of surrounding peritumoral tissue as a mass effect [179] 

from cancer growth, usually also associated with midline shift and shorter survival [204], or 

alternatively, shrinkage of the tumor bed from response to treatment. 

To date, existing literature has been more focused on modeling cancer growth (with a 

resulting tissue expansion) compared to assessing shrinkage of tissue areas [180], [205]–

[210]. Many of these tumor growth models do not incorporate treatment-related changes. 

Most of our patients experienced a radiographic shrinkage of lesion areas in the early stages 

of treatment (possibly by cell kill as a response to the radiation treatment), followed by 

aggressive expansion of existing and new lesions areas because of cancer recurrence. Our 

model fitting indicated that radiographic shrinkage may be just as common as expansion in 

the early treatment assessment (Figure 37). Thus, another perspective of modeling mass 

effect may be whether the patient’s brain experienced a mass increase effect or a mass 

decrease. Glioblastoma is a highly complex cancer with large inter- and intra-tumor 

heterogeneity and analyzing images of patients undergoing treatment makes the data even 

more complex. A strength of our deformation model is that it can use few simulation 
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parameters and little input data to generate plausible tissue displacements for assessing the 

accuracy of DIR methods. 

There are limitations in our deformation model. First, image intensity changes were not 

modeled. An investigation into registration accuracy under the influence of synthetic 

intensity shifts remains as further work and possible extension of our model. In true 

infiltrative tumor growth, intensity shift of voxels caused by transforming tissue, may be just 

as apparent as displacement of voxels. It is possible that advanced MRI techniques could 

provide information to model such intensity changes. Some of them may be the strength 

and spatial distribution of the radiation field from radiation therapy, apparent diffusion 

coefficient (ADC) from diffusion MRI [211], 𝐾𝑡𝑟𝑎𝑛𝑠 CA volume transfer constant from 

dynamic contrast-enhanced (DCE) MRI [212], and the 𝐾2 and 𝐾𝑎 parameters from Boxerman 

et al. [90] and Bjørnerud et al. [93] CA leakage correction of DSC-MRI, respectively.  

Incorporating intensity shift would however not result in a model of tissue deformation, but 

in a model of the spatiotemporal transformation of tissue from tumor growth. DIR is only 

aimed at estimating displacement. A model of spatiotemporal transformation would thus 

not be suited to assess the accuracy of DIR methods (the objective in the third paper). Our 

infiltration parameter thus controlled only the displacement aspect of infiltrative growth. It 

was built on the assumption that high infiltration results in cancer spread to larger regions 

of the brain compared to those with low infiltration. A more correct infiltration model could 

incorporate intensity changes as well. 

Another extension of the model may be to allow for more specialized directions of the cone 

masks either by random deviations in the directions or possibly by aligning the cone 

directions with principal diffusion directions from DTI. Or, incorporating perfusion maps 
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such as CBV to guide model parameters such as infiltration β and irregularity γ. With 

increased complexity of input data, the need for more parameters and model assumptions 

may however outweigh the possible benefit of using a more realistic model. Also, including 

additional preprocessed data would make the model less robust against preprocessing 

errors and noise. 

7.4. General discussion 

The general objective of most of the work in this thesis was improving computer aided 

description of clinically relevant MR imaging regions and features and thereby accurately 

describing and improving patient prognosis in brain cancer. In addition to maintaining good 

practices in file organization and QC, this involved accurate characterization of brain and 

cancer regions through manual and automatic segmentation, preprocessing such as LIR and 

longitudinal intensity standardization, followed by monitoring of the spatial and intensity 

transformations in and around regions of interest during cancer treatment. The main 

scientific contribution of the thesis was thus an investigation into various methods for 

obtaining spatiotemporal tracking of clinical image features.  

Better standards for dealing with data (e.g., file types and data structures) could improve 

reproducibility and cross-collaboration among research groups and significantly alleviate 

technical dept for research containing heavy processing and preprocessing tasks. Most of 

the work in the thesis drifted towards complying to the brain imaging data structure (BIDS) 

consensus among researchers. Since working with research data often means continuously 

discovering and solving processing errors, while simultaneously consenting to share data 

that was used in previous publications, updates to a data set should optimally be tracked 
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like code in a software project. For this task, the data version control (DVC) software was 

used on the BIDS datasets. 

Having standards simplifies visualization and QC, since necessary assumptions about file 

types, locations and file organization structure can be made in software and scripts. Aliza, 

ITK-SNAP and FSLeyes supports being started from the CLI. By utilizing BIDS, CLI visualization 

tools and conventional Unix shell scripting and tools, it is possible to automate the process 

of visualizing longitudinal data. A Unix shell is a scripting language for natively running 

commands in CLIs. Bash is among the most common shells and proved as a useful tool 

throughout the thesis. 

For instance, the following commands will open all T1wc images into the same visualizing 

window of Aliza, for a first patient organized into the BIDS derivatives structure (Figure 38): 

aliza $(find sub-01 -type f -name T1c-icor.nii.gz | sort -V) 
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Figure 38: Scriptable visualization of preprocessed T1wc MRI in Aliza. This is subject nine from our 
second cohort. 

The corresponding commands for ITK-SNAP could be (Figure 39): 

readarray -t files < <(find sub-01 -type f -name T1c-icor.nii.gz | sort -V) 

itksnap -g ${files[0]} -o ${files[*]:1:${#files[*]}} 
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Figure 39: Scriptable visualization of preprocessed T1wc MRI in ITK-SNAP. This is subject nine from 
our second cohort. 

FSLeyes can be utilized similarly from the command line with multiple MRIs to create .png 

snapshots with desired viewing settings. It supports CLI-based off-screen rendering. This 

means that an exact visualization can be re-produced and automated for multiple images 

and saved to .png files. PowerPoint friendly .mp4 and .gif animations of the time evolution 

of treatment images can be made from the .png files using the ImageMagick CLI tool to 

draw text and a progress bar line on each .png file, before inputting to the ffmpeg 

processing tool. 

The orthographic and lightbox views of FSLeyes give quick overviews of volumes with 

minimal configurations. If the longitudinal data is linearly registered to approximate MNI 

space, assumptions on image orientation and voxel size can enable automatic longitudinal 

visualization with minimal intervention. The whole process may be automated in bash 

scripts resulting in the animation videos presented previously in the thesis. 
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An example of easy QC was that the automatic longitudinal visualization quickly uncovered 

preprocessing (e.g., LIR) errors. This is seen for many of the T2w images in the visualization 

animation of the multiparametric MRI presented in section 3.2.4. Incorrect spatial alignment 

is a real-world example of a consequence of having erroneous data and should be 

uncovered early in the analysis from QC tools. If not, inclusion of these images in processing 

could possibly result in erroneous results. 

Segmentation of various structures such as tumor tissue constitutes an important subfield in 

medical image analysis. The segmentation of brain structures in the first paper was 

performed using SPM normalization to a MNI brain atlas (OASIS, Neuromorphometrics, Inc.) 

[124], [125], while the tumor segmentations were either performed manually (by a 

neuroradiologist) (paper 2) or based on a deep learning (DL) method (paper 1 and 3) [120]. 

A reason for not using a more recent or more accurate brain segmentation method, such as 

FastSurfer [119], was the presence of tumor and pathology. The underlaying unified 

segmentation method [213] for MNI normalization in SPM 12 using tissue probability maps, 

proved robust to tumor pathology in our first paper. This method has been previously 

recommended as a robust MNI normalization technique for lesioned brains [214], and 

resulting in segmentation of brain structures based on a template. For automatic tumor 

segmentation pipelines, DL-based methods are currently considered the state-of-the art 

[215], [216] and have been outcompeting methods based on region growing and shallow 

machine learning [216]. The possibility for combining multiple modalities as input (for 

instance by having multiple input channels as with RGB-images) is an advantage of DL based 

tumor segmentation algorithms, which is likely a reason for its success. 
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An important aspect of our results is interpolation, as many of the pre-processing steps 

involved interpolating data. This is common when working with multi-resolution data (like 

combined analysis of functional and structural MRI). For instance, when re-slicing an image 

after registration it is important to decide whether to downscale or upscale the image 

resolution as well as decide which interpolation method to use for this task. Downscaling 

may lead to loosing important data, while on the other hand, upscaling may create false 

data. Interpolation method (such as NN, trilinear, polynomial/spline etc.) may also affect the 

severity of data loss or creation of false data points. For segmentation masks, it is suggested 

that NN interpolation is the method that provides the least amount of data modification, 

since it does not modify original intensity values. When downscaling resolutions, it NN 

interpolation (also called point sampling) selects the original intensity values that are closest 

each point in a resampling grid and simply discards the rest. The main advantage of NN 

interpolation is that it preserves discrete values which is important for segmentation masks. 

On the other hand, NN interpolation can lead to a common aliasing artifact when performed 

after LIR and re-slicing seen as diagonal line artifacts in axial images. This comes as a result 

of the combination of having a non-smooth interpolation method and rotating a volume 

[114]. Trilinear interpolation was thus preferred when registering structural images, since it 

is better to handles this rotation artifact. Since CBV from functional MRI is created natively 

in a low resolution, it was natural to perform the analysis in the first paper in this low-

resolution space (since it was deemed important to preserve the integrity and original 

values of CBV). Thus, we used NN interpolation to downscale corresponding structural 

images to native CBV resolution.  

In the second and third paper, we used trilinear interpolation to re-slice images to a 

common isotropic high resolution. Trilinear interpolation was preferred over polynomial 
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interpolation of higher degree for simplicity and interpretability. Trilinear interpolation is 

simply making straight lines between points, and possible data loss and false data from re-

slicing are likely minimized when compared to methods of higher degrees. Although trilinear 

interpolation (like bilinear interpolation) is known to produce both blurring and aliasing 

artifacts from resampling [115], it was still preferred to avoid additional interpolation 

artifacts associated with higher degree methods. Moreover, these artifacts may be most 

pronounced when significantly changing voxel resolutions, which was not the case when 

performing registration and re-slicing. High degree polynomial interpolation may possess 

intensity oscillations towards the edges of the interpolation grid (Runge's phenomenon 

[217]), unlike cubic spline interpolation. Cubic spline interpolation methods may under- or 

overshoot in sharp transitions of intensity value or in boundary points in the interpolation 

grid leading to decreased or increased intensity values, an artifact which is known as haloing 

[218], [219]. This is closely related to ringing, which may be described as an oscillation of 

successive over- and undershooting of intensity values, with decreasing amplitude, near 

sharp intensity transitions. Moreover, oscillation artifacts from interpolation may occur in 

the objective function of a registration problem, leading to local optima in the objective 

function and subsequent worse spatial alignment from registration [114], [220]. This is an 

artifact associated with high degree basis splines [220], [221], which is the default 

interpolation method for registration in SPM [124]. This emphasizes the importance of 

selecting a proper objective function for DIR. Four-dimensional RBF interpolation was 

investigated as a method to create artificial MR images for each day during treatment. 

Although this was a minor method in the thesis, it provided a way of visualizing and 

understanding the most general image patterns in high-resolution longitudinal MRI of 

glioblastoma. Neither of the software for the other interpolation methods were 
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implemented for more than three dimensions, and thus this method was investigated. 

However, this method is also affected by Runge's phenomenon [217]. 

8. Conclusion and future aspects 

8.1. Conclusion 

The general objective of the research in this thesis was to improve the accuracy of patient 

prognosis in glioblastoma using magnetic resonance imaging postprocessing techniques. 

Various methods for obtaining spatiotemporal tracking of clinical image features were 

investigated. In the first paper, the effects of spatial and intensity distortions on cerebral 

blood volume maps derived from dynamic susceptibility contrast magnetic resonance 

imaging were investigated. These distortions are caused by variations in tissue susceptibility, 

and can lead to cerebral blood volume being underestimated, particularly in the frontal, 

occipital, and temporal lobes. We recommend correcting for these distortions to improve 

the accuracy of cerebral blood volume estimates and enhance their clinical usefulness. In 

the second paper, four deformation-based biomarkers based on displacement estimates 

derived from deformable image registration of longitudinal magnetic resonance imaging of 

brain cancer were developed. These biomarkers were found to have the potential to predict 

survival and assess cancer recurrence, which is particularly useful in eloquent areas where 

compression can cause significant neurologic symptoms. The accuracy of these biomarkers 

depends on the accuracy of the deformable image registration method, which can be 

affected by factors such as extent of voxel displacement and changes in voxel intensity and 

tissue mass. In the third paper, the geometric accuracy of deformable image registration 

methods for magnetic resonance imaging were investigated, by simulating synthetic voxel 
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displacements with a deformation model based on brain cancer growth. It was found that 

deformable image registration methods had the highest accuracy for low tissue 

displacement (loss mass effect) and high tumor infiltration, and that ANTs SyN with CC loss 

metric had the overall highest accuracy. We suggest that short longitudinal time intervals 

between MRI scans may be important for ensuring accurate deformable image registration 

results, particularly for patients with worse survival prognosis and highly nodal tumors. Last, 

several contributions were made to improve the reproducibility and collaboration of 

research involving heavy processing and preprocessing of magnetic resonance imaging data. 

This involved developing and validating methods for segmentation, preprocessing, and 

monitoring of spatial and intensity transformations in brain cancer. In summary, the 

methods investigated in the thesis were shown to have clinical relevance and lead to 

improved diagnostic accuracy compared to existing methods in the clinical routine of brain 

cancer imaging. 

8.2. Future aspects 

8.2.1. EPI correction software 

A natural outcome of the first paper can be enabling researchers and clinicians to easily 

perform EPI correction and optimally having it as a part of the clinical workflow. 

Incorporating EPIC into such a workflow was the main objective in a previous Master’s thesis 

[106]. In our work, FSL TOPUP was packaged into bash scripts for easier use and shared with 

other researchers at our hospital. These scripts can be run on Linux virtual machines (e.g. 

Docker, VirtualBox or VMware) with FSL installed. See the attached presentation mri-

processing.pdf for TOPUP examples. 
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8.2.2. Interactive voxel displacement path visualization (cancer-sim.com) 

Nervous system fiber tractography software can be utilized for visualizing pathlines. Both 

streamlines (in DTI) and pathlines can be stored identically and visualized with the same 

software. A web-based pathline viewer named cancer-sim.com was developed using the X 

toolkit [160]. A possible use case of cancer-sim.com is to present a brain cancer treatment 

tissue response atlas in approximate MNI space. If containing pathlines from many 

longitudinal patient cases, it can be an interesting way to present and the most typical tissue 

deformations. X toolkit may be regarded a lightweight version of VTK that is written in 

JavaScript. cancer-sim.com involves HTML, JavaScript and cascading style sheets (CSS). The 

visualizer can be hosted locally (intranet with Python’s SimpleHTTPserver) for easy 

visualization of results from processing pipelines, or globally (cancer-sim.com with netlify) 

(Figure 40). 
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Figure 40: cancer-sim.com (web site) voxel displacement path visualization with maximum intensity 
values of longitudinal T1wc MRI underlaid. 

8.2.3. Improving segmentation using the deformation model 

Voxel-vise displacement estimation may not be required for the general task of tracking 

data with clinical relevance. Traditionally, volumetric or delineated surface changes have 

been used for treatment response assessment. As a sparser tracking approach, ROI-based 

tracking using segmentations may be used. This tracking approach does not enforce a direct 

description of voxel transformation and thereby overcomes a possible limitation of requiring 

voxel-vise tracking in physically difficult scenarios. Such a scenario may be major spatial and 

intensity transformations from cancer leading to uniform image gradients such as necrotic 

regions. The leading medical image segmentation methods are based on DL, which are 

commonly deep convolutional neural networks trained on large amounts of structural MRI 
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with multi-label segmentation masks as annotations [216], [222]. However, lack of large-

scale medical training datasets is the leading factor in many DL brain tumor segmentation 

algorithms poor performance [222]. Data augmentation is a widely accepted solution to the 

problem of limited data for DL and machine learning model training [223]. 

Our deformation model may be used to generate synthetic MRIs and segmentation masks 

as illustrated with T2w-FLAIR in the supplementary file cancer-sim.mp4, which is available at 

the following URL (as accessed December 5th): 

https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/cancer-sim.mp4 

By generating realistic longitudinal training data of brain cancer, it may improve longitudinal 

DL-based tumor segmentation performance. As such, the deformation model belongs to a 

class of domain-specific local data augmentation methods. Moreover, anatomically 

incorrect augmented examples may still manifest valid tumor features in segmentation, 

since unrealistic augmentations may still produce a more generalizable model [224], [225]. 

It may be further developed for offline and online (test-time) augmentation for use in DL 

training. One such improvement in the clinical accuracy of DL tumor segmentation may 

ultimately lead to successful adaptation of AI in the clinic [226].  

8.2.4. Alternative use cases of DIR 

There are other potential clinical use cases of DIR at our hospital. Hydrocephalus is a general 

life-threatening state in which CSF spaces are under pressure and enlarged. SyN may be 

used to provide a quantitative measure of this by measuring overall deformation change 

when comparing to a normal brain template. Another used case is midline shift 

quantification which may be solved similarly using a template. Last, displacement fields 

https://www.mn.uio.no/fysikk/english/people/aca/ivarth/works/viz/cancer-sim.mp4
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from DIR may be used to deform segmentation masks (using NN interpolation) for ROI-

based tracking. 

8.2.5. Non-localized tracking 

It is possible to track clinically meaningful imaging properties without defining a ROI. These 

are exploratory methods capable of categorizing more abstract and high-level patters in the 

data and which do not necessarily relate to voxel-vise or ROI-based properties. They are 

typically patterns learnt by DL models (and not hand-crafted such as our deformation model 

parameters), and interpretability techniques are often required to find and make use of the 

most useful patterns. 

A future aspect of longitudinal MRI analysis in brain cancer may be to utilize clustering and 

unsupervised methods to find patterns that correlate well with clinical data such as 

treatment response, survival and various known medical conditions. An unsupervised DL 

model such as autoencoder (AE) could for instance be targeted at categorizing disease 

based on multiple patients analogous to the previously mentioned idea of having a 

treatment tissue response atlas of displacements. A new patient may then be associated 

with existing patients with treatment outcome already known by using similarity and 

interpretability techniques on the DL model.  

A simple example of non-localized tracking of structural ventricle change was demonstrated 

in the thesis. Principal component analysis (PCA) [227] is a widely known and understood 

statistical dimensionality reduction method. Moreover, the simplest form of a linear AE 

spans the same subspace as the PCA loading vectors [228]. We reproduced this work using 

our longitudinal volumetric MRI of a patient and identified the second component in PCA to 

correlated with ventricular expansion as seen in Figure 41. 



127 
 

 

Figure 41: Example of tracking ventricle expansion without defining a ROI. PCA was performed on 
flattened versions of all time-point scans for a patient (one volume per column in the data matrix). 
Left: Loading plot showing that the second component (PC 2) had a smoothly decaying importance 

along with time progression (x-axis). Right: Scores for PC 2 visualized as an MRI volume revealed that 
PC 2 described (and tracked) the variation in the PCA model correlating with ventricular expansion 

during the longitudinal scans (atrophy). This is subject six from our second patient cohort. 

Furthermore, we were able to reproduce the loadings plot in Figure 41 from a linear AE 

model trained on the dame data, by conducting singular value decomposition (SVD) on its 

decoder weights. Our point was to give an example of identifying a simple high-level pattern 

in the data correlating with atrophy and that this pattern was indeed captured by the 

simplest possible linear fully connected three-layer AE. In comparison, the widely successful 

U-Net [229] for medical segmentation tasks has 23 convolutional layers.  

Most of our patients experienced ventricle volume increase during the time they were 

scanned, which is believed to be a consequence of brain atrophy due to CRT [230], [231]. 

This experiment illustrated that despite the huge dimensionality complexity of DL models, it 

is possible to build up intuition about their subspace complexity and resulting 

interpretability analogous to PCA loadings. These methods may enable us to capture and 
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interpret general patterns in data that may be clinically relevant without resorting to ROI-

based analyses. 

8.2.6. Multivariate analysis of clinical data 

Multivariate analysis of structural ventricle changes in glioblastoma led to some additional 

results that may be worth looking more into. A PCA model was computed on data 

containing ventricle and tumor volume change, normalized relative CBV change in tumor 

and sub-ventricular zones, age, overall survival, and time from first scan. Two data sets with 

a total of 41 patients with glioblastoma consisting of 387 scan intervals was used. The non-

linear iterative partial least squares (NIPALS) version of PCA [232] was used for this case due 

to some missing data. Outlier removal according to 95 % confidence intervals according to 

Hoteling’s 𝑇2 statistic (a multivariate generalization of Student’s t-statistic) was performed. 

Figure 42 presents the loadings for the first two components where the overall correlations 

between the input data variables are seen. 
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Figure 42: PC 1 and PC 2 loadings from PCA displays the correlations between age, overall survival, 
time from first examination, tumor, ventricle and subventricular zone volume change, as well as CBV 

change in tumor and subventricular zone from 387 scan intervals of 41 patients with glioblastoma 
undergoing standard treatment. This consisted of our second cohort plus another similar 

longitudinal dataset of glioblastoma under standard treatment (N=14 patients). 

Some notable results were the negative correlation of overall survival and CBV increase and 

ventricle volume increase, as well as of age and CBV increase and ventricle volume increase. 

An increase in CBV was associated with worse survival prognosis, while younger patients 

were associated with less ventricle volume increase. A larger tumor volume increase 

correlated with worse survival prognosis, as expected. However, an older patient was not 

much associated with tumor volume increase. 
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9. Appendices 

9.1. Source Code 

A collection of processing scripts accompanying the thesis and papers is provided within the 

archive file scripts.zip. Preprocessing and processing methods using many of these scripts 

are documented with CLI examples (for Miniserver 3) in the presentation mri-

processing.pdf. A repository containing these files is available at 

https://github.com/CRAI-OUS/crai-lproc 

In addition, links to the original code repositories for the papers and additional methods 

used in the thesis are provided below. 

Paper 1 

https://github.com/ivartz/epi_corrections 

Paper 2 

Contact corresponding author. 

Paper 3 

https://github.com/ivartz/cancer-sim 

https://github.com/ivartz/cancer-sim-search 

https://github.com/ivartz/ants-bcond 

https://github.com/ivartz/opticalflow-bcond 

https://github.com/CRAI-OUS/crai-lproc
https://github.com/ivartz/epi_corrections
https://github.com/ivartz/cancer-sim
https://github.com/ivartz/cancer-sim-search
https://github.com/ivartz/ants-bcond
https://github.com/ivartz/opticalflow-bcond
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Radial basis function interpolation 

https://github.com/ivartz/mri-rbf-time 

Voxel displacement path tracking 

https://github.com/ivartz/cancer-sim-search/blob/main/make-pathlines.py 

Displacement path tracking visualization (web site/server code) 

https://cancer-sim.com/ 

https://github.com/ivartz/cancer-sim-viz 

Data augmentation using the deformation model 

https://github.com/ivartz/cancer-sim-search 

DVC BIDS dataset repository 

https://github.com/CRAI-OUS/bidsdir 

https://github.com/ivartz/mri-rbf-time
https://github.com/ivartz/cancer-sim-search/blob/main/make-pathlines.py
https://cancer-sim.com/
https://github.com/ivartz/cancer-sim-viz
https://github.com/ivartz/cancer-sim-search
https://github.com/CRAI-OUS/bidsdir
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9.2. Pseudocode 

Deformation model (paper 3) 

Pseudocode 1: Maximum spread normal vectors by maximizing mean starting distances. 

algorithm max-spread-vectors is 

 input: Normal vectors 𝑉 

        Starting positions 𝑃 of the normal vectors 

        Number of vectors to return 𝑁𝑠 

output: Selection lists containing the subset 𝑉𝑠 and 𝑃𝑠 of the normal vectors and 
positions 

 1 initialize empty lists for selected vectors and positions 

 2 append to the selection lists the first input vector and position 

 3 remove the selected vector and position from input lists 

 4 for each selected vector 2 to 𝑁𝑠 do 

 5  for each selected vector position(s), compute the Euclidean distance to 

non-selected vector position(s) 

 6  append to the selection lists the input vector and position with the 

position that makes up the largest mean 

7                     Euclidean distance from the selected vector position(s) 

 8  remove the selected vector and position from the input lists 

 9 return 𝑉𝑠 and 𝑃𝑠 
 

Pseudocode 2: Directional cone masks. 

algorithm max-spread-cones is 

 input: Normal vectors 𝑉𝑠 
        Displacement field 𝒅 
        Deviation in degrees 𝜃 

output: Cone masks 𝑀𝑐 
 1 initialize empty list 𝑀𝑐 for storing cone masks 
 2 for each vector 𝑣 in 𝑉𝑠 do 
 3  let 𝜔 be the angle difference in degrees between 𝑣 and all other 
displacement vectors in 𝒅 
 4  let 𝑐 be the cone mask defined by 𝜔 ≤ 𝜃 
 5  append to 𝑀𝑐 the cone mask for vector 𝑣: 𝑐 
 6 return 𝑀𝑐 

 



134 
 

Pseudocode 3: Infiltrative deformation of displacement field 𝒅. For reading in detail, it is 
recommended to zoom in using the .pdf version of the thesis. 

algorithm infiltration is 

 input: Normal vectors 𝑉𝑠 
        Normal vector starting positions 𝑃𝑠 

       Displacement field 𝒅 
       Cone masks 𝑀𝑐 

        Brain mask 𝑀𝑏 
        Infiltration 𝛽 

output: Infiltrative displacement field 𝒅𝛽  

 1  let dnorm be |𝒅| 

 2  let displacements be a list containing one interpolated part of 𝒅 for each spatial direction in 𝑠 
 3  for each spatial direction 𝑖 in in 𝑠 do 
 4   let nvd, nvc, bmi be 𝑉𝑠[𝑖], 𝑃𝑠[𝑖], 𝑀𝑐[𝑖] respectively 

 5   let p_max_bmi be the point furthest away nvc along nvd and within bmi 

 6   let disp_max_bmi be the length between nvc and p_max_bmi 

 7   let p_max_brain be the point furthest away nvc along nvd and within M_b 

 8   let disp_max_brain be the length between nvc and p_max_brain 

 9   let dnormcone be dnorm within bmi 

 10  let dxcone, dycone, dzcone be the components of 𝒅 within bmi 
 11  (the following scales all displacement components to unit norm such that their starting coordinates can be displaced equally far) 

 12  let dxcone, dycone, dzcone be 
dxcone  𝑑𝑛𝑜𝑟𝑚𝑐𝑜𝑛𝑒  , 

dycone  𝑑𝑛𝑜𝑟𝑚𝑐𝑜𝑛𝑒  , 
dzcone  𝑑𝑛𝑜𝑟𝑚𝑐𝑜𝑛𝑒  respectively with element wise fraction 

 13  if β > 0 then 

 14   let mask_pts be the points within bmi 

 15   let extension be 𝛽*(disp_max_brain - disp_max_bmi) 
 16   (the following displaces mask_pts according to the extension length) 

 17   displace the mask_pts x, y, z coordinates extension*dxcone, extension*dxcone, extension*dzcone length respectively 

 18   let bmi_copy be a copy of bmi 

 19   add displaced mask_pts to bmi_copy 

 20   let bm_geom_center and bm_widths be the geometric center coordinates and dimensions of bmi_copy containing displaced 

21                                      points 

 22  else 

 23   let bm_geom_center and bm_widths be the geometric center coordinates and dimensions of bmi 

 24  let bmi_copy be a copy of bmi 

 25  let mask_pts be the points within bmi 

 26  let extension be disp_max_brain - disp_max_bmi 

 27  displace the mask_pts x, y, z coordinates extension*dxcone, extension*dxcone, extension*dzcone length respectively 

 28  add displaced mask_pts to bmi_copy 

 29  let bm_geom_center_interp and bm_widths_interp be the geometric center coordinates and dimensions of bmi_copy containing displaced  

30                         points 

31  deform 𝒅 by re-mapping components within bm_geom_center and bm_widths to be within bm_geom_center_interp and bm_widths_interp  
32                         using trilinear interpolation 

 33  append to displacements the deformed components of 𝒅 for the spatial direction 𝑖 
 34 let 𝒅𝛽 be the mean of displacements over 𝑠 for interpolated component data 
 35 return 𝒅𝛽 
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9.3. Servers 

Time and effort were spent in installing and maintaining research computing servers at our 

hospital (Miniserver 1, 2 & 3, gpu-fys), both for use in the thesis and by others. This 

especially aided students in the computational radiology and artificial intelligence (CRAI) 

research group in fulfilling their Master’s and PhD degrees (e.g. providing working GPU 

accelerated training environments and software for DL), but also physicians and others 

employed at department of physics and computational radiology (FBA) for to developing 

and using research software in combined Windows and Linux environments. 
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Simple Summary: A growing high-grade glioma exerts a local pressure on its surroundings, re-

sulting in a tissue displacement known as the gross mass effect that is considered a major cause

of acute neurological symptoms in patients with brain cancer. Mass effects are usually manifested

when significant deformations caused by the tumor growth are observed radiologically or clinically;

however, minor deformations in peritumoral tissue could provide early evidence of processes related

to tumor relapse and recurrence. In this study, we propose an automated method to quantify the

subtle deformations that occur in the peritumoral region. We also propose four biomarkers for

differentiating where peritumoral displacements translate into compression. Biomarkers quantifying

peritumoral compression were found to be associated with patient progression and prognosis and

demonstrated the ability to stratify patients between long-time and short-time survivors. We conclude

that compression biomarkers can be key to early treatment assessment during follow-up.

Abstract: The compression of peritumoral healthy tissue in brain tumor patients is considered a

major cause of the life-threatening neurologic symptoms. Although significant deformations caused

by the tumor growth can be observed radiologically, the quantification of minor tissue deformations

have not been widely investigated. In this study, we propose a method to quantify subtle peritumoral

deformations. A total of 127 MRI longitudinal studies from 23 patients with high-grade glioma

were included. We estimate longitudinal displacement fields based on a symmetric normalization

algorithm and we propose four biomarkers. We assess the interpatient and intrapatient association

between proposed biomarkers and the survival based on Cox analyses, and the potential of the

biomarkers to stratify patients according to their survival based on Kaplan–Meier analysis. Biomark-

ers show a significant intrapatient association with survival (p < 0.05); however, only compression

biomarkers show the ability to stratify patients between those with higher and lower overall survival

(AUC = 0.83, HR = 6.30, p < 0.05 for CompCH). The compression biomarkers present three times

higher Hazard Ratios than those representing only displacement. Our study provides a robust and

automated method for quantifying and delineating compression in the peritumoral area. Based on

the proposed methodology, we found an association between lower compression in the peritumoral

area and good prognosis in high-grade glial tumors.

Keywords: magnetic resonance imaging; high-grade glioma; longitudinal studies; compression;

mass effect
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1. Introduction

High-grade brain tumors in adults are characterized by a highly infiltrative nature,
cellular heterogeneity, and angiogenesis [1]. Despite advances in treatment modalities,
high-grade glioma remains an incurable clinical challenge in which patient overall survival
has not substantially improved in the last 20 years [2].

Owing to cancer cell proliferation and remodeling of the microenvironment [3], a
growing high-grade glioma exerts a local pressure on its surroundings and results in a
tissue displacement known as the gross mass effect. Mass effect is considered a major
cause of acute neurological symptoms seen in patients with brain cancer [4], causing severe
disability or even death, and it is a known prognostic factor for high-grade glioma [5–7].
Because the space occupied by the brain is restricted by the cranium, this pathological
growth not only implies displacement, but also compression of the surrounding tissue [8].
The compression of peritumoral healthy tissue directly impacts the neurological function
of the brain, psychological health, and patient quality of life [4].

Mass effects are usually manifested when significant deformations caused by the tumor
growth is observed radiologically or clinically [5,9,10]. However, minor deformations in
tissues close to the solid tumor mass have not been widely assessed and could provide
early evidence of the processes related to tumor relapse and recurrence [11]. In vivo
observations of structural displacements from tumor recurrence or growth are technically
challenging, and are contingent on proper post-processing and interpretation tools. In
a busy clinical workup, it is time consuming, and not technically feasible, for medical
specialists to manually process longitudinal MRI exams for every single patient.

In this study, we propose an automated method for longitudinal image analysis that
allows us to quantify and characterize the subtle deformations that occur in the peritu-
moral region. This method delineates subregions within peritumoral area that are most
affected by compression phenomena (compression habitats) and quantify displacement
and compression phenomena by defining four biomarkers. To study and compare the
clinical relevance of these biomarkers, we assess the relationship between these biomarkers
and progression status based on the RANO criteria. Moreover, we study the inter- and
intrapatient association between the proposed biomarkers and the survival of high-grade
glioma patients. Finally, we assess how tissue deformation may help stratify patients
according to their overall survival.

Biomarkers characterizing peritumoral compression were associated with patient
progression (according to RANO criteria) and patient prognosis, and demonstrated the
ability to stratify patients between long-time and short-time survivors. We consider that the
proposed method based on the definition of compression habitats and the quantification
of the associated phenomena could provide a relevant tool for early progression assess-
ment as well as provide key enabling information to improve monitoring of high-grade
glioma patients.

2. Materials and Methods

2.1. Patient Population

Two-hundred and twenty nine MRI exams from 27 patients with histologically con-
firmed high-grade glioma treated at our institution were eligible for inclusion in this
study [12]. Among the 27 patients, 24 were originally diagnosed as glioblastoma (3 with
IDH mutation, 2 with wild-type IDH mutation, 19 with unknown IDH mutation status)
based on the 2016 WHO Classification of Tumors of the Central Nervous System. The
remaining 3 were diagnosed as 1 anaplastic oligodendroglioma and 2 anaplastic astro-
cytoma. All patients provided written informed consent before imaging and following
approval from the regional ethics committee. Treatment was based on the standard proto-
col for adult patients with high-grade glioma as proposed by Stupp et al. [13], including
surgery, followed by stereotactic radiotherapy approximately four weeks after surgery with
concomitant and adjuvant chemotherapy with temozolomide for a minimum of 6 weeks.
Imaging was performed immediately before the start of radio-chemotherapy, every sec-
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ond week during this treatment, as well as two weeks after treatment. Imaging was then
performed 2, 3, 6, and 12 months after chemotherapy initiation, and biannually afterward,
until there was evidence of clinical deterioration, neurological deterioration, or death. Ra-
diographic progression-free survival was defined as time to progressive disease according
to the updated RANO criteria [14]. Three neuroradiologists (4–22 years of experience)
made a consensus agreement for each patient case.

Of the 27 patients in the original cohort, 80 MR exams performed less than 30 days
after the previous exam were excluded to ensure the quality in estimating deformation
fields. As a result, 127 MRI longitudinal studies from 23 patients were finally included.

2.2. MRI and Lesion Segmentations

The MRI exams were performed on a 3 Tesla Philips Achieva (Philips Medical Systems,
Best, The Netherlands), using an eight-channel head coil. Structural imaging included a
3D FLAIR (echo time (TE)/repetition time (TR)/inversion time (TI) (ms) = 424/8000/2400,
voxel size 1.07 × 1.07 × 0.6 mm3, matrix 224 × 224, 300 slices) and a 3D T1-weighted
gradient echo before and after contrast agent injection (T1-CE, TE/TR = 2.3/5.1 ms, voxel
size 1 × 1 × 1 mm3, matrix 256 × 232, 190 slices).

Contrast-enhanced tumor and edema regions were annotated using a semi-automatic
method previously described [12]. These ROIs were edited and approved by a radiologist
(4 years of experience).

2.3. Biomarkers

In this study, we propose a methodology for the estimation of biomarkers consisting
of the following steps: (1) image preprocessing of each MRI exam, (2) longitudinal intra-
patient registration and displacement field estimation, (3) computation of displacement
and divergence maps, (4) delineation of peritumoral ROI and identification of compression
habitats, and (5) computation of biomarkers (see Figure 1).

–

 

Figure 1. Diagram of the proposed method for obtaining the biomarkers proposed in our study. All

maps and masks were superimposed on the T1-weighted contrast-enhanced image obtained at time

t, with the exception of the maps in Step 3. In this step, the T1-weighted contrast-enhanced image

obtained at time t−1 was used to improve interpretability.

Step 1 Image preprocessing of each MRI exam

Preprocessing of the structural MRI data was based on the ONCOhabitats pipeline
defined in [15] and ANTs suite [16], and included the following steps: (a) voxel isotropic
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resampling to 1 × 1 × 1 mm3 of all MR images using a linear interpolation, (b) denoising
based on the adaptive non-local means filter, (c) rigid intrapatient registration between
the different sequences, (d) affine registration to MNI space, (e) skull stripping based on
convolutional neural networks, and (f) magnetic field inhomogeneity correction based on
N4 algorithm.

Step 2 Longitudinal interpatient registration and displacement field estimation

All MRI exams for each patient were registered longitudinally to the patient’s first
longitudinal MR exam, which was used as reference. To do so, we used both rigid and
affine transformations, with cross correlation as an optimization metric. After that we
computed the displacement field between each contrast-enhanced T1-weighted (T1c) image
and the corresponding T1c image of the previous exam. To compute the displacement
field, a symmetric normalization (SyN) algorithm [16] implemented in the antsRegistration
function of the ANTs suite [17] was used. The parameters used to compute the displacement
field were: (1) metrics: ANTS neighborhood cross correlation; (2) transform type: SyN
(gradient Step: 0.1, update Field Variance In Voxel Space = 3, total Field Variance in
Voxel Space = 0); (3) convergence (iterations per level = 100 × 70 × 50 × 20, convergence
Threshold = 1 × 10−6 convergence Window Size = 10; (4) shrink factors at each level:
8 × 4 × 2 × 1; (5) sigma of Gaussian smoothing at each level: 3 × 2 × 1 × 0 voxels.

The resulting displacement field represents the displacement in the three directions x,
y, and z applied to each voxel to match each T1c image with their corresponding T1c image
of the previous exam (see Figure 1, step 2).

Step 3 Computation of displacement and divergence maps

To transform the deformation fields into scalar maps, the magnitude (Ft) and the

divergence maps (divFt) were calculated from the deformation field (
→
F t) (see Figure 1,

step 2) as follows:

Magnitude Map Ft = |
→
F t|.

Divergence Map divFt = ∇
→
F t.

The magnitude map shows how much displacement is occurring around each voxel.
In contrast, the divergence map shows the degree to which the tissue is expanding (positive
divergence) or contracting (negative divergence) around each voxel.

Step 4 Delineation peritumoral ROI and identification of compression habitats

The region most affected by the mass effect produced by tumor growth is the one
closest to the active tumor. This peritumoral region for each exam was defined as the
segmented tumor core mask (i.e., enhancing tumor + necrosis + postsurgical cavities)
obtained from the last image exam available for each patient and dilated by 2 cm, minus
the tumor core mask at the current exam (see Figure 1, step 4).

In addition, we aim to assess regions where tissue displacement leads to tissue com-
pression. For this purpose, we defined the compression habitats as the regions within the
peritumoral ROI that showed a contractive behavior (i.e., present negative values in the
divergence map).

Step 5 Computation of biomarkers

We propose four biomarkers to summarize the displacement and compression assess-
ments in the peritumoral region for each MRI study:

• Displacement (Disp): median value of the magnitude map (Ft) in the peritumoral ROI.
• Displacement in the compression habitat (DispCH): median value of the magnitude

map (Ft) in the peritumoral compression habitat.
• Compression (Comp): median absolute value of the divergence map (divFt) in the

peritumoral ROI.
• Compression in the compression habitat (CompCH): median absolute value of the

divergence map (divFt) in the peritumoral compression habitat.
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To avoid biases due to different time intervals between MRI exams, all biomarkers
were normalized by the time between the exams at timepoints t−1 and t (see Figure 1,
step 1). This time between examinations is expressed in 90-day periods. In this way, the
displacement values shown in mm represent the displacement caused by tumor growth
during a typical follow-up period.

2.4. Statistical Analysis

We first analyzed whether the proposed biomarkers were related to the tumor progres-
sion status estimated by the RANO criteria. To do so, we compared the median values of
biomarkers between progression and non-progression (including partial response, pseudo-
response, and stable status) status examinations for each patient. In this way, we avoided
the potential introduction of bias into the results due to the different numbers of MRI
studies available for each patient. To assess the differences, we used the non-parametric
Wilcoxon signed-rank test with a significance level of p < 0.05. Additionally, we repeated
the analysis comparing all pairs of MRI studies (progressing vs. non-progressing) for each
patient, instead of just the median, in order to visualize the patterns using all available data.

To analyze interpatient association between biomarkers and patient overall survival,
we used uniparametric Cox Proportional-Hazards regression analyses. The biomarker value
for each patient was defined as the median of all the longitudinal values available for the
patient. To analyze intrapatient association between biomarkers and time-to-exitus (defined
as the time from each MRI study to exitus), we used multiparametric Cox Proportional-
Hazards regression analyses. To eliminate the dependency on each patient we included as
binary co-variables whether each sample (i.e., biomarker value) belonged to each patient.

Additionally, we performed a Kaplan–Meier survival analysis with log-rank tests to
assess differences in overall survival between patients divided by biomarker thresholds.
Stratification thresholds for each biomarker were defined as those which best separated
populations in terms of their C-index [18]. To avoid influence of non-representative subsets,
we always ensured that the size of subpopulations was greater than 25% of the total number
of cases. For censored cases, we set the date of censorship to the last date of contact with the
patient or, in cases where this information was not available, the date of the last MRI exam.

All p-values were adjusted by false discovery rate (FDR) using the Benjamin and
Hochberg procedure [19].

3. Results

In Figure 2A, a full longitudinal study of a patient with high-grade glioma is presented
to illustrate how the magnitude maps and divergence maps characterize tumor evolution
during follow-up. For this patient, changes in the divergence and magnitude maps are
observed earlier than changes by traditional RANO criteria of recurrent hyperintensity in
the T1-CE images as identified by the expert radiologist (see Figure 2B).

3.1. Association with Tumor Progression Based on RANO Criteria

The non-parametric Wilcoxon signed-rank paired test on the differences between
median biomarkers in progressing versus non-progressing paired exams from each patient
showed that all biomarkers (Disp, DispCH, Comp, CompCH) showed significantly higher
values in MRI studies labeled as progressing compared those labeled as non-progressing for
each patient (p < 0.05). These differences are more evident in the compression biomarkers
(Comp, CompCH) than in the displacement biomarkers (Disp, DispCH).



Cancers 2022, 14, 1725 6 of 12

 

exitus. The different biomarkers’ colors and shapes represent data from dif-

Figure 2. Longitudinal evolution of Patient 4 from day 18 after start of radio-chemotherapy treatment

to day 372. For illustration purposes, we did not exclude the first MRI exams with periods shorter

30 days from the previous one in this figure, as described in the inclusion criteria for the rest of the

statistical analysis. (A) According to RANO criteria, tumor progression started on day 208. However,

the displacement maps show significant deformations already at day 28. Circles in orange highlight

preliminary visual evidence of tumor growth. (B) Quantification of the displacement magnitude and

absolute divergence in control and tumor ROIs, respectively.

3.2. Association with Patient Overall Survival

The interpatient association between the median biomarkers and patient overall
survival is presented visually in the log-plot of Figure 3A. In this figure, an inverse relation-
ship between the values of the four biomarkers and patient overall survival is observed.
Figure 3B includes not only the mean values of the biomarkers for each patient, but also
the values obtained in each of the longitudinal MRI studies carried out during the pa-
tient follow-up. In contrast to Figure 3A, in Figure 3B, the concept of overall survival is
replaced with time-to-exitus. The different biomarkers’ colors and shapes represent data
from different patients (see legend).

Results of Cox regression for both interpatient and intrapatient associations between
biomarkers and patient survival are presented in Table 1. The interpatient association
between biomarkers and overall patient survival is visible, especially for the compres-
sion biomarkers (Figure 3A). However, due to the low number of cases, the Cox analysis
only shows a significant association for Comp and CompCH before correcting p-value
for FDR. The intrapatient association between biomarkers and time-to-exitus assessed
by Cox analysis is significant (p < 0.05) for all biomarkers, even after correction for FDR.
Biomarker Hazard Ratios are higher when they are calculated in the peritumoral compres-
sion habitat. In addition, Hazard Ratios are higher for compression biomarkers than for
displacement biomarkers.
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Figure 3. (A) Scatter plot showing the relation between median biomarker for each patient and

overall survival. (B) Scatter plot showing the relation between biomarker for each MRI study and

time-to-exitus. Each combination of marker color and shape corresponds to a different patient

included in the study. * Indicates significant difference (p < 0.05).
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Table 1. Results for the Cox regression analyses and their associations with patient prognostic. The

interpatient association analysis shows the results of the uniparametric Cox regression for biomarkers

to predict OS. The interpatient association analysis shows the results of the multiparametric Cox

regression for biomarkers to predict OS. To eliminate the dependency on each patient, we included

whether each biomarker value belonged to each patient as a binary co-variable. Asterisk * indicates

significant difference (p < 0.05).

INTERPATIENT ASSOCIATION (n = 23 Patients)

Hazard Ratio
[95% Conf. Interval]

Hazard Ratio
[95% Conf. Interval]

Normalized Var.
p-Value

p-Value (FDR
Adjusted)

Disp 1.05 [0.83, 1.34] 1.43 [0.28, 7.37] 0.666 0.666
DispCH 1.09 [0.83, 1.44] 1.65 [0.35, 7.86] 0.527 0.666
Comp 250.27 [1.04, 6.02 × 104] 4.45 [1.01, 19.58] 0.048 * 0.097

CompCH 829.55 [2.15, 3.19 × 105] 5.75 [1.22, 27.10] 0.027 * 0.097

INTRAPATIENT ASSOCIATION (n = 127 MRI Exams)

Hazard Ratio
[95% Conf. Interval]

Hazard Ratio
[95% Conf. Interval]

Normalized Var.
p-Value

p-Value (FDR
Adjusted)

Disp 1.43 [1.20, 1.70] 26.07 [5.32, 127.83] 5.83 × 10−5 * 1.19 × 10−4 *
DispCH 1.39 [1.19, 1.64] 27.41 [5.44, 138.01] 5.93 × 10−5 * 1.19 × 10−4 *
Comp 3.72 × 104 [44.87, 3.08 × 107] 79.46 [4.86, 1.30 × 103] 0.0021 * 0.0021 *

CompCH 7.86 × 104 [1.10 × 102, 5.60 × 107] 81.40 [6.26, 1.06 × 103] 7.72 × 10−4 * 0.0010 *

3.3. Stratification Capability

The ability to stratify patients between those with higher and lower overall survival
based on biomarkers is also observed to be significant (p < 0.05) for compression biomarkers
(see Table 2 and Figure 4). Stratification based on those compression biomarkers (i.e., Comp
and CompCH) obtains high AUC values (AUC = 0.82 and AUC = 0.83, respectively).
Similarly to the results obtained in the Cox analysis, the stratification results improve when
using compression biomarkers, and when the biomarkers are calculated from the values
within the compression habitat.

Table 2. Results of the log-rank test of the Kaplan–Meier analysis. For each biomarker, the median OS

and number of patients with high and low biomarker value are presented. Additionally, differences

between OS (months), hazard ratios, area under the curve (AUC), and log-rank test resulting p-value

are presented. * Indicates significant difference (p < 0.05).

Cut-Off
Threshold

Patients per
Group

[Low, High]

AUC
(C-Index)

Median OS
per Group

[Low, High]

Hazard Ratio
[95% Conf.
Interval]

p-Value
(Log-Rank

Test)

p-Value
(FDR

Adjusted)

Disp 3.53 [16, 7] 0.73 [27, 16] 1.86 [0.65, 5.34] 0.250 0.250
DispCH 3.19 [16, 7] 0.74 [27, 16] 1.86 [0.65, 5.34] 0.250 0.250
Comp 0.09 [14, 9] 0.82 [31, 14] 5.33 [1.69, 16.80] 0.004 * 0.012 *

CompCH 0.10 [16, 7] 0.83 [31, 14] 6.30 [1.69, 23.42] 0.006 * 0.012 *
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− −
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–
Figure 4. Kaplan–Meier plots showing the stratification capability of the median biomarkers proposed

for each of the patients included in the study. Blue lines represent the patients showing higher tumor

mass effect according to each of the biomarkers. Red lines represent the patients showing lower

tumor mass effect according to each of the biomarkers. The x axes represent the overall survival in

months. * Indicates significant difference (p < 0.05).

4. Discussion

The compression of peritumoral healthy tissue in brain tumor patients is considered
a major cause of life-threatening neurologic symptoms [4]. Gross mass effect is usually
assessed qualitatively by the treating physician, and only taken into consideration in the
later stages of the disease when the deformation caused by the tumor growth is apparent
and advanced. Numerous studies in the literature confirm the prognostic ability of the mass
effect produced by tumor growth [5,6,20,21]. However, there are fewer studies dedicated to
the quantification of these tissue displacements, and most of them are focused on the more
macroscopic phenomena such as midline shift [9,10] or in the displacement of the lateral
ventricles [5]. On the contrary, the quantification of minor tissue deformations and their
associated compression has not been widely investigated.

In this work we proposed a methodology to automatically quantify small displace-
ments from tumor growth. We use the information provided by nonlinear registration
based on symmetric normalization algorithm to estimate the displacement field. Unlike
previous work [11], we estimate the displacements with respect to a series of longitudinal
MRI studies and not by a standard atlas. This allows us to monitor tumor evolution during
patient follow-up. Moreover, we propose a method to characterize when and where these
displacements translate into compression of tissues near the tumor (compression habitats)
based on the estimation of the divergence of the displacement field. Although displacement
and compression are associated phenomena, displacement observed in a region does not
always imply compression in the same region. Compression in eloquent areas [22], and not
just the displacement, may constitute a major impact on neurological function.

In this study, we first assessed whether the proposed biomarkers differed significantly
with the progression versus non-progression status of each patient. The results show that
all biomarkers had significantly higher values when the tumor was progressing than when
the tumor was not progressing. In particular, the biomarkers characterizing tissue com-
pression were differentiated between progressing and non-progressing tumor. This higher
performance of the compression biomarkers may be because the divergence operation (in
the basis of quantification of compression) could be more robust to suboptimal intrapatient
registrations during preprocessing. That is, intrapatient rigid registration errors during
preprocessing could generate a constant bias in the displacement field. This bias affects
the quantification of the displacement biomarkers (as they are based on the magnitude
of the displacement field), but not by the compression biomarkers (as they are based on
divergence operator).
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To assess the clinical relevance of the proposed biomarkers, we investigated the
interpatient association between proposed biomarkers and the overall survival of each
patient. To avoid introducing any bias by not having the same number of MRI scans during
follow-up in each patient, the interpatient association analysis based on Cox regression
was done using only one value for each patient (i.e., the median of the biomarkers over the
entire follow-up). This conservative approach, together with the FDR correction, make this
association non-significant in the Cox analysis. The visualization of the data shows a clear
pattern between the median compression biomarkers and the overall survival. This pattern
is consistent, and is even more evident if we do not use just the median value per patient,
but use all available values obtained in each MRI exam acquired during the follow-up. We
also analyzed the intrapatient association between biomarkers and time-to-exitus. This
intrapatient association assessed by multiparametric Cox analysis is significant for all
biomarkers. Analysis of the Hazard Ratios suggests that estimating biomarkers calculated
in the compressed habitat rather than in the entire peritumoral area could improve the
performance of these biomarkers. These results show that most of the proposed biomarkers
could be relevant for monitoring the patient’s evolution during follow-up and help in the
estimation of prognosis. Finally, we analyzed whether the proposed biomarkers could be
useful for stratifying patients according to their overall survival. The results obtained show
that biomarkers based on compression characterization (i.e., Comp and CompCH) are able
to divide the population of high and low survivors obtaining high AUC values, a substantial
difference between the mean survival of both groups, and elevated Hazard Ratios. These
results indicate that compression biomarkers show a stronger association with overall
survival of high-grade glioma patients (interpatient variability) while displacement-based
biomarkers are slightly more relevant for the study of intrapatient evolution.

Our results indicate that compression of peritumoral tissue due to tumor growth is
associated with poor patient prognosis. A general trend indicates that both displacement
and compression biomarkers improve their association with patient prognosis when esti-
mated in the compression habitat. Based on these results, we consider the identification of
compression habitats in the peritumoral area to improve the robustness of the biomarkers
and provide valuable information to predict the effects of tumor growth. In addition, these
results may indicate that compression habitats would be particularly relevant areas to
examine during patient follow-up.

The methods presented in this study could be used to assess in humans the causal link
between solid stress and neurological dysfunction found in recent preclinical studies [4]. Fu-
ture work should use the proposed methodology and biomarkers to assess the influence of
tissue compression near eloquent areas and its subsequent impact on neurological function.
Additionally, future work should analyze the associations between the compression habi-
tats and measures of mechanical stress in these regions, as obtained by magnetic resonance
elastography [23–25]. This would allow us to validate the interpretation of the proposed
habitats and to assess to what extent the information provided by both techniques are
complementary for longitudinal monitoring of patients with high-grade gliomas. Finally,
future work should evaluate the different levels of ability of the proposed markers for the
assessment of early progression in compressive and infiltrative tumor phenotypes.

The relatively low number of patients included in the analysis represents a limita-
tion of our study. However, a large number of time points (i.e., 127 MRI studies) were
available for the 23 patients included. While logistically demanding, this setup allowed
us to overcome the limitations of the few follow-up MRI exams that make out standard
clinical diagnostic procedures. Therefore, our study provides a theoretical basis for the
proposed biomarkers to be adapted in larger clinical cohorts where the number of available
longitudinal examinations is restricted. Another limitation of the study is that it is hypothe-
sized that the main contributor to tissue compression is tumor growth; nevertheless, other
processes such as cystic changes, inflammation, the effects of radiotherapy, tissue relaxation
after surgery, or ventricular expansion may also contribute to the observed effect. These
phenomena could also contribute significantly to the value of biomarkers and should be
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taken into consideration in their interpretation. In terms of the whole cohort, and despite
all these confounding factors, we observed an association of the proposed biomarkers
and clinical endpoints related to survival. Finally, the biomarkers proposed in this study
show associations with patient survival; however, further work with larger cohorts and
an independent test set are needed to confirm the possible prognostic capabilities of these
markers and their ability to show the tendency for earlier recurrence.

5. Conclusions

In summary, our study provides a robust and automated quantification of compres-
sion in the peritumoral area and a methodology to assess the areas most affected by this
phenomenon. Based on our proposed methodology, we found a significant association
between lower compression in the peritumoral area and good prognosis for the patient.
Future validation of our findings in multicenter cohorts may make this method a tool with
the potential to improve the follow-up of patients with high-grade glioma.
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Abstract23 

Background 24 

Glioblastomas are aggressive brain tumors with poor survival prognosis of 12-15 months 25 

after diagnosis. Following surgery, inescapable tumor progression is typically associated 26 

with visible displacements of tissue on MRI. 27 

Purpose 28 

Tumor-induced displacement of cancerous and healthy tissue, as estimated by deformable 29 

image registration methods, may constitute a valuable biomarker in characterizing cancer 30 

progression and detecting early tumor recurrence during treatment. We have developed a 31 

dedicated deformation model of glioblastoma-induced tissue displacement to assess the 32 

accuracy of estimated tissue displacements from deformable image registration methods 33 

under different realistic scenarios. 34 

Methods 35 

Post-contrast T1-weighted MR scans of 27 subjects with confirmed high-grade glioma; of 36 

which 4 with WHO grade III glioma and 23 with WHO grade IV glioblastoma, were deformed 37 

into synthetic second time-point scans by our model mimicking cancer progression. Model 38 

parameters included: (a) low (3 𝑚𝑚) and high (8 𝑚𝑚) maximum tissue displacement for39 

simulating low and high tumor mass effect, (b) a parameter for low and high tumor 40 

infiltration, and (c) no, intermediate and high tumor growth irregularity. The geometric 41 

accuracy of five well-known deformable image registration methods were assessed by 42 

estimating the respective displacements within necrotic, contrast-enhanced, and 43 

edematous tumor tissue regions. 44 

Results 45 

Deformations with low mass effect and high tumor infiltration were associated with 46 

significant lower displacement estimation errors for all registration methods, when 47 

compared to the alternatives of high mass effect and low tumor infiltration (7 percentage 48 

points difference in mean relative error, P<0.001). SyN ANTs with the cross-correlation 49 

2 



3 

metric and Farneback optical flow performed with significantly lower errors than the other 50 

methods investigated (P<0.002). 51 

Conclusion52 

Deformable image registration may provide accurate displacement estimates for 53 

characterizing highly infiltrative glioblastoma growth and recurrence with small (~3 mm) 54 

mass effect affecting both tumor and healthy tissue. 55 

Keywords56 

glioblastoma, displacement, deformable image registration, modeling, brain cancer, mass 57 

effect, infiltration 58 

Introduction59 

Glioblastoma (GBM) is the most malignant type of central nervous system tumors in adults 60 

(1). With standard treatment (2) including surgery, and adjuvant and concomitant 61 

chemoradiotherapy, the overall survival is only 12-15 months, with less than 5 % of all 62 

patients surviving 5 years after diagnosis (3–5).63 

Symptoms of the disease may appear as increased intracranial pressure, including headache 64 

and focal and progressive neurologic deficits (4). On contrast-enhanced T1-weighted MRI, a 65 

GBM usually presents as an irregularly shaped mass with a dense hyperintense ring of 66 

enhancement, and with a hypointense center of necrosis. The tumor may also be 67 

surrounded by vasogenic edema, hemorrhage, and ventricular and midline shifts (4,5). 68 

In GBM patients, contralateral ventricle displacement and midline shift have been 69 

associated with decreased survival (6,7). Tumor progression may lead to displacements of 70 

tissue as a “mass effect” from neoplastic growth (6). The mass effect has also been71 

associated with subtle displacements that are not clearly visible to an expert observer and 72 

which may be valuable assessment of early treatment response (8,9). These tumor growth 73 

patterns, as observed between two consecutive MRI scans, may be quantified by a 74 

displacement vector field of displacement vectors for each image voxel. A common term for 75 



the techniques used to estimate these displacement fields in radiation therapy is 76 

deformable image registration (DIR) (10). DIR techniques may be broadly grouped into 77 

physical, approximation, a-priori knowledge-based and task specific models (11). Optical 78 

flow and physics-based models with diffeomorphic guarantees (topology-preserving, 79 

differentiable and invertible) are among the best performing DIR methods in the medical 80 

domain, providing both accurate local and long-range deformation estimations (11,12). 81 

Deep learning aided techniques have also been investigated for DIR tasks (13–15),82 

challenging state-of-the-art diffeomorphic registration.  83 

In our work, we developed a macroscopic tissue displacement model for tumor mass effect, 84 

as observed between two consecutive high-resolution structural MRI scans. We then 85 

created synthetic ground truth tissue displacement fields with known conditions for testing 86 

the performance of the current state-of-the-art DIR methods on real MRI with GBM. We 87 

assessed the tumoral per-voxel displacement error within necrotic, contrast-enhanced and 88 

edematous lesion areas of the following registration methods; (a) ANTs Symmetric image 89 

Normalization (SyN) (16) with mutual information and cross-correlation loss metrics (17), 90 

and (b) the optical flow methods Farneback (18), Lucas-Kanade (19) and TV-L1 (20). Our 91 

main findings indicate that ANTs with cross-correlation and Farneback optical flow return 92 

the best voxel image tracking accuracy in lesions, and that all registration methods achieve 93 

higher accuracy for low mass effect (3 𝑚𝑚 displacement) compared to larger mass effect (894 𝑚𝑚 displacement).95 

Materials and Method96 

Patient population 97 

We included longitudinal MRI data from 27 patients with initial and histologically confirmed 98 

High-Grade Glioma (HGG) (21). The study was approved by the Institutional Review Board 99 

and the Regional Committee for Medical and Health Research Ethics (ref: 2009/1867b). 100 

Patients were included only if informed consent was signed. Twenty-three patients had 101 

GBM (WHO grade IV), while four patients had WHO grade III glioma. Owing to the 102 

retrospective nature of our study, information on the isocitrate dehydrogenease (IDH) 103 

status for the GBM patients (IDH-mutant vs. IDH-wildtype GBM) were not available at the 104 
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5 

time of diagnosis. The patients underwent surgery and chemoradiotherapy and experienced 105 

recurrence as described elsewhere (21,22). The 27 patients had a median age of 56 years 106 

(range 32 to 68 years) at the time of diagnosis, and a female/male ratio of 7/20. Median 107 

overall survival was 19 months. For modeling, we used only a single MRI exam per patient 108 

acquired approximately one month after tumor resection and during chemoradiotherapy. 109 

Follow-up MRI exams taken two weeks later were used for visual inspection to determine 110 

reasonable simulation parameters. 111 

MR imaging 112 

Post-operative 3-dimensional pre- and postcontrast T1-weighted (T1w, T1wc) as well as T2-113 

weighted (T2w) with and without Fluid Attenuated Inversion Recovery (T2w-FLAIR) MRI 114 

scans were acquired from all patients during chemoradiotherapy (21). The T1w image 115 

parameters were 1 mm3 voxels, 2.3/5.1 ms TE/TR, and 8 degree flip-angle, for T2w; 116 

1.88x1.88x4.0 mm voxels, 70/1349 TE/TR, 90 degree flip-angle, and lastly, for T2w-FLAIR; 117 

1.07x1.07x0.6 mm voxels, 424/8000 ms TE/TR and 90 degree flip-angle. Acquisition times 118 

were 400, 400, 112 and 520 s for T1w, T1wc, T2w and T2w-FLAIR respectively. T1wc was 119 

acquired following injection of 0.1 mmol/kg of gadobutrol (Gadovist, Bayer, Sweden) and 120 

saline flush. All scans were performed on a Philips Achieva 3-Tesla system (Philips Medical 121 

Systems, Best, the Netherlands). 122 

Preprocessing 123 

Necrotic, edematous and contrast-enhanced tissue masks and normal-appearing brain 124 

tissue masks were delineated based on T1w, T1wc, T2w and T2w-FLAIR images using the 125 

ONCOHabitats segmentation service (23). See Figure 1 for an overview of the total lesion 126 

volumes. The MRI data was resliced to 1 mm3 Montreal Neurological Institute (MNI) space 127 

before applying our deformation model on T1wc in to create synthetically deformed T1wc 128 

scans. The morphological segmentation service in ONCOHabitats transforms all MRI 129 

sequences to voxel-isotropic 1 mm3 MNI space by rigid and affine registration to a nonlinear 130 

symmetric International Consortium of Brain Mapping (ICBM) MNI152 T1w template (24) 131 

using ANTs (25). 132 



133 

Figure 1: Variations in baseline lesion volume for the 27 patients diagnosed with HGG. 134 

Deformation model 135 

We developed an algorithm to synthetically deform brain tumor MRI that mimics radial 136 

pushing patterns (6) (Figure 2). The algorithm creates a 3D displacement field (𝒅) by using137 

the information from the outlined regions-of-interest of the tumor lesion (𝑀𝑙) and brain138 

mask (𝑀𝑏), merged with three simulation parameters: 1) maximum tissue displacement as a139 

result of tumor mass effect (𝛼 [𝑚𝑚]), 2) infiltration (𝛽), and 3) irregularity (𝛾), according to140 𝒅(𝑀𝑙 ,𝑀𝑏 , 𝛼, 𝛽, 𝛾) = |𝛼 · 𝒅𝛽(𝑀𝑙 ,𝑀𝑏) + 𝒑(𝛾)|𝑀𝑏141 

where 𝒅𝛽 is a realistic-appearing displacement vector field constructed from lesion and142 

brain masks and the growth infiltration parameter, 𝒑 is a noise vector field and ||𝑀𝑏 restricts 143 

displacement to only occur inside the brain mask. 𝒅𝛽 is iteratively computed by displacing144 

the partial derivatives of a 3D gaussian by itself. A detailed description of the algorithm is 145 

found in supplementary material. 146 

6 



7 

 

 147 

Figure 2: Example of radial pushing patterns between two consecutive real T1wc MRIs of 148 

GBM. 149 

Simulation parameters 150 

Infiltration was defined as a parameter ranging from 0 to 1 to control how rapid the 151 

magnitude of tissue displacement in a radial direction drops off away from the geometric 152 

center of the lesion mask. This drop follows a profile that is equal to the shape of a one-153 

sided gaussian. At the value 0, any radial displacement profile pans across the maximum 154 

possible distance away from the lesion center ending at the brain mask edge. This models 155 

the maximum possible infiltration from growing cancer cells and is illustrated with a small 156 

drop in radial displacement. In contrast, an infiltration parameter of 1 leads to the shortest 157 

radial distance displacement profiles, which are derived directly from the 3D gaussian with 158 

dimensions equal to the edge of the lesion mask.  159 

The maximum tissue displacement specifies the length of the largest displacement vectors 160 

in the displacement field, which are located on a surface that is dependent on the 161 

infiltration parameter. This surface could be located either inside or outside of the lesion 162 

mask. We simulated displacements using infiltration of 0.1 and 1, yielding maximum tissue 163 

displacement outside (high infiltration) and inside (low infiltration) lesion areas, 164 

respectively. The maximum tissue displacement parameter hence controls the intended 165 

tumor growth mass effect. A higher mass effect is generally associated with worse survival 166 

in GBM (6,26). Complex effects of the mass effect such as deformation heterogeneity (8) 167 



and compression (9) may also negatively impact survival. In general practice, a midline shift 168 

above 5 𝑚𝑚 usually requires immediate surgical intervention (27,28). Based on these169 

studies, we selected maximum tissue displacement of 3 𝑚𝑚 and 8 𝑚𝑚 to describe low170 

mass effect (high survival) and high mass effect (low survival), respectively.  171 

We modeled irregularity of tumor-induced displacements by adding continuous noise to 172 

each component of the displacement field. The noise parameter controls the spatial 173 

resolution of the noise. We modified an implementation of 3D Perlin noise (29) to only use a 174 

single irregularity parameter as input and in the range larger than 0 and less than 1, where 1 175 

is a single spatial “wavelength” describing a single continuous “noise wave” across each 176 

spatial axis. We simulated three noise configurations: no noise (Perlin noise disabled, and 177 

nothing added to the displacement field), 0.05 (intermediate irregularity) and 0.03 (high 178 

irregularity). Figure 3 illustrates the selected parameters for mass effect, infiltration and 179 

irregularity. Table 1 gives an overview of the input data, simulation parameters and output 180 

as well as internal fixed parameters of the deformation model. 181 

182 

Figure 3: The deformation model applied on a real T1wc MRI with different input 183 

parameters. The resulting deformed T1wc MRI, magnitude of displacement field and 184 

8 
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deformation grid are overlaid. A) low mass effect (3 𝑚𝑚 maximum displacement), B) high185 

mass effect (8 𝑚𝑚 maximum displacement). A) and B) horizonzal: low and high infiltration,186 

A) and B) vertical: no, intermediate and high irregularity.187 

Table 1: Parameters of the synthetic deformation model. Shrinkage is modeled with a 188 

negative maximum displacement 𝛼 < 0, and growth with a positive 𝛼 > 0. Only positive 𝛼189 

was investigated in this work. 190 

Input Symbol Range Type Description 

Lesion mask 𝑀𝑙 [0,1]2 Binary 

scalar 

field 

Brain mask 𝑀𝑏 [0,1]2 Binary 

scalar 

field 

Displacement 𝛼 ℝ Scalar [𝑚𝑚] Maximum tissue 

displacement (mass effect) 

Infiltration 𝛽 [0,1] Scalar Intensity decay fraction; 0:

most infiltration, 1: least

infiltration 

Irregularity 𝛾 < 0,1] Scalar Perlin noise resolution; ~0:

highest irregularity, 1:

lowest irregularity 

Noise 𝛿 ℝ Scalar Perlin noise maximum 

magnitude; fixed default =0.6
Standard 

deviation 

𝜎 ℝ Scalar Of the Gaussian; fixed 

default = 5
Number of 

vectors 

𝑁𝑠 [1, 𝑁] Integer Number of directions for 

computing deformations; 

fixed default = 32
Angle 

deviation 

𝜃 < 0,90 > Scalar 2𝜃 is the top angle of the

directional cones; fixed 

default = 7°
Output 

Model 𝒅(𝑀𝑙 ,𝑀𝑏 , 𝛼, 𝛽, 𝛾) |𝒅| ∈ [0, 𝛼 + 𝛿] Vector 

field 

191 

We applied the model displacement fields with ANTs to deform T1wc MRIs to create 192 

synthetic versions of the T1wc at a second time point. This allowed us to derive pairs of real 193 

first time point- and synthetic second time point MRIs, with an associated ground truth 194 

displacement field (Figure 3). We used the conjunction of necrotic, edematous, and 195 

contrast-enhanced tissue mask as the input tumor tissue mask to the model. 196 



Parametric evaluation of deformable registration for tumor growth assessment 197 

We evaluated the following methods for displacement estimation; Symmetric image 198 

Normalization (SyN) (16) with mutual information and cross-correlation metric (17), as well 199 

as optical flow by Gunnar-Farneback (18), iterative Lucas-Kanade (19) and TV-L1 (20). The 200 

five registration methods were used to estimate the displacements between each patient’s 201 

first time-point MRI and the 12 different synthetic growth simulations generated (a total of 202 

324 simulations). 203 

Our assessments were designed to answer the following three questions: 204 

1. Do the differences of the following parameters change the performance of the205 

registration methods?206 

a. Low and high mass effect.207 

b. Low and high growth infiltration.208 

c. No, intermediate and high growth irregularity.209 

2. Does the performance of the registration methods differ?210 

3. Is there a difference in the performance of the registration methods across the211 

different lesion tissue types (necrotic, edematous, and contrast-enhanced)?212 

Statistical assessment 213 

All registration methods were evaluated by absolute and relative errors from image voxels 214 

within the necrotic, edematous, and contrast-enhanced lesion masks. Median values were 215 

computed for each lesion, then summarized by mean values depending on the statistical 216 

test performed.  217 

The absolute error 𝑒𝑎𝑏𝑠 was computed voxel-vise as the magnitude of the difference218 

between the ground truth simulated reference displacement vector  𝑑𝑟𝑒𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and the219 

deformable registration estimated displacement vector 𝑑𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗:220 𝑒𝑎𝑏𝑠 = |𝑑𝑟𝑒𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑑𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗|221 

The relative error 𝑒𝑟𝑒𝑙 was computed as 𝑒𝑎𝑏𝑠 divided by the magnitude of the ground truth222 

displacement vector 𝑑𝑟𝑒𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   :223 

𝑒𝑟𝑒𝑙 = 𝑒𝑎𝑏𝑠|𝑑𝑟𝑒𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |224 
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We performed 27 (patients) * 12 (models) * 5 (methods) = 1620 registrations, each with 3 225 

(lesion tissue types) * 2 (absolute and relative error) returning a total of 9720 error 226 

measurements.  227 

Paired samples Wilcoxon signed-rank tests were performed to compare registration errors 228 

for low and high mass effect, and for low and high infiltration. To compare errors for no, 229 

intermediate and high growth irregularity, registration methods, as well as on tissue types, 230 

we used Kruskal-Wallis tests. One-way ANalysis-Of-VAriance (ANOVA) with Tukey pair 231 

comparisons was performed to assess significant differences between the performance of 232 

the registration methods. Before performing the ANOVA and Tukey comparisons, we log-233 

transformed the errors for normality. To ensure N=27 individual samples for each test 234 

population, we calculated mean error values across all simulated parameter configurations 235 

except the one investigated. For all comparisons, except when comparing registration 236 

performance on lesion types, we used mean errors across the tissue types as overall 237 

representations of the error of the registration methods in the whole tumor volume. A 238 

significance level of P=0.05 was used for all analysis before any Bonferroni corrections for 239 

multiple comparisons.  240 

Model agreement with follow-up MRI 241 

Finally, for all patients except patient one, we conducted a grid search for the maximum 242 

tissue displacement, infiltration and irregularity to assess the best fit between the synthetic 243 

tumor growth projections and the real tumor growth from the MRI data at the second 244 

exam. One patient was excluded because of registration errors in the preprocessing 245 

between first and second time-point MRI. We used standard cross-correlation provided by 246 

FSL (30) within masks specific to each growth projection as the function to maximize. These 247 

are binary masks, produced by our simulations, of the respective brain regions with tissue 248 

displaced by the deformation model. We searched for optimal parameters using the same 249 

parameter range described earlier; 3- and 8-mm maximum tissue displacement, 1 (low) and 250 

0.1 (high) infiltration, as well as no, 0.05 (intermediate) and 0.03 (high) growth irregularity. 251 

The optimal parameters were then compared with total tumor volume, to assess the 252 

relation between tumor size and ability of the model to describe real tumor growth. We also 253 

performed standard linear regression of total tumor volume and registration performance. 254 



Results255 

Comparing low and high mass effect returned differences in performance of registration 256 

methods in terms of both absolute and relative errors, with lowest errors and thus higher 257 

registration performance for low mass effect growth projections (Wilcoxon; P<0.001, 7 258 

percentage points difference in mean relative error). Furthermore, comparison of low- and 259 

high infiltration separated the registration methods only when assessing relative errors, 260 

where high infiltration was associated with the lowest error in registration performance 261 

(Wilcoxon; P<0.001, 7 percentage points difference in mean relative error). No difference in 262 

performance was associated between the different levels of growth irregularity. 263 

ANTs SyN with cross-correlation metric and Farneback optical flow performed with lower 264 

relative errors than the rest of the methods (Kruskal-Wallis; P=0.002, ANOVA; P=0.001). The 265 

registration methods returned the lowest absolute errors in edematous tissue (Kruskal-266 

Wallis; p=0.019), and lowest relative errors in edematous and contrast-enhanced tissue 267 

(ANOVA; P=0.035). See Figure 4 and Figure 5 for depictions of the results. 268 
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 269 

Figure 4: Results from measuring the performance of deformable registration methods in 270 

the tumoral regions A) necrosis, B) edema and C) contrast-enhanced lesion by varying the 271 

deformation model parameters mass effect (displacement), infiltration and irregularity. A 272 

lower relative error means higher registration performance. ANTs SyN with cross-correlation 273 



loss metric returned highest performance. Deformable registration performed with overall 274 

lowest errors in edematous regions when compared to the necrotic/post-surgical cavity and 275 

contrast enhanced regions. 276 

277 

Figure 5: Results from ANOVA and Tukey pair comparisons of log-transformed relative 278 

errors to investigate differences in performance of the deformable registration methods (A) 279 

between themselves and B) between lesional regions). 280 

Last, the grid search on the investigated parameters resulted in model projections with only 281 

low mass effect. Of these projections, 52 % had the low infiltration parameter setting, and 282 

close to all had no growth irregularity (all except one projection with intermediate, and 283 

three projections with high irregularity parameter setting). The projections with high 284 

infiltration had the highest cross-correlation with second time-point MRI (cross-285 

correlation=0.73 and 0.67 for high infiltration and low infiltration respectively), shown in 286 

Figure 6. 287 
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288 

Figure 6: Results from ad-hoc grid search. A)-B) Distribution of low and infiltration growth 289 

projections and true tumor volume as measured by cross-correlation between best fit 290 

growth projections with true second time-point MRI. Higher cross-correlation is better fit. C) 291 

Sum of tumor volumes stratified into best fit low and high infiltration growth projections. D) 292 

Regression lines of relative registration errors vs. tumor volume for the different methods. 293 

Lower error is better. 294 

Discussion295 

In our work, we assessed the performance of using state-of-the-art registration methods as 296 

a tool for estimating voxel-vise tissue displacement of HGG progression and recurrence. 297 

GBM, the main disease investigated, compromise a complex type of cancer spanning a wide 298 

variety of genetic profiles. The appearance of tumor growth on diagnostic images may take 299 

many different forms on longitudinal MRI exams (6,8,31,32). In our study, we simulated 300 

tissue expansion growth mimicking what is observed on longitudinal MRIs of patients with 301 



recurrent HGGs, using only the tumor and brain masks as input. Our main finding indicates 302 

significant lower registration errors for low simulated mass effect (3 𝑚𝑚 maximum tissue303 

displacement) combined with high infiltration. ANTs SyN with cross-correlation metric and 304 

Farneback optical flow registration methods showed the overall best tissue displacement 305 

quantification performance for tumor growth. 306 

One benefit of using a deformation model, such as the one proposed in our study, is the 307 

ability to simulate multiple synthetic tumor growth projections in a controlled fashion with 308 

various degrees of radially enlarged necrotic, enhanced, edematous and other surrounding 309 

peritumoral tissue. Specifically, we varied the model parameters mass effect (𝑚𝑚), growth310 

infiltration and growth irregularity to create a dataset of real- and synthetic MRI scan pairs. 311 

This design allowed for objective and quantitative comparisons of registration algorithms 312 

and displacement methods with full control over simulation parameters. 313 

In addition to showing overall best performance by the topology-preserving method from 314 

ANTs with cross-correlation metric, as well as the optical flow method by Farneback, our 315 

results indicate significantly different overall performances of the registration methods 316 

when varying the growth simulation parameters, and when comparing relative to absolute 317 

displacement errors. Significant difference in registration performance in terms of both 318 

absolute and relative errors were found by varying the mass effect parameter. A low 319 

simulated maximum tissue displacement of 3 𝑚𝑚 significantly improved registration320 

performance compared to the higher simulated maximum tissue displacement of 8 𝑚𝑚.321 

For the treating physician, assessment of absolute error values may provide the highest 322 

clinical relevance because the measured distance to e.g. eloquent areas help shape the 323 

clinical decision-making process. Our study suggests a decrease in estimation accuracy is 324 

associated with true increase in absolute displacement. These results may also help 325 

determine the expected displacement error when estimating HGG progression in individual 326 

patients. To this end, our findings suggest an increase in true tissue displacement may also 327 

lead to a subsequent increase in the error (in 𝑚𝑚) of the DIR methods. Hence, we may328 

conclude that DIR methods can accurately measure displacements in a scenario of HGG 329 

progression with small displacements (i.e. low mass effect). This may be accomplished by 330 

short longitudinal time intervals between the MRI exams which may be a challenge for 331 

routine examinations, but relevant for clinical trials.  332 
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The regions associated with highest performance of the DIR methods were edematous and 333 

contrast-enhanced tissue. Although maximal resection of contrast-enhanced tumor tissue is 334 

the standard practice today, recent literature suggests that peritumoral regions with high 335 

intensity value on T2w-FLAIR may be part of infiltrative tumor and that additional resection 336 

of these regions is associated with increased survival (33). Accurate displacement estimates 337 

from DIR in these regions may further support the use of DIR to derive biomarkers for 338 

survival prognosis, such as contralateral mass effect deformation heterogeneity (8) and 339 

peritumoral tissue compression (9).  340 

Our ad-hoc grid search for best fit model on patients with ~2-week time interval between 341 

exams returned higher correlation with follow-up scans for low mass effect (3 mm) when 342 

compared to high mass effect (8 mm). This indicates that low simulated mass effect tumor 343 

growth was realistic according to our longitudinal data and thus well suited for assessing 344 

deformable registration accuracy in GBM. 345 

There are several potential applications of our robust deformation model. One such 346 

application is data augmentation. Data augmentation is a process in which the amount of 347 

training data is artificially increased using simple imaging operations such as scaling, 348 

rotation and translation, to create more robust machine learning predictions. Our model 349 

could be applied as a special-purpose data augmentation method by artificially deforming 350 

structural MRIs and lesion masks to improve accuracy of segmentation by artificial neural 351 

networks under a wider variety of clinical conditions. Dose warping, where radiation dose is 352 

deformed into later time-point examinations in order to investigate treatment response in 353 

specific tissue areas, is a natural application of DIR methods. Our model could similarly be 354 

used as a framework for testing the accuracy of dose warping using DIR methods. 355 

Our study has some limitations. In our deformation model, we assumed non-changing voxel 356 

intensities during displacement, which is not the case with true infiltrative growth. In a 357 

worst-case scenario, no displacement of tissue and only change of image intensity values 358 

(e.g. as a result of a result of infiltrative growth or anti–vascular endothelial growth factor 359 

(anti-VEGF) therapy) could make growth characterization by displacement fields irrelevant. 360 

Our deformation model is by purpose a rough model that uses only tumor and brain masks 361 

to model growth based on ellipsoid-shaped radial expansion. Second, we used the sum of all 362 



tissue types of a patient as the input tumor mask to the model, without differentiating 363 

between edema, necrosis and enhanced regions. 364 

Conclusion365 

Deformable image registration methods have demonstrated their capability to quantify 366 

voxel-wise displacements of brain tumors from longitudinal MRI studies. Our deformation 367 

model enabled us to perform a parametric evaluation of deformable image registration 368 

methods under various simulated conditions. Based on our simulations, we conclude that 369 

displacement estimations of glioblastoma growth from deformable image registration 370 

present lowest errors in the edema and contrast-enhanced tissues for low mass effect and 371 

high infiltration rates. SyN with cross-correlation metric and Gunnar-Farneback optical flow 372 

exhibited the best performance for the investigated simulation parameters. 373 
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1 

Deformation model 1 

Overview 2 

The procedure for generating synthetic displacements is as follows: 3 

1) Find the bounding box of the tumor mask in the input image reference space. The tumor4 

mask could be of any tissue type, for instance contrast-enhanced tissue.5 

2) Create a 3D gaussian using the dimensions (width, height, and depth) of the bounding box6 

from step 1. Scale the gaussian to have a maximum value of 1.7 

3) Invert the gaussian and compute its gradient to create a vector field. Scale the vector field to8 

have maximum absolute value of 1.9 

4) Find a subset of the vectors on the inflection surface of the gaussian by thresholding the10 

gaussian on the vector field. The vector subset was selected using an iterative approach11 

maximizing the mean distance from the starting positions between each selected vector and12 

the candidate vector, ensuring maximum spread of the selected vectors’ directions.13 

5) For each of the selected vectors, find all other vectors of the vector field having less than a14 

given angle difference from the selected vector. This defines a cone shaped mask. Find the15 

bounding box for each cone.16 

6) Remove outer parts of the cones according to thresholding the 3D gaussian (< 0.05). Then17 

geometrically extend each cone until it reaches the end of the brain mask. Find the bounding18 

box for each extended cone.19 

7) Depending on the infiltration parameter, re-map all components of the vector field within an20 

original cone bounding box to its extended cone bounding box to a certain degree using21 

linear interpolation. Similar was done to create an interpolated 3D gaussian for use in later22 

steps.23 

8) If noise is enabled, add 3-channel Perlin noise attenuated by the interpolated 3D gaussian to24 

the interpolated vector field.25 

9) Scale the interpolated vector field by the maximum tissue displacement specified as input.26 

This creates the final displacement field. Lastly, create the final interpolated vector field by27 

restricting displacement vectors to not bypass the brain mask barrier, if any.28 

29 

30 



Technical description 31 

Let 𝑤, ℎ, 𝑑 be the width, height and depth of the bounding box for the outlined tumor segmentation32 

mask 𝑀𝑙 registered to 1 𝑚𝑚3 MNI space.33 

The algorithm initially takes 𝑤, ℎ, 𝑑 as inputs to compute a three-dimensional gaussian scalar field 𝑔34 

consisting of 𝜎 standard normal deviations in each dimension, parameterized in equally spaced35 

intervals and with resolution 𝑁 according to Equations (0.1) and (0.2).36 

𝑔(𝑥, 𝑦, 𝑧) = −𝑒−𝑥2+𝑦2+𝑧2237 

(0.1) 38 

[𝑥𝑦𝑧] ∈ [[−𝜎, 𝜎]𝑁(𝑤)[−𝜎, 𝜎]𝑁(ℎ)[−𝜎, 𝜎]𝑁(𝑑) ] , 𝑁(𝑙) = {𝑙 + 1, 𝑙 𝑜𝑑𝑑𝑙, 𝑙 𝑒𝑣𝑒𝑛39 

(0.2) 40 𝑁(𝑙) in Equation (0.2) results in an even number of sampling steps along each bounding box41 

dimension of the tissue mask. This negligible simplification is required to be able to access the 42 

geometric center of the bounding box by matrix indexing, which makes various indexing operations 43 

in the algorithm easier. See Figure 1 for an illustration of the one-dimensional variant of g.44 

45 

Figure 1: 𝑔 in one dimension.46 

An initial model displacement vector field 𝒅(𝑀𝑙) is then computed from the gradient (partial47 

derivatives with respect to 𝑥, 𝑦 and 𝑧) of 𝑔 by 𝒅 = ∇g. Figure 2 illustrates how 𝒅 is computed from48 

the tumor mask 𝑀𝑙 for various spatial dimensions.49 

2 
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50 

Figure 2: Illustration of computation of initial deformation model 𝒅 based on 1D, 2D and 3D cross-51 

section of the tumor mask 𝑀𝑙. 𝒅 is the gradient of 𝑔.52 

Figure 3 (C) displays an ellipsoid and multiple directional cone shapes that are computed from 𝒅. The53 

purpose of the directional cones is guiding iterative deformation of 𝒅 in terms of displacing the54 

vector positions in 𝒅 by 𝒅 itself by an amount defined by the infiltration parameter 𝛽, and then55 

linearly interpolating the displaced 𝒅 in later computation steps to get a smooth displacement field.56 

57 

Figure 3: The initial deformation model 𝒅 is computed from the tissue mask (B). At later steps, the58 

brain mask (A) acts as a boundary for restricting physical displacement when deforming 𝒅 by59 

extending the “cones” computed from the initial 𝒅 model (C).60 

The binary ellipsoid mask 𝑀𝑒 in Figure 3 (C) is defined as61 

𝑀𝑒 ∶= 𝑔 < −𝑒1262 

(0.3) 63 

The surface of 𝑀𝑒 defines the locations with highest spatial intensity change in 𝑔, and resultingly the64 

starting positions of the largest gradient magnitudes in 𝒅. This is the inflection surface of 𝑔 defined65 



by ∇2𝑔 = 0. The algorithm then scales 𝒅 to have a maximum gradient magnitude of 1 by 𝒅 = 𝒅|𝒅| and 66 

finds the approximate unit normal vectors 𝑉 for the surface of 𝑀𝑒 in MNI voxel-isotropic resolution,67 

by extracting vectors 𝑉 ∈ ℝ𝑁×3 from 𝒅 that have starting positions in the center of the voxels in a68 

convex ellipsoid mask 𝑀 according to Equations (0.4) and (0.5)69 𝑉 = 𝒅[𝑀]70 

(0.4) 71 𝑀 ∶= 𝑀𝑒 𝑤ℎ𝑒𝑟𝑒 ∥ 𝑉 ∥𝐹> 0.9972 

(0.5) 73 

where [] describes tree-dimensional binary mask matrix indexing and ∥ 𝑉 ∥𝐹∈ ℝ𝑁×1 is the Frobenius74 

norm of 𝑉 along its second axis dimension, which computes gradient magnitudes. To speed up the75 

algorithm, a fixed subset of 𝑁𝑠 maximum spread normal vectors 𝑉𝑠 ∈ ℝ𝑁𝑠×3 is selected from 𝑉76 

according to Pseudocode 1. 77 

A gradient magnitude threshold of 0.99 is suitable for realistic glioblastoma bounding box78 

dimensions in 1 [𝑚𝑚3] voxel-isotropic space, but would possibly need to be lowered with lower79 

isotropic resolutions to ensure extraction of ≥ 𝑁𝑠 normal vectors. A cone is then computed for each80 

vector in 𝑉𝑠 based on a fixed deviation 𝜃 in angles between each vector in 𝑉𝑠 and 𝒅 according to81 

Pseudocode 2. 2𝜃 is the resulting top angle in the generated cones as illustrated in Figure 3 (C).82 

The final mask 𝑀 displayed in Figure 3 (C) is the conjunction of the ellipsoid mask 𝑀𝑐 and all83 

computed 𝑠 cone masks 𝑀𝑐 from Pseudocode 2 according to Equation (0.6)84 

𝑀 = 𝑀𝑒 ∧ ⋀ 𝑀𝑐,𝑖𝑠
𝑖85 

(0.6) 86 

Pseudocode 3 describes the next and main part of the algorithm deforming 𝒅 by an amount 𝛽87 

proportional to the maximum distance to the end of the brain (Figure 4), to create the infiltrative 88 

displacement field 𝒅𝛽. An infiltrative gaussian 𝑔𝛽 was created similarly.89 
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90 

Figure 4: Simplified two-dimensional axial illustration of the infiltration algorithm described in 91 

Pseudocode 3. The components of the initial displacement field 𝒅 (blue arrows) computed from the92 

lesion tissue bounding box is displaced by itself by a fraction 1 − 𝛽 proportional to the maximum93 

distance to the end of the brain. Here 𝛽~0.694 

The final model displacement field is computed according to Equation (0.7) 95 𝒅(𝑀𝑙 , 𝑀𝑏 , 𝛼, 𝛽, 𝛾) = |𝛼 · 𝒅𝛽(𝑀𝑙 , 𝑀𝑏) + 𝒑(𝛾)|𝑀𝑏96 

(0.7) 97 

where 𝒑 is a Perlin noise vector field and ||𝑀𝑏  restricts displacement to only occur inside the brain 98 

mask. For the latter task, displacements surpassing the brain mask were shortened to end at the 99 

brain mask barrier.  100 



Pseudocode 101 

Pseudocode 1: Maximum spread normal vectors by maximizing mean starting distances. 102 

algorithm max-spread-vectors is

input: Normal vectors 𝑉
Starting positions 𝑃 of the normal vectors
Number of vectors to return 𝑁𝑠

output: Selection lists containing the subset 𝑉𝑠 and 𝑃𝑠 of the normal vectors and positions 
1 initialize empty lists for selected vectors and positions 

2 append to the selection lists the first input vector and position 

3 remove the selected vector and position from input lists 

4 for each selected vector 2 to 𝑁𝑠 do
5 for each selected vector position(s), compute the Euclidean distance to non-selected vector position(s) 

6 append to the selection lists the input vector and position with the position that makes up the largest mean 

7  Euclidean distance from the selected vector position(s) 

8 remove the selected vector and position from the input lists 

9 return 𝑉𝑠 and 𝑃𝑠
103 

Pseudocode 2: Directional cone masks. 104 

algorithm max-spread-cones is 

input: Normal vectors 𝑉𝑠
Displacement field 𝒅
Deviation in degrees 𝜃

output: Cone masks 𝑀𝑐
1 initialize empty list 𝑀𝑐 for storing cone masks
2 for each vector 𝑣 in 𝑉𝑠 do
3 let 𝜔 be the angle difference in degrees between 𝑣 and all other displacement vectors in 𝒅
4 let 𝑐 be the cone mask defined by 𝜔 ≤ 𝜃
5 append to 𝑀𝑐 the cone mask for vector 𝑣: 𝑐
6 return 𝑀𝑐 

105 
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Pseudocode 3: Infiltrative deformation of displacement field 𝒅. 106 

algorithm infiltration is 

 input: Normal vectors 𝑉𝑠 
        Normal vector starting positions 𝑃𝑠 

       Displacement field 𝒅 
       Cone masks 𝑀𝑐 

        Brain mask 𝑀𝑏 
        Infiltration 𝛽 

output: Infiltrative displacement field 𝒅𝛽  

 1  let dnorm be |𝒅| 

 2  let displacements be a list containing one interpolated part of 𝒅 for each spatial direction in 𝑠 
 3  for each spatial direction 𝑖 in in 𝑠 do 
 4   let nvd, nvc, bmi be 𝑉𝑠[𝑖], 𝑃𝑠[𝑖], 𝑀𝑐[𝑖] respectively 

 5   let p_max_bmi be the point furthest away nvc along nvd and within bmi 

 6   let disp_max_bmi be the length between nvc and p_max_bmi 

 7   let p_max_brain be the point furthest away nvc along nvd and within M_b 

 8   let disp_max_brain be the length between nvc and p_max_brain 

 9   let dnormcone be dnorm within bmi 

 10  let dxcone, dycone, dzcone be the components of 𝒅 within bmi 
 11  (the following scales all displacement components to unit norm such that their starting coordinates can be displaced equally far) 

 12  let dxcone, dycone, dzcone be 
dxcone  𝑑𝑛𝑜𝑟𝑚𝑐𝑜𝑛𝑒  , 

dycone  𝑑𝑛𝑜𝑟𝑚𝑐𝑜𝑛𝑒  , 
dzcone  𝑑𝑛𝑜𝑟𝑚𝑐𝑜𝑛𝑒  respectively with element wise fraction 

 13  if β > 0 then 

 14   let mask_pts be the points within bmi 

 15   let extension be 𝛽*(disp_max_brain - disp_max_bmi) 
 16   (the following displaces mask_pts according to the extension length) 

 17   displace the mask_pts x, y, z coordinates extension*dxcone, extension*dxcone, extension*dzcone length respectively 

 18   let bmi_copy be a copy of bmi 

 19   add displaced mask_pts to bmi_copy 

 20   let bm_geom_center and bm_widths be the geometric center coordinates and dimensions of bmi_copy containing displaced 

21                                      points 

 22  else 

 23   let bm_geom_center and bm_widths be the geometric center coordinates and dimensions of bmi 

 24  let bmi_copy be a copy of bmi 

 25  let mask_pts be the points within bmi 

 26  let extension be disp_max_brain - disp_max_bmi 

 27  displace the mask_pts x, y, z coordinates extension*dxcone, extension*dxcone, extension*dzcone length respectively 

 28  add displaced mask_pts to bmi_copy 

 29  let bm_geom_center_interp and bm_widths_interp be the geometric center coordinates and dimensions of bmi_copy containing displaced  

30                         points 

31  deform 𝒅 by re-mapping components within bm_geom_center and bm_widths to be within bm_geom_center_interp and bm_widths_interp  
32                         using trilinear interpolation 

 33  append to displacements the deformed components of 𝒅 for the spatial direction 𝑖 
 34 let 𝒅𝛽 be the mean of displacements over 𝑠 for interpolated component data 
 35 return 𝒅𝛽 

 107 



Execution times 108 

Mean execution times for the various methods showed that SyN with cross-correlation metric (red), 109 

the method that together with the Farneback optical flow method had highest performance, had the 110 

slowest execution time. Oppositely, the Farneback method returned with the fastest execution time 111 

being around 29 times faster than SyN CC (blue). The execution speed of running our synthetic 112 

deformation model and applying the synthetic deformation field to an image (black), compares with 113 

the fastest registration method (Figure 5). 114 

115 

Figure 5: Execution time of a single registration task for the different methods. The total execution 116 

time for generating a synthetic displacement field with our model and using it to deform an MRI 117 

scan is shown as well (black). †: highest registration accuracy in our work.118 

The execution times were mean estimated from text logs from custom run scripts, except for the 119 

SyN MI and SyN CC methods where the execution times were captured from single runs. All software 120 

except the Farneback optical flow was run on a 16-core Intel Xeon E5620, 2.4GHz with 24 GB RAM. 121 

The Farneback method was run on a single Nvidia GeForce RTX 2080 Ti GPU with 11 GB VRAM and 122 

using CUDA version 11. 123 

Software 124 

The deformation model was written in Python 3.8 and registration performance was assessed using 125 

bash scripts and various tools from FSL, ANTs and Convert3D. 126 

Deformation model 127 

https://github.com/ivartz/cancer-sim 128 

8 

https://github.com/ivartz/cancer-sim


9 

The following implementation of 3D Perlin noise in Python was used to simulate growth irregularity: 129 

https://github.com/pvigier/perlin-numpy 130 

Parametric evaluation scripts 131 

https://github.com/ivartz/ants-bcond 132 

https://github.com/ivartz/opticalflow-bcond 133 

Ad-hoc grid search 134 

https://github.com/ivartz/cancer-sim-search 135 

Statistics 136 

All statistical tests were performed in Minitab 19 (Minitab, LLC). 137 

138 

https://github.com/pvigier/perlin-numpy
https://github.com/ivartz/ants-bcond
https://github.com/ivartz/opticalflow-bcond
https://github.com/ivartz/cancer-sim-search
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