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Chapter 1

Introduction

These notes have been written for the initial lectures in the Array Signal
Processing course, IN5450, at the University of Oslo.

We start in Chap. 2 by deriving the lossless acoustic wave equation by dis-
tinguishing between conservation laws and constitutive laws. In the lossless
case there is a constant speed of sound, c = c0. What follows is structured
around these four deviations from the lossless condition (first introduced in
[Holm, 2019b, Sect. 2.3]):

1. c = c ′+ ic ′′. Attenuation is implied when c is complex. Chap. 3, Lossy
wave equations, shows that this is equivalent to a complex wave number.
The chapter introduces classical lossy wave equations based on the
viscous and the relaxation models.

Chap. 4 Power-law attenuation and complex media gives an introduc-
tion to the important special case where the attenuation follows a
power-law function of frequency. In complex media, the exponent is
usually not an integer, and this may be modeled with fractional (non-
integer) derivatives.

2. c = c(ω). Dispersion is when c varies with frequency. This is also
covered in Chaps. 3 and 4 as attenuation and dispersion usually follow
each other.

3. c = c(p). Nonlinearity is where the amplitude of the pressure, p, influ-
ences the speed of sound. In Chap. 5 the fundamentals of nonlinear
acoustics are presented

4. c = c(x, y, z). Refraction is when c varies in space and this is covered in
Chap. 6

This is followed by:

• Chap. 7 which gives the relationship between diffraction, convolution,
and the spatial Fourier transform

• Chap. 8 which gives the background for simulation of acoustic fields
based on the spatial impulse response or Green’s function as well as on
the angular spectrum

Some common approximations as well as a dictionary of common terms in
Norwegian are in the Appendix.
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1.1 Revision history

• ver 1.3, 16.01.2024:

– Added chemical relaxation equation of (3.32).

– Added middle term in denominator of Eq. (4.17).

– Mentioned the Viscous Grain Shearing model on page 26.

– Added description of relation between the spatial aperture do-
main and the wavenumber domain in Sect. 7.2.2.

– Two first footnotes on page 44 added.

– Minor corrections of text in several places.

• ver 1.2, 23.01.2023:

– Added Sects. 3.1.2, 3.1.3, and 3.1.4 on Hookean and Newtonian
materials

– New derivations of lossy wave equations based on (3.10) in Sects. 3.3
and 3.4.1

– Added discussion of soft glassy materials in Sect. 4.1

– Linear time-invariant system assumption is specified in Sect. 5.3

– Redone Fig. 5.4 for better clarity

– Added (8.2) in the derivation of the Helmholtz equation

– Corrected (8.15), added Fig. 8.1

– Imaginary unit j changed to i and several other minor changes
and additions

• ver 1.1, 22.01.2022:

– Put power-law attenuation in separate Chap. 4 and expanded
Sect. 4.1 with Fig. 4.2 and expanded Sect. 4.2 on fractional models

– Minor changes:

* Homogeneous medium assumption in footnote on page 4

* Possible upper limit for speed of sound at the end of Sect. 2.2.1

* Discussed complex frequency at the end of Sect. 3.2.1

* Geometrical acoustics assumption on page 33

• ver 1.0, 14.01.2022: Initial version

1.2 Typesetting

This document has been typeset using LATEX and the BYUTextbook.cls class
file (modified for A4 paper size) used in the online textbook [Peatross and
Ware, 2015] from the Optics Education Group, Department of Physics and
Astronomy, Brigham Young University.

http://optics.byu.edu
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Chapter 2

The lossless wave equation

This chapter covers the derivation of the lossless wave equation and its so-
lution in the form of plane waves. The equation is also given in spherical
coordinates. The Helmholtz equation, which is a space-only version of the
wave equation is then found and the basis for simulation methods based
on the spatial impulse response or Green’s function as well as the angular
spectrum are given.

Sections 2.1-2.2 have been extracted from [Holm, 2019b, Chap. 2.1 and
B.1].

2.1 The acoustic wave equation

This section and Sec. 3.1 cover much of the same material, but here the
derivation is more rigorous than in Sec. 3.1. It may therefore be an advantage
to read Section 3.1 before this section.

Let the pressure and the density be composed of a static value plus a
perturbation:

p ′ = p0 +p, (2.1)

ρ′ = ρ0 +ρ. (2.2)

The derivation of the lossless acoustic wave equation starts from Euler’s
equation. It expresses conservation of momentum:

ρ′ Dv⃗

Dt
= ρ′

(
∂v⃗

∂t
+ v⃗ ·∇v⃗

)
=−∇p ′, (2.3)

where v⃗ is the fluid velocity which relates to displacement, u⃗ via v⃗ = ∂u⃗/∂t .
The operator ∇ is the grad operator. Here the total, material, or substantial
time derivative which is connected with the moving substance, is:

D

Dt
= ∂

∂t
+ v⃗ ·∇ (2.4)

The second conservation equation is the conservation of mass principle
expressed in the equation of continuity. It states that the net influx of matter
into a volume element is reflected in a change of density:

∂ρ′

∂t
+∇· (ρ′v⃗) = ∂ρ′

∂t
+ρ′∇· v⃗ + v⃗ ·∇ρ′ = Dρ′

Dt
+ρ′∇· v⃗ = 0, (2.5)

where ∇· is the div operator. Euler’s equation and the equation of continuity
are illustrated and explained in more detail in [Kinsler et al., 1999, Chap. 5].

The derivation of the acoustic wave equation builds on pressure, p, and
density, ρ, variations around equilibrium or static values p0 and ρ0. The
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variations are assumed to be small and with a fluid velocity which is much
smaller than the speed of sound:

p ≪ p0, ρ≪ ρ0, |v⃗ |≪ c. (2.6)

Therefore Euler’s equation may be linearized by equating the material and
partial derivatives. Likewise the continuity equation may be linearized by
neglecting the gradient of the density.1 The approximate equations are:

Linearized conservation of momentum: ρ0
∂v⃗

∂t
=−∇p, (2.7a)

Linearized equation of continuity:
∂ρ

∂t
+ρ0∇· v⃗ = 0. (2.7b)

The third equation is the constitutive equation or equation of state. It comes
from a special case of the ideal gas equation, p ′V γ = C , where γ is the adi-
abatic gas constant or heat capacity ratio, and C is a constant. Since the
density is inverse proportional to volume, V , the gas law can be rewritten as
(p0 +p)/p0 = (ρ0 +ρ)/ρ0)γ. Hooke’s law is a linearization around the static
pressure p0:

p = K
ρ

ρ0
, K = γp0. (2.8)

K is the bulk modulus, the inverse of the compressibility. This derivation
builds on [Landau and Lifshitz, 1987, Chaps. I § 1-2 and VIII § 64] and [Hamil-
ton and Blackstock, 2008, Chap. 3].

Substituting the divergence of (2.7a) in the time derivative of (2.7b) gives a
second order equation involving p and ρ. Replacing ρ by p using (2.8) results
in the lossless wave equation:

∇2p − 1

c2
0

∂2p

∂t 2 = 0, (2.9)

where the speed of sound is:

c0 =
√

K /ρ0. (2.10)

This derivation assumes that the medium is homogeneous so that the density,
ρ, or the bulk modulus, K , do not vary in space.

2.2 Properties of the lossless wave equation

The lossless wave equation on vector form is:

∇2u⃗ − 1

c2
0

∂2u⃗

∂t 2 = 0. (2.11)

In acoustics u⃗ is the displacement vector. It may also be replaced by the scalar
pressure p. In elastic wave propagation it can be the shear displacement, and
in electromagnetics u⃗ should be replaced by the electric or the magnetic field.

Jimi Hendrix (1942-1970) American
musician who was one of the most in-
fluential electric guitarists in the history
of popular music. He is described by
The Rock and Roll Hall of Fame as “ar-
guably the greatest instrumentalist in
the history of rock music". The wave
equation for the string, such as in the
guitar, was the first one to be formulated
(http://classicrock.wikia.com/).

1This term cannot be neglected in nonlinear acoustics, see Chap. 5 nor in inhomogeneous
media, see [Holm, 2019b, Chap. 9.2].
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Example 2.1 The lossless wave equation. Even the lossless equation
fits remarkably well to reality, especially for the two most important
modes for humans: acoustics of audible sound in air and propagation
of the electromagnetic waves of visible light.

Radio communications in the VHF (30–300 MHz) and UHF (300–3000
MHz) ranges can also be considered to be lossless, at least under line-
of-sight conditions. That covers such important applications as radio
and TV broadcasting, as well as cellular phones.

x

u

Figure 2.1 A string which is pulled
up from the equilibrium position
will oscillate

In the 1-D case of a string, such as a guitar string, one can think of u as the
displacement as shown in Fig. 2.1. If the string is pulled up, the second order
spatial derivative will be negative, i.e. the first term in the wave equation. The
second term of the lossless wave equation is proportional to the second order
temporal derivative, i.e. the acceleration. The equation in this example says
that acceleration is negative, i.e. downwards. So the result is that the string
will shift from being pulled up to move towards the neutral position. As it
moves beyond the equilibrium, its second order derivative shifts sign, and
therefore also the acceleration. And so the movement keeps reinforcing itself.

2.2.1 Monochromatic plane wave

We start by assuming that the wave equation has a solution in time at a single
frequency (an eigenmode), i.e. ut (t ) = exp(iωt ). The rest of the solution then
only depends on space and under free-field conditions it turns out that the
spatial variables have independent solutions, i.e. the solution is separable
u⃗(x, y, z, t ) = A ·ut (t )·ux (x)·uy (y)·uz (z), where A is an arbitrary real constant.
This also implies that the solution is a complex exponential in each of the
spatial dimension, i.e. that it is a plane wave ux (x) = exp(−ikx x). That gives
the following solution:

u⃗ (⃗x, t ) = A exp{i(ωt −kx · x −ky · y −kz · z)} = A exp{i(ωt − k⃗ · x⃗)}, (2.12)

where |⃗k| is the wavenumber. In general it is a vector, and for the lossless
wave equation, each of its components, kx ,ky ,kz are real.

When this solution is inserted in the wave equation of (2.11) the result is
the dispersion relation which relates k and ω. In 1-D it is:

(−ik)2u(x, t ) = 1

c2
0

(iω)2u(x, t )

k2 = ω2

c2
0

or k = ω

c0
= 2π f

c0
= 2π

λ
, (2.13)

where f is the frequency and λ is the wavelength. In the lossless case there is
a simple linear relation between the angular frequency, ω and the magnitude
of the wave vector.

The dispersion equation is one of the most important tools for analyzing
more complex forms of the wave equation.
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The solution to the wave equation can alternatively be expressed as:

u (⃗x, t ) = A exp{i(ωt − k⃗ · x⃗)} (2.14)

= A exp{iω(t − s⃗ · x⃗)} = u(t − s⃗ · x⃗).

The vector s⃗ = k⃗/ω has the property |⃗s| = 1/c0. This is the slowness vector.
It points in the direction of propagation and has units of reciprocal velocity
(s/m). It is equivalent to the optical index of refraction, n = cvac /c0, except
that there is no equivalent to the free-space propagation speed in vacuum,
cvac , in acoustics. There are however those that argue that there might even
be an upper limit for the speed of sound which depends on fundamental
material properties [Trachenko et al., 2020].

2.2.2 The wave equation in spherical coordinates

Under the assumption that the solution exhibits spherical symmetry, the
wave equation in Cartesian coordinates, (2.11) can be transformed to:

1

r 2

∂

∂r

(
r 2 ∂u

∂r

)
= 1

c2
0

∂2u

∂t 2 , (2.15)

where r is the distance from the source. It has a spherical wave solution,
which for the monochromatic case is:

u(r, t ) = C

r
exp{i(ωt −kr )}. (2.16)

where C is an arbitrary real constant.
This solution propagates away from origin. Another solution propagating

towards the origin is found by replacing ’-’with ’+’. It may also be valid, and it
is the boundary conditions which determine which ones exist.

The attenuation due to the factor 1/r is due to the spread of the energy
over a larger and larger sphere around the source. It does not represent a loss
of energy (absorption), only a loss of energy density.
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Chapter 3

Lossy wave equations

3.1 Conservation laws and constitutive equations

When the lossy wave equation was derived in the previous chapter it was
found by combining conservation principles derived from space-time sym-
metries with the material’s constitutive equation as shown in Fig. 3.1. This
will be elaborated in this chapter and a brief introduction to viscous and
relaxation models for loss will be given.

This chapter builds on Chaps. 1.2 and 2.3-2.6 of [Holm, 2019b]

3.1.1 Conservation principles

In acoustics and elastic wave propagation, the equation that expresses con-
servation of linear momentum is an expression for Newton’s second law
which relates force, mass and acceleration: F = ma. It can also be stated as
F = d(mv)/dt where the linear momentum, mv , is the product of mass and
velocity. Linearized conservation of linear momentum in a closed system,
which is related to the Euler equation in fluid dynamics, is usually stated as
the equivalence between the rate of change of momentum per volume and
the negative gradient of the pressure or the average force over a unit volume:

ρ0
∂v

∂t
=−∇p. (3.1)

where ρ0 is equilibrium density, v is the velocity vector and p is the pressure.
Conservation of linear momentum is a fundamental principle of physics
which derives from the principle of symmetry in space first expressed by
Noether (see sidebar).

Emmy Noether (1882–1935) German
mathematician. During her studies in
Erlangen from 1900 she was not al-
lowed to participate fully in classes as
a woman and when teaching in Göttin-
gen from 1915 she was not allowed to
hold an official position. However, the
end of World War I brought changes for
women’s rights. She spent 1928-29 in
Moscow and in addition to her Jewish
background this contributed to her expul-
sion from her position in Göttingen and
emigration to USA in 1933. In theoretical
physics she is known for Noether’s the-
orem which connects symmetries and
conservation laws:

• Conservation of linear momen-
tum is a consequence of invari-
ance to spatial translation

• Conservation of energy is a con-
sequence of invariance under
time translations

• Conservation of angular momen-
tum is due to invariance with
respect to rotation

See [Landau and Lifshitz, 1976, Chap.
II] for derivations. Noether built on the
theory of Lie groups developed by the
Norwegian mathematician Sophus Lie
(1842-1889) who was a professor in
Leipzig and Oslo. Image: Public domain,
from Wikipedia Commons. (Wikipedia)

The second principle is concerned with energy conservation in a closed
system. At rest (non-relativistic) it is the same as conservation of mass via
E = mc2 [Feynman, 1967], and local conservation of mass is expressed in the
continuity equation. After linearization, it states that the rate at which mass
enters a closed system in steady state is equal to the volume expansion rate:

∂ρ

∂t
+ρ0∇·v = 0. (3.2)

The underlying principle of conservation of energy is Noether’s theorem of
symmetry in time. More exact versions of (3.1) and (3.2) are found in Sect. 2.1.

The conservation principles are valid in a closed system. This is assumed
here. It implies that energy converted by absorption can be recovered or that
the loss is so small compared to the total energy that the effect is minor. A
different case is when absorption removes significant energy from the system
in an irreversible way. Then it is an open system and the time-irreversible

https://en.wikipedia.org/wiki/Emmy_Noether
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Space-time:
Conservation

laws

Material:
Constitutive equation

Wave equation

Figure 3.1 A wave equation is found by combining space-time conservation princi-
ples with the material’s constitutive equation

mechanism is not conservative. This may lead to different conservation
principles [Riewe, 1996].

Apart from such a case, the conservation principles relate to the proper-
ties that an experiment may be performed in a different place with the same
result—symmetry in space—or performed at a different time with the same
outcome—symmetry in time [Gross, 1996]. These are properties which are at
the foundation of physics [Feynman, 1967] and many would say that what
they describe is so obvious that one rarely needs to think about it. Such state-
ments, which are accepted without controversy, are usually called axioms,
and as such belong to what one may call meta-science. Axioms are mostly
known from mathematics, and not in so many other sciences. Physics may
be an exception, as space- and time-invariance can be considered to have an
axiomatic standing. This was also the view in one of the earliest statements of
the philosophy of science written by the mathematics professor Roger Cotes
(1682-1716). He had urged Newton to issue a second edition of the Principia,
which he later edited and wrote the preface for (1713):

The foregoing conclusions are grounded on this axiom, which is re-
ceived by all philosophers; namely that effects of the same kind; that
is, whose known properties are the same, take their rise from the same
causes and have the same unknown properties also. For who doubts,
if gravity be the cause of the descent of a stone in Europe, but that it
is also the cause of the same descent in America? If there is a mutual
gravitation between a stone and the Earth in Europe, who will deny
the same to be mutual in America? If in Europe, the attractive force
of a stone and the Earth is compounded of the attractive forces of the
parts; who will deny the like composition in America? If in Europe,
the attraction of the Earth be propagated to all kinds of bodies and to
all distances; why may it not as well be propagated in like manner in
America? All philosophy is founded on this rule; for if that be taken
away we can affirm nothing of universals. The constitution of particular
things is known by observations and experiments; and when that is
done, it is by this rule that we judge universally of the nature of such
things in general. [italics added]
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3.1.2 Hookean and Newtonian medium models

To understand attenuation of waves, it is necessary also to consider models
of linear viscoelasticity where the central concept is the constitutive equation.
The two elementary building blocks of the conventional constitutive equa-
tions are the spring and the damper. These models both have their roots in
the 17th century.

Lossless propagation is based on a constitutive equation which states that
for an ideal spring, force and compression are proportional. It was first stated
in 1660 by Robert Hooke. For an ideal gas, this means that pressure, p, and
density, ρ, are proportional:

p = K
ρ

ρ0
, K = γp0, (3.3)

where K is the elastic modulus, γ is the adiabatic gas constant, and ρ0 and p0

are equilibrium density and pressure respectively. This is a linearization of
the gas law of (5.1).

Pressure is force per area and here the terminology will follow that of
linear viscoelasticity where in the lossless case, stress is negative pressure,
σ=−p. Thus stress represents internal forces in the medium measured per
area and with unit Pa/m2. The second variable in the constitutive law is strain
which represents the medium’s extension from an equilibrium position. It
is dimensionless and is the ratio of the extension and the original length. It
can also be written as ε=−ρ/ρ0. Then Hooke’s law, assuming infinitesimal
strains and stresses, expresses a linear relationship between them:

σS(t ) = Eε(t ), (3.4)

where E is a generic elastic modulus and the subscript S means spring.
A Newtonian fluid also has a stress component which is proportional to

the velocity gradient according to a brief statement by Newton in Principia in
1687:

σD (t ) = η∂v

∂x
= η ∂

∂t

∂u

∂x
, (3.5)

where η is a generic viscosity, v = ∂u/∂t is velocity, and u is displacement.
Today this is expressed in tensor form, but Newton’s original statement was
more like the 1-D version above. Substituting ε= ∂u/∂x, which is an expres-
sion of conservation of mass, (3.2) reformulates Newton’s original statement
into one between stress and strain:

σD (t ) = η∂ε(t )

∂t
. (3.6)

This is the most common description of viscosity: a stress component which
is proportional to velocity. It can be interpreted as a damper where the faster
the movement, the more the movement meets resistance, hence the subscript
D. This resistance is one of the main causes of attenuation for propagating
waves.
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3.1.3 Constitutive equations

A constitutive equation is different from a conservation law because of its em-
pirical nature. Hooke’s law and the law for Newtonian viscosity are primarily
based on measurements of material characteristics, although they can be jus-
tified in some underlying physical principle as well. But these principles are
not as fundamental as the symmetry principles behind the conservation laws.
This is one of the lessons to be learned from a study of linear viscoelasticity.

The constitutive equation, or stress–strain relation, can be expressed
by means of the dynamic modulus, Ẽ(ω), in the frequency domain. In the
Hookean case of (3.4), it is Ẽ(ω) = E , and in the Newtonian case of (3.6), it is
Ẽ(ω) = iηω. The lossy models combine these elements in various ways.

3.1.4 Dispersion equation from dynamic modulus

In the rest of these lecture notes, the wave equation will be found directly
from the dynamic modulus, Ẽ(ω). This is built on transforming the main
equations to the frequency domain. The constitutive equation is then

σ̃(ω) = Ẽ(ω)ε̃(ω). (3.7)

The frequency domain version of the conservation of momentum is:

ρ0
∂2u

∂t 2 =∇σ ⇔ ρ0(iω)2ũ(ω) =−ik σ̃(ω), (3.8)

and conservation of mass gives:

ε(t ) = ∂u

∂x
⇔ ε̃(ω) =−ik ũ(ω). (3.9)

Now insert (3.9) in (3.7) to eliminate ε̃(ω) and then use (3.8) to eliminate ũ(ω).
The wave number is then:

U Will be used later!
k2(ω) = ρ0ω

2

Ẽ(ω)
. (3.10)

All subsequent wave equations in this chapter will be found from this relation.
As an example, the lossless case has Ẽ (ω) = E , and when inserted in (3.10)

this gives the dispersion relation as:

k2 = ρ0ω
2

E
= ω2

c2
0

, c2
0 = E

ρ0
, (3.11)

which is the one given in (2.13).

3.2 Characterization of attenuation

The specific form of attenuation which is absorption occurs when the en-
ergy in the wave is converted into some other form of energy, most often
heat. It can both be in the form of viscous losses or in the form of relaxation
losses. The latter is due to a conversion of kinetic or translational energy of
the molecules into internal energy. In medical ultrasound scattering may con-
tribute from 2-30 % or so of the total attenuation, at least at low frequencies
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Wave equation

Plane wave
ei(ωt−kx)

Dispersion relation
k(ω) = k′ + ik′′

Attenuation
αk(ω) = −k′′

Phase velocity
cph(ω) = ω/k′

Figure 3.2 Finding the dispersion relation, and attenuation and phase velocity
from a wave equation, (adapted from [Blackstock, 2000, Fig. 9.1])

(<10–15 MHz) [Bamber, 2004], so absorption is the dominant loss mecha-
nism. Other media with much lower attenuation than in medical ultrasound,
such as ultrasound in air or in underwater acoustics, are also described by
absorption.

3.2.1 Dispersion relation

In order to analyze attenuation, the scheme depicted in Fig. 3.2 is followed.
This method goes at least back to [Stokes, 1845]. A unit amplitude plane
wave solution is assumed and inserted into the wave equation resulting in
a dispersion equation. That procedure was in fact already used in order to
arrive at the lossless dispersion relation of (2.13).

The main difference from the lossless case is that an attenuating wave is
characterized by a complex wavenumber k = k ′+ ik ′′. This can be seen by
inserting a complex wavenumber into the 1-D solution of (2.12):

u(x, t ) = A exp{i(ωt −k · x)} = A exp{k ′′ · x} ·exp{i(ωt −k ′ · x)}. (3.12)

The real part of k represents propagation as it is found in the complex ex-
ponential. It also defines the phase velocity, k ′ =ω/cph . The imaginary part
represents attenuation: αk =−k ′′. Together this gives:

k = k ′+ ik ′′ = ω

cph(ω)
− iαk (ω), (3.13)

Very often the attenuation will follow a power law:

αk =−k ′′ = a0|ω|y . (3.14)

In practice propagating waves are not plane waves, except very far away from
the source. A more realistic model near a source is a spherical wave and then
spherical spreading loss from (2.16) and attenuation may be combined:
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u(r, t ) = C

r
exp{−αk · r }exp{i(ωt −k ′r )} (3.15)

Further the attenuation factor, αk , may have several causes and one of the
challenges in distinguishing between viscous absorption and losses due to
scattering is that they may behave similarly with respect to power-law charac-
teristics.

In the first part of this chapter, attenuation due to viscosity and relaxation
are discussed. That corresponds to losses described primarily by y = 2 and
secondarily by y = 0 and y = 0.5 in (3.14).

Deviations from a lossless medium

There may also be other deviations from a lossless medium than attenuation.
Common deviations from a lossless, homogeneous medium are in addition
dispersion, nonlinearity, and refraction. They manifest themselves in differ-
ent ways and a coherent way to express them is by the way they affect the
propagation speed:

1. Attenuation: c = c ′+ ic ′′ is complex

2. Dispersion: c = c(ω) varies with frequency

3. Nonlinearity: c = c(p) depends on amplitude of the pressure, p (Chap. 5)

4. Refraction: c = c(x, y, z) varies in space (Chap. 6)

Attenuation and dispersion usually follow each other. Linear, homogeneous
media will be assumed in this chapter.

The imaginary propagation speed may need an explanation. Let the
propagation speed be imaginary, for instance due to an imaginary elastic
modulus, and insert into the dispersion relation from (2.13):

k =ω
c
= ω

c ′+ ic ′′
= ω

c ′2 + c ′′2
(c ′− ic ′′) = ω

|c|2 (c ′− ic ′′) = k ′+ ik ′′. (3.16)

Therefore the real and imaginary parts of c and k correspond to each other
and a complex propagation speed, c , is the same as having a complex wavenum-
ber.

Likewise, the combination of a complex frequency and a real wavenum-
ber are sometimes used [Holm, 2019a] (but not in these lecture notes). To see
the equivalence, consider ω=ω′+ iω′′ in the propagating wave:

u(x, t ) = A exp{i(ωt −k · x)} = A exp{ω′′ · t } ·exp{i(ω′t −k · x)}. (3.17)

Thus the imaginary part of the frequency describes damping. Further com-
parison with k = k ′+ ik ′′ =ω/c(ω)− iαk gives:

αk =− t

x
ω′′ =−c(ω)ω′′. (3.18)
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3.3 The viscous wave equation

The viscous wave equation is based on a constitutive model where elasticity
and viscosity are added:

Ẽ(ω) = E + iηω. (3.19)

Inserted in (3.10) gives this dispersion relation in 1-D:

k2 − ω2

c2
0

+ iωτk2 = 0, τ= η/E , (3.20)

The result is that an attenuation term is added to the wave equation, giving:

∇2u⃗ − 1

c2
0

∂2u⃗

∂t 2 +τ ∂
∂t

∇2u⃗ = 0. (3.21)

This equation was first given by [Stokes, 1845, p. 302] and it describes absorp-
tion in for instance distilled water, see Sec. 3.5.1.

The wave equation of (3.21) can be derived in two different ways, either
from the spring-damper model, as just done from (3.19) and shown in Fig. 3.3
and explained below, or from the Navier-Stokes equation.

3.3.1 Derivation from a spring-damper model

We employ a simplified elastic model which assumes that only one mode, ei-
ther a compressional or a shear mode, is present at any one time. The medium
is also assumed to have the same properties everywhere (homogeneous) and
be independent of direction (isotropic).

The parameters of the model are E which is the elastic modulus, η which
is the viscosity, and τ= η/E which is a retardation time given by their ratio.
Note that the E of the Kelvin-Voigt model is not the same as the Young’s
modulus, but a generic parameter which changes meaning depending on the
wave mode. Also the η of the Kelvin-Voigt model is only the same as the shear
modulus in case of shear waves, but not for the pressure elastic wave or in
acoustics.

E η

Figure 3.3 Kelvin-Voigt constitu-
tive model

In the Kelvin-Voigt model, the stresses add:1

σ(t ) = Eε(t )+η∂ε(t )

∂t
= E

[
ε(t )+τ∂ε(t )

∂t

]
, τ= η

E
. (3.22)

The model is named after William Thomson (Baron Kelvin) and Woldemar
Voigt. The suspension system of Fig. 3.4 where the spring and the damper
are in parallel can be recognized as the Kelvin-Voigt model. The constitutive
equation in the frequency domain is given in (3.19).

Figure 3.4 Front suspension of
a classic Vespa scooter showing
a shock absorber and a spring
in a coilover configuration (“coil
spring over shock”) to the left. The
structure to the right is a swing-
arm. Image: Public domain, from
Wikipedia Commons. (Wikipedia)The derivation and the properties of the solution are given in [Holm,

2019b, Chap. 2.4]. The main characteristics is that when ωτ≪ 1, attenuation
increases with ω2 and phase velocity is approximately constant and equal
to c0. However when ωτ≫ 1, the attenuation and the phase velocity will
increase with

p
ω and the phase velocity will therefore increase without limits.

T Quadratic attenuation is the
first order approximation
for attenuation in air and
seawater

1The link to earlier notation in these notes is that stressσ=−p, and strain ε≈−ρ/ρ0 [Holm,
2019b, App. B.1.1].

https://commons.wikimedia.org/wiki/File:Vespa_Front_Suspension.jpg
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3.3.2 Derivation from the Navier-Stokes equation

[Landau and Lifshitz, 1987] show that Euler’s equation can be generalized to
the Navier-Stokes equation to include viscosity:

ρ0
Dv⃗

Dt
= ρ0

(
∂v⃗

∂t
+ v⃗ ·∇v⃗

)
=−∇p +η∇2v⃗ + (ζB + 1

3
η)∇(∇· v⃗), (3.23)

where the two coefficients of viscosity are η, the shear viscosity and ζB , the
bulk viscosity. This equation has two more terms on the right-hand side
compared to (2.3).

The Navier-Stokes equation is simplified in the case of an incompressible
fluid, where ∇· v⃗ = 0:

ρ0
Dv⃗

Dt
= ρ0

(
∂v⃗

∂t
+ v⃗ ·∇v⃗

)
=−∇p +η∇2v⃗ . (3.24)

In that case it is only the shear viscosity which matters.
It is shown in [Holm, 2019b, App. B.1,1] how this is equivalent to the

spring-damper model of (3.22) and therefore leads to the same viscous wave
equation.

3.4 The relaxation wave equation

The problem with the asymptotically infinite phase velocity and the impulse
in the relaxation modulus of the Kelvin-Voigt model is due to a breakdown of
the continuity assumption, i.e. wavelengths approach molecular dimensions.
This is the microscale perspective. From a macroscale perspective, the Zener
model can be regarded as a more accurate model of the suspension system of
Fig. 3.4 if one assumes that the connecting rods of the shock absorber are not
perfectly stiff but exhibit some elasticity. It is therefore often a more realistic
model. This leads to the standard linear solid model or the Zener model
named after Clarence M. Zener. Its constitutive equation is:

σ(t )+τσ ∂σ(t )

∂t
= Ee

[
ε(t )+τε ∂ε(t )

∂t

]
. (3.25)

Ee

E

η

Figure 3.5 Zener or Standard Lin-
ear Solid constitutive model

The spring damper arrangement in Fig. 3.5 is one of two ways of repre-
senting a standard linear solid model, see [Holm, 2019b, Chap. 3]. Despite
that name it is important for the acoustics of fluids as well. Media like salt
water and air may be considered as solids as long as the model only deals
with perturbations of stress and strain. Therefore the standard linear solid
also applies to the acoustics of gases and liquids and it is in fact the building
block of the relaxation model which is at the core of the salt water and air
attenuation models.

The relaxation and retardation times, τσ and τε in (3.25), are the time
constants of the temporal step responses. The parameters of the model relate
to the physical parameters in Fig. 3.5:

τσ = η/E ≤ τε = η/E ′,
1

E ′ =
1

Ee
+ 1

E
. (3.26)



3.4 The relaxation wave equation 15

The Zener model is one of the standard models in linear viscoelasticity and
[Tschoegl, 1989] groups it along with other models with minimum number
of elements. In this lies the implication that models with only two parame-
ters, such as the Kelvin-Voigt model, are too elementary to model realistic
materials and that these simple models are just building blocks for the more
complex ones.

3.4.1 Zener model wave equation

The Zener model’s constitutive relation is found by Fourier transforming
(3.25) leading to a dynamic modulus which is:

Ẽ(ω) = Ee
1+ iωτε
1+ iωτσ

, ω ̸= 0. (3.27)

Insertion in (3.10) leads to the following wave equation given in [Holm and
Näsholm, 2011]:

∇2u⃗ − 1

c2
0

∂2u⃗

∂t 2 +τε ∂
∂t

∇2u⃗ − τσ

c2
0

∂3u⃗

∂t 3 = 0, (3.28)

which has an additional loss term compared to that of the viscous wave
equation. The new term ensures a finite phase velocity even in the limit as
frequency approaches infinity. The extra loss term is proportional to τσ and if
that time constant is set to zero both the constitutive equation and the wave
equation reduce to the viscous case.

The derivation of the wave equation and its properties are discussed
in [Holm, 2019b, Chap. 2.5-2.6]. Those sections also discuss how sums of
relaxation models are at the core of the attenuation models for common
media.

3.4.2 Multiple relaxation

Eg

E0 η0

EN−1 ηN−1

Figure 3.6 The generalized Kelvin-
Voigt or Kelvin model

The multiple relaxation model assumes multiple sections consisting of a
spring in series with N parallel combinations of springs and dampers as
shown in Fig. 3.6. In general this will result in a very complicated result for
the attenuation with cross coupling between the terms. Usually the time
constants of the model, (3.26), are very close to each other also, τσ≲ τε. This
is stricter than (3.26).

It is shown in [Holm, 2019b, 2.6.2] that often the individual contributions
to the attenuation and sound velocity can be added directly:

αk (ω) =
N−1∑
n=0

Anωn

ω2 +ω2
n
ω2, (3.29)

Each term contributes an attenuation which increases withω2 at low frequen-
cies and a constant value above the relaxation frequency, ωn . The relaxation
frequency is ωn = 1/τε in each underlying Zener model. The constants An

are given by the parameters of the model in Fig. 3.6.
In acoustics, the first term is often a simple quadratic term rather than

a relaxation term. In order to arrive at that formula, let the first relaxation
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frequency be much larger than the highest frequency of interest, i.e. ω0 ≫
ωn ,n = 1. . . N or let the damper, η0, in branch 0 be much smaller than the
others. Then the first term may be simplified. It is often then called a viscous
term. The common way of writing multiple relaxation is the result:

αk (ω) = A0ω
2 +

N−1∑
n=1

Anωn

ω2 +ω2
n
ω2. (3.30)

The phase velocity also consists of individual decoupled term, with their
inverses summed:

1

cph(ω)
= 1

c0
−

N−1∑
n=1

Anω
2

ω2 +ω2
n

. (3.31)

3.5 Attenuation in typical media

Both seawater and air have an attenuation which is usually modeled with
three terms in the expressions above.

3.5.1 Seawater

In salt water, the most abundant substance is sodium chloride or N aC l .
Somewhat surprisingly N aC l does not contribute to attenuation. Instead the
two important relaxation processes are due to magnesium sulfate, M g SO4,
up to a few 100 kHz, and boric acid, B(OH)3 or H3BO3, up to a few kHz.
Magnesium sulfate relaxation is due to a perturbation in the balance between
M g SO4 and M g++, SO−−

4 :

MgSO4 −−*)−− Mg+++SO4
−− (3.32)

Typical curves for attenuation in seawater are shown in Fig. 3.7 with
different curves for representative parameter sets for the major oceans of the
world [Ainslie and McColm, 1998]. One can recognize how each of the curves
is made up of two relaxation contributions overlaid on a curve for distilled
water which is proportional to f 2, i.e. the low frequency part of the viscous
wave solution.

Fast sound in water

Water has an intriguing property in that the phase velocity increases to about
3200 m/s, close to the value for ice, at extremely high frequencies. This
effect was first predicted from molecular dynamics simulations in 1974 and
measured by inelastic neutron scattering in 1985. The effect takes place at
wavenumbers higher than 1 nm−1, i.e. wavelengths smaller than about 6
nm. This is only about 20 times the length between oxygen molecules in the
hydrogen bond of water, so one is close to the molecular scale.

Several theories have been advanced to explain it, but the most likely one
seems to be that it is based on structural relaxation [Santucci et al., 2006].
Such a relaxation model predicts an elevated high frequency phase velocity,
(3.31). This confirms that all the terms in the attenuation model for seawater
are relaxation terms, i.e. that (3.29) is the correct model and that (3.30) is an
approximation.
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Figure 3.7 Attenuation in seawater for various oceans of the world, parameters
from [Ainslie and McColm, 1998]
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Figure 3.8 Attenuation in air at temperature 20◦C and for 0%, 55%, and 100% rel-
ative humidity. The lower curve is the contribution due to viscosity and heat con-
duction alone

3.5.2 Air

In air one usually considers two thermal relaxation processes in addition
to a viscous process. The relaxation processes are due to nitrogen, N2 and
oxygen, O2 and their interaction with water vapor. Nitrogen has a relaxation
frequency in the low kHz range, and for oxygen it is in the 10-100 kHz range
[Bass et al., 1972, Evans et al., 1972].
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Attenuation in air is shown in Fig. (3.8) at temperature 20◦C with humidity
as a parameter. The attenuation starts to become significant above about 10
kHz. Therefore attenuation for audible frequencies, especially those which
are important for speech (up to 8-10 kHz), is usually neglected unless one is
concerned with the propagation of noise over large distances as for instance
is the case around airports or highways.

In some professional audio system for use outdoors it is also possible to
correct for it. The value at 10 kHz can reach 0.1 dB/m, and as it increases
approximately with frequency squared, it may reach 2-3 dB/m at 100 kHz.
That means that it must be taken into consideration for positioning and
communications systems at ultrasonic frequencies, such as systems operating
in the 40 kHz range [Holm et al., 2005, Holm, 2012].
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Chapter 4

Power-law attenuation and complex media

In several media, attenuation is very different from that described by the clas-
sical models described so far. Examples can be found in wave propagation of
both shear and pressure waves in sub-bottom sediments, in rocks (seismics),
and in medical ultrasound imaging [Szabo and Wu, 2000]. Possibly the first
suggestion to use fractional derivatives to model such frequency dependent
viscoelasticity was in [Gemant, 1936] to fractional powers in the frequency
domain.

As an example, a common rule-of-thumb for design of ultrasound systems
is that attenuation varies linearly with frequency with attenuation equal to
0.5 dB/MHz/cm. That means that y = 1 and α0 = 0.5/(2π ·8.686) Np/radian
frequency-cm in

T A first order approximation
is that attenuation varies
linearly with frequency in
medical ultrasound

αk =α0|ω|y , 0 ≤ y ≤ 2. (4.1)

A comparison between the typical or “rule-of-thumb” attenuation’ of tissue
and the absorption of seawater from Fig. 3.7 is shown in Fig. 4.1. The figure
also shows attenuation from a range of different tissue types from blood as the
lowest with 0.14 dB/cm/MHz and y = 1.21 to breast with 0.75 dB/cm/MHz
and y = 1.5 [Duck, 2012], [Szabo, 2014, App. B]. Milk happens to have the same
characteristics as the “rule-of-thumb attenuation”. This figure should make
it clear that attenuation in tissue is very different from that of water. First
of all it is much higher and second it has a different frequency dependency.
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Figure 4.1 Absorption in typical tissue as well as for a representative selection of
tissue types compared to the highest and lowest attenuation in water from 1 to 10
MHz



20 Chapter 4 Power-law attenuation and complex media

It should also be noted that fluids without the solid matrix of tissue, such
as milk and blood, have similar attenuation as tissue. This is supported by
[Carstensen et al., 1953] which concluded that the absorption of blood is
directly proportional to protein concentration. Thus the solid matrix seems
to contribute little to the attenuation of the compressional wave.

4.1 Modeling with multiple relaxation processes

It is possible to model almost arbitrary power-law attenuation over a limited
frequency range by adding up several carefully selected relaxation processes
as in Sec. 4.1. This can be seen in e.g. Fig. 3.7. Although the general trend in
this figure is that attenuation increases with y = 2 with reference to (4.1), it
is easy to see some frequencies where attenuation increases with a smaller
values of y closer to 1 also.

A method for selecting relaxation parameters based on the desired power-
law and frequency range based on [Näsholm, 2013]. Let the contributions
from individual relaxation processes add as in (3.29):

αk (ω) =
N−1∑
n=0

Anωn

ω2 +ω2
n
ω2. (4.2)

When it is desired to model an attenuation that increases as ωy , it can be
shown that the weights, when the relaxation frequencies are spread evenly on
a log scale, ωn+1/ωn =C , should be:

An ∝ωαn , α= y −1, (4.3)

where α is the order of the equivalent fractional model of the next section.
In Fig. 4.2 an example from [Holm, 2019b, Sect. 7.2] is given where y = 1.3,

N = 5, and ωn+1/ωn = 4. Notice how well the approximation follows the
desired curve over several decades of frequency, approximately over the range
spanned by the five values of ωn as indicated by the five stars in the figure.
If a power law with y = 1 had been desired, it would have meant that all the
weights should have the particularly simple value of unity, An = 1.

When the processes are fitted to data to achieve a certain power law, the
parameters of the model usually no longer have any physical significance
as in the seawater and air models. Despite this, the multiple relaxation pro-
cesses involved may take their inspiration from hierarchical structures as
for instance in the collagen of tendons, ligaments, and skin where one can
identify five substructures: Collagen molecule, collagen fibril, fibril bundle,
fascicle, and whole tendon. This may explain a power-law response over
3-4 decades of frequency [Shen et al., 2011]. Likewise, a cell is hierarchical
and consists of the cell membrane, cortex (a thin actin network under the
membrane), and the cytoskeleton [Broedersz and MacKintosh, 2014].

However, in cell biomechanics, [Kollmannsberger and Fabry, 2011] argue
that there are just too few cell components in a hierarchy from the largest to
the smallest mechanical structure to account for an observed five decades
of power-law behavior. They argue instead for power-law models based on a
theory of soft glassy materials and say the following:
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Figure 4.2 Multiple relaxation approximation to power-law attenuation with slope
y = 1.3. Solid curve: superposition of five relaxation processes. Dot-dashed curve:
ω1.3, the five relaxation frequencies are indicated by stars

“It has been noted that generic concepts of soft glassy rheology
lend themselves straightforwardly to an interpretation of power-
law cell behavior. Accordingly, the cell is imagined to consist of
many disordered elements held in place by attractive or repul-
sive bonds, traps, or energy wells formed between neighboring
elements. The binding energies are weak enough to allow the
elements to occasionally hop out of their trap and change their
position. Power-law rheology arises from a wide distribution of
energy well depths such that the distribution of element lifetimes
is scale-free.”

The link between complex media parameters and the relaxation parame-
ters is an open area of research and it is unknown, except for the mathematics,
why a simple relationship like (4.3) is so successful in capturing power-law be-
havior. Answers to such questions could also shed light on why the fractional
model of the next section is so successful in describing complex systems.

4.2 Fractional models

In this section the goal is to find a wave equation that has realistic power-law
attenuation for complex media with exponent y close to 1.
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4.2.1 Convolution loss operator

In order to generalize a lossy wave equation, one may replace the loss term
by a convolution with some kernelΨ(t ):

∇2u − 1

c2
0

∂2u

∂t 2 +Ψ(t )∗u = 0. (4.4)

Example 4.1 Operators of viscous and relaxation wave equations.

The Zener model’s wave equation, i.e. that of the relaxation mechanism
of (3.28) corresponds to this operator:

Ψ(t )∗u = τε ∂
∂t

∇2u − τσ

c2
0

∂3u

∂t 3 . (4.5)

Only the first term is required for the viscous wave equation of (3.21).

Taking a clue from the viscous loss operator, we will restrict the kernel to
those that include a Laplacian in what follows. The new kernel,Φ(t ) is related
to the old one as follows: Ψ(t )∗u =Φ(t )∗∇2u.

Compared to (3.21), the first order temporal derivative has now been
replaced by a convolution with a kernelΦ(t ):

∇2u − 1

c2
0

∂2u

∂t 2 +Φ(t )∗∇2u = 0. (4.6)

How can Φ(t) be selected to fit measurements? A temporal power law con-
volved with an m’th order derivative will turn out to be a good choice. In what
follows, the integer m = ⌈α⌉, i.e it is the smallest integer larger than α:

Φ(t )∗ f (t ) = ταdm f (t )

dt m ∗ 1

Γ(m −α)tα+1−m , 0 <α≤ 1, (4.7)

where Γ(·) is the gamma function, a generalization of the factorial function to
non-integers as Γ(n) = (n −1)! for integer n.

The reason why the temporal power-law kernel is desirable is because its
Fourier transform is also a power law:1

F
(dm f (t )

dt m ∗ 1

Γ(m −α)tα+1−m

)= (iω)αF (ω). (4.8)

The memory kernel consisting of the temporal power law scaled by the
gamma function of (4.7), sometimes called the Abel kernel, is illustrated in
Fig. 4.3 with m = 1 and α as parameter. Its interpretation is:

• As α approaches 1 the operator is supposed to turn into a first order
derivative. This can be seen by letting α= 1−ε+ < 1 and as Γ(ε+) →∞

1See https://proofwiki.org/wiki/Laplace_Transform_of_Power

https://proofwiki.org/wiki/Laplace_Transform_of_Power
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Figure 4.3 A plot of the power-law memory kernel in the convolution function of
(4.7) for m = 1. The curves illustrate values of α from 1 in the upper curve to 0.1 in
the lower curve in increments of 0.1 (inspired by [Treeby and Cox, 2010])

for ε+ → 0, the memory kernel approaches an impulse and the memory
is gone. As a test, let’s try to insert m =α= 1 in (4.7):

Φ(t )∗ f (t ) = lim
α→1

d f (t )

dt m ∗ 1

Γ(1−α)tα
= τd f (t )

dt
∗δ(0) = τd f (t )

dt
, (4.9)

where δ(t) is the impulse function. This gives us the loss operator of
the viscous wave equation as desired.

• As α approaches 0, the kernel turns into an ordinary integral, i.e. one
with infinite memory and the differentiation is canceled.

4.2.2 Fractional or non-integer order derivative

The former expression, (4.8), is reminiscent of the differentiation property of
the Fourier transform:

F
(dm f (t )

dt m

)= (iω)mF (ω). (4.10)

In fact, (4.8) is one common way that a non-integer or fractional derivative
can be defined. That means that the general loss kernel of (4.6) is in fact a
derivative of arbitrary order, often called a fractional derivative:

Φ(t )∗ f (t ) = ταdm f (t )

dt m ∗ 1

Γ(m −α)tα+1−m = ταdα f (t )

dtα
(4.11)
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Riemann-Liouville and Caputo fractional derivatives

For the purpose of these lecture notes, the frequency domain definition of
(4.8) is the only definition which is needed. If a fractional derivative is needed
in a numerical evaluation, one will also need the time domain expression. Its
most important property is that it has a long-tailed power-law memory which
is a challenge computation-wise.

The convolution above can be written in two different ways, depending
on the order of the operations. First, for terminology, the general expression
for the fractional derivative of order α is written as:

dα f (t )

dtα
=a Dα

t f (t ), (4.12)

where a and t are limits in the defining integral. If the order is negative, α< 0,
this is a fractional integration.

The Riemann-Liouville fractional derivative of order α ∈ R , m−1 ≤α< m
is:

aDα
t f (t ) = 1

Γ(m −α)

(
d

dt

)m ∫ t

a

f (t ′)
(t − t ′)α+1−m dt ′ (4.13)

Here the convolution operation of (4.11) is the first operation to be performed
followed by the integer order derivation. It was first given in [Liouville, 1832].

The order of operations is reversed in the Caputo fractional derivative
[Caputo, 1967]:

C
a Dα

t f (t ) = 1

Γ(m −α)

∫ t

a

f (m)(t ′)
(t − t ′)α+1−m dt ′, (4.14)

where f (m)(t ) is the m’th order derivative. First an integer order derivative of
order m is performed, and then a convolution with the power-law memory
kernel takes place. This definition of a fractional derivative was first given in
[Abel, 1823] as was recently discovered, [Podlubny et al., 2017].

When the function is a constant, the first integer order derivative in the
Caputo definition will ensure that the result is zero, thus giving the expected
result of 0, opposite to what the Riemann-Liouville derivative does. In addi-
tion to the different handling of constants, the difference between the two
becomes evident whenever numerical time domain implementations are
required. The Riemann-Liouville derivative turns out to require initialization
of derivatives of non-integer orders. This is different for the Caputo frac-
tional derivative which will require initialization of integer order derivatives:
f (k)(0),k = 0,1, . . . ,m −1. They are the ones that usually have physical mean-
ing and therefore the Caputo definition is often simpler to use in numerical
implementations.

The fact that different definitions of the fractional derivative may give
different results could explain why it has taken a long time for the fractional
derivative to be accepted.

Power-law material responses

The convolution with a temporal power law in (4.13) and (4.14) means that
the material responses imply a temporal memory. A fractional derivative is
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therefore a global operator which takes all of the time history of the function
into account. This is in contrast to integer order derivatives which are local
as it is only the slope, curvature, etc at the time instant in question which
matters.

The implication of the Fourier relation of (4.8) is that in the medical
and geophysical applications mentioned previously where power-law atten-
uation is prevalent, it is possible to find temporal power-law responses or
related responses such as the Mittag-Leffler function. The Mittag-Leffler
function is a parameterized function with an exponential-like behavior for
small arguments and a power-law tail for large arguments.2 It also means that
observations in diverse materials of temporal power laws similar to (4.7) that
go back to [Nutting, 1921, Blair and Reiner, 1951], result in power laws in the
frequency domain.

4.2.3 Fractional wave equations

The theory of fractional calculus may be applied to medium models similar
to (3.22) and (3.25) by letting the derivatives be generalized to fractional
derivatives. That leads to fractional derivatives in the wave equations, such
as (3.21) and (3.28).

As an example, the fractional Zener model is:

σ(t )+τασ
∂ασ(t )

∂tα
= E

[
ε(t )+ταε

∂αε(t )

∂tα

]
, 0 <α≤ 1. (4.15)

It leads to

∇2u⃗ − 1

c2
0

∂2u⃗

∂t 2 +ταε
∂α

∂tα
∇2u⃗ − τασ

c2
0

∂α+2u⃗

∂tα+2 = 0. (4.16)

Its attenuation, when time constants are almost similar as in Sec. 4.1, is

αk (ω) ∝ ωn

ω2α+2ωαωαn cos πα2 +ω2
n
ω1+α ∝

{
ω1+α. ω≪ωn

ω1−α, ω≫ωn ,
(4.17)

which is a generalization of each of the terms of the relaxation sum of (3.29).
If for instance the parameter α is slightly larger than 0, attenuation which
increases near proportional to frequency can be achieved, as is desired in
applications in medical ultrasound and sediment acoustics.

The fractional Zener model also describes other media such as dielectrics,
as it is equivalent to a Cole-Cole medium [Holm, 2020].

The Grain Shearing model for sediment acoustics, [Buckingham, 2000], is
in fact a fractional model with a fractional Kelvin-Voigt model for the com-
pressional wave, i.e. τσ = 0 in (4.16) and a fractional diffusion-wave equation
for the shear wave [Pandey and Holm, 2016]. The latter is

∇2u⃗ − ρ0

η

∂2−αu⃗

∂t 2−α = 0, (4.18)

2See https://en.wikipedia.org/wiki/Mittag-Leffler_function

https://en.wikipedia.org/wiki/Mittag-Leffler_function
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where ρ0 is density and η viscosity. Changing the fractional order allows
interpolation from a diffusion equation which describes for instance heat
propagation for α = 1 to a lossless wave equation for α = 0. Typical values
in sediment acoustics are α just slightly above 0. This kind of connection
between physics and mathematics was recently listed as one of several contri-
butions to developing models with physical and mathematical rigor that led
to an f 1 dependence which was, until recently, but an empirical supposition,
to quote [Holland and Dosso, 2022].

The Viscous Grain Shearing model for sediment acoustics, [Buckingham,
2007], is slightly more complicated than the Grain Shearing model as it has a
low-frequency response that better fits data (proportional to ω2). It is also a
fractional model with a more complicated kernel. This analogy is developed
in [Holm et al., 2023, Chandrasekaran et al., 2023].

The derivation of wave equations like those above, their properties, and
how they suit complex media better than the classical equations, is the main
topic of the book [Holm, 2019b].
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Chapter 5

Nonlinear acoustics

Acoustic waves exhibit nonlinearity both in water, air, and in tissue. Like
ocean waves, as shown in Fig. 5.1, this will lead to a distortion of a sinusoidal
and steepening of the wave form. Unlike ocean waves however, acoustic
waves are not surface waves, and therefore cannot break as the image shows.

Figure 5.1 The great wave off
Kanagawa (Wikipedia). Katsushika
Hokusai c. 1830 , Public Domain,
via Wikimedia Commons.

Important applications of nonlinear acoustics are in harmonic imaging
in ultrasound and in parametric sonar:

• Harmonic imaging is where an ultrasound scanner receives the scat-
tered signal at twice the transmitted frequency, based on nonlinearity
in the medium which leads to harmonic distortion. In many scanners
today it is the default mode.

• Parametric sonar utilizes intermodulation distortion in the medium
between two transmitted frequencies. Often the difference frequency is
utilized because a parametric echo sounder can produce it with much
smaller source dimensions than if it had been generated directly. This
is important for low-frequency echo sounders for use in sub-bottom
profiling. The principle can also be used in air in order to produce
highly directional audio sources.

There are three potential sources of nonlinearity:

• The equation of continuity (mass conservation law), (2.5)

• Euler’s equation (conservation of momentum), (2.3)

• The constitutive law, (2.8)

Since nonlinearity is a level dependent effect, conversion between sound
pressure levels in air and water is also included in this chapter.

5.1 Nonlinearity in the conservation laws

In practice, weak nonlinearity is what is encountered in the applications just
mentioned. It then turns out that the nonlinearity in the conservation of mo-
mentum equation can be neglected. Only the nonlinearity due to the gradient
of the density in (2.5), the equation of continuity, will contribute. This term
accounts for a convective nonlinearity where the particle velocity contributes
to the wave velocity [Hamilton and Blackstock, 1988]. The consequence is
that the movement of molecules in the fluid will have a propagation velocity
which is c = c0 +u(t) due to the particle velocity, u(t), even if the material’s
constitutive equation is perfectly linear.

https://en.wikipedia.org/wiki/The_Great_Wave_off_Kanagawa
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Figure 5.2 Gas law for an adiabatic process (no transfer of heat or matter to and
from the surroundings) with γ= 1.4 showing the 1 atmosphere point around which
linearization takes place

5.2 Nonlinear constitutive equation

5.2.1 Acoustics of an ideal gas

The constitutive law or the equation of state comes from the ideal gas equa-
tion, pV γ =C of (2.8), where γ is the adiabatic gas constant or heat capacity
ratio, γ= cp /cv .1 In an ideal gas, where the space taken up by the molecules
can be neglected their is no interaction between molecules, γ= 1.4. This is a
reasonable approximation for air.

Since the density is inverse proportional to volume, V , the gas law can be
rewritten as:

p

p0
=

(
ρ

ρ0

)γ
(5.1)

where p0, ρ0 are the static values. It is plotted in Fig. 5.2.
The Taylor series for the pressure variation is:

p −p0 = A
ρ−ρ0

ρ0
+ B

2!

(
ρ−ρ0

ρ0

)2

+·· · , (5.2)

where A = p0γ, B = p0γ(γ−1) and the nonlinearity parameter B/A = γ−1
which is 0.4 for an ideal gas.

5.2.2 Elastic waves

For a solid, Hooke’s law is a linearization of typical curves as shown in Fig. 5.3.
Figure 5.3 Applied force F vs. elon-
gation X for a helical spring ac-
cording to Hooke’s law (red line)
and what the actual plot might
look like (dashed line) (Wikipedia).
By Svjo (Own work) [CC BY-SA 3.0],
via Wikimedia Commons.

1https://en.wikipedia.org/wiki/Heat_capacity_ratio

https://en.wikipedia.org/wiki/Hooke's_law
https://en.wikipedia.org/wiki/Heat_capacity_ratio
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5.3 Westervelt equation

Combining the effects due to nonlinearities in the constitutive law and in
the conservation equations with the appropriate approximations for weak
nonlinearity, leads to this wave equation:

∇2p − 1

c2
0

∂2p

∂t 2 + δ

c2
0

∂

∂t
∇2p =− β

ρ0c4
0

∂2p2

∂t 2 (5.3)

The left-hand part can be recognized as belonging to the viscous wave equa-
tion while the right-hand term contains the nonlinearity. Here the nonlinear-
ity coefficient is β= 1+ B

2A .
The loss term has two contributions:

δ= δme +δth = 1

ρ0

(
ζ+ 4

3
η

)
+ κ

ρ0

(
1

cv
− 1

cp

)
, (5.4)

where ζ is the bulk viscosity, η is the shear viscosity, κ is thermal conductivity,
and cv and cp the specific heat at constant volume and pressure respectively.

The viscous wave equation can be rewritten in an often used form when
low losses or low frequencies, i.e. ωτ≪ 1, where τ= δ/c2

0 , can be assumed.
Then the viscous wave equation of (3.21) reduces to:

∇2u ≈ 1

c2
0

∂2u

∂t 2 , (5.5)

which is inserted back in the loss term of (5.3). The result is the usual form of
the Westervelt equation which has only temporal derivatives in the loss term:

∇2p − 1

c2
0

∂2p

∂t 2 + δ

c4
0

∂3p

∂t 3 =− β

ρ0c4
0

∂2p2

∂t 2 (5.6)

It should be noted that it is not possible to set up dispersion relations for
the nonlinear wave equations. The description in the form of a dispersion re-
lation assumes that Fourier analysis can be used to describe how the medium
modifies the wave, and Fourier analysis assumes a linear time-invariant sys-
tem. This is clearly not satisfied when the medium is nonlinear.

Finally, the speed of sound, c, will vary with particle displacement, u, or
pressure p:

c(t ) = d x

d t
= c0 + (1+ B

2A
)u(t ) = c0 + (1+ B

2A
)

p(t )

ρ0c0
(5.7)

showing the link to the claim of item 3 in Chap. 1.

5.3.1 The nonlinearity coefficient and the nonlinearity parameter

The nonlinearity coefficient, β= 1+ B
2A , of (5.3) and (5.6) is the sum of 1 and

half the nonlinearity parameter B/A. It is interesting to note that even if the
constitutive law had been completely linear (B/A = 0), there would still be
nonlinearity due to the convection term.

In practical media such as water and biomedical tissue, B/A is in the
range of 5-10.2 This is an order of magnitude more than the value predicted
for an ideal gas.

2https://en.wikipedia.org/wiki/Nonlinear_acoustics

https://en.wikipedia.org/wiki/Nonlinear_acoustics
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5.4 Sound pressure levels in air and water

In Sec. 3.5, a comparison was made between the attenuation of sound in
water and air. It is of interest also to compare Sound Pressure Levels (SPL) in
dB between the two media. In water, the SPL often appears to be much higher
than in air. It is, however, misleading to compare them directly. This has
consequences for understanding important issues in ecology, in particular
the impact of humans on marine wildlife, such as whales.

5.4.1 Two conversion steps

Whales regularly emit sound with pressures in excess of 160 dB. Even louder
is the small snapping shrimp which may emit 190–210 dB sound pressures.
It produces a loud snapping sound by rapid closure of its claw in order to
stun or kill its prey [Versluis et al., 2000]. In air, however, a sound level of 120
dB is considered dangerous for humans. The highest airborne sound level
that I have been able to find is 165 dB which at 20 kHz proved to be lethal for
roaches and caterpillars [Allen et al., 1948].3

The numbers are different for two reasons:

1. The reference levels are different. Decibel is the logarithm of a ratio. In
air, the reference is the lowest sound a human can hear, and that is a
sound pressure of 20 µPa. There is no such natural reference for water,
so one has instead chosen a round number, 1 µPa.

2. It is intensity and not pressure which is the fundamental unit that
determines the effect of sound or the work it takes to produce it.

The first factor amounts to a dB factor of

20log
20 µPa

1 µPa
= 26 dB (5.8)

The second factor can be understood by considering how a loudspeaker
works. In air, with its low density, it requires a large displacement, but quite
little force or pressure to generate a sound. Therefore, bass speakers have a
displacement of several millimeters and it is often easy to see the motion. In
water, it is the other way around, so there will be a lot of pressure for the same
work, but very little displacement.

The sound pressure in water can be converted to intensity, and then one
has to figure out what pressure that corresponds to in air. Using subscript "a"
for air, and "w" for water, the relation is:

I = Ia = Iw ⇔ I = p2
a

ρaca
= p2

w

ρw cw
(5.9)

The equivalent pressure in water is therefore:

pw =√
Iρw cw =

√
ρw cw

ρaca
pa (5.10)

3These experiments were probably performed prior to the establishment of ethical regula-
tions for animal experiments!
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Figure 5.4 The steps to convert from sound pressure in water to that in air (starting
in the bottom block)

The net result is that it is the product of density and speed of sound (called
acoustic impedance) which is the determining factor. The ratio between the
two in water and air is:

10log
ρw cw

ρaca
= 10log

1025 kg/m3 ·1500 m/s

1.2 kg/m3 ·340 m/s
= 35.8 dB ≈ 36 dB (5.11)

Adding up the rounded numbers gives a factor of 62 dB. This is the value
that must be added to the sound pressure in air to get the equivalent sound
pressure in water. The conversion is explained in more detail in [Dahl et al.,
2007]. The two steps required to convert from sound pressure in water to that
in air are illustrated in Fig. 5.4.

5.4.2 Conversion chart

A chart for conversion is shown in Fig. 5.5, where some typical values for
sound pressures are indicated. If you lay a ruler horizontally over the figure,
you can read what a sound pressure in air corresponds to in water and vice
versa.

It is evident that the whale mentioned initially corresponds to a level in
air of 98 dB SPL and the snapping shrimp’s lethal level corresponds to about
140 dB SPL in air. Both are still fairly high levels.

There are many examples on the web and in the popular press where the
conversion factors of (5.8) and (5.11) are left out giving rise to spectacular
claims without any basis in reality.
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Figure 5.5 Chart for converting between SPL in water and air
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Chapter 6

Refraction

This chapter starts by deriving the law of refraction. Then it is applied to
typical sound speed profiles in air and seawater. This chapter builds on
[Johnson and Dudgeon, 1992, Sect. 2.3].

6.1 Snell’s law

Figure 6.1 Refraction of light at the
interface between two media of
different refractive indices, with
n2 > n1, where n = c/c0 and c0 is
the vacuum speed. Since the veloc-
ity is lower in the second medium
(v2 = c2 < v1 = c1), the angle of
refraction θ2 is less than the an-
gle of incidence θ1; that is, the ray
in the higher-index medium is
closer to the normal. Wikipedia:
https://commons.wikimedia.org/
wiki/File:Snells_law2.svg

The law of refraction can be derived from the condition that the phase should
be unchanged on the interface. The component along the interface from
the incoming wave should be equal to that of the reflected wave, and to the
transmitted wave:

k⃗i · x⃗ = k⃗r · x⃗ = k⃗t · x⃗ (6.1)

When the interface is along the x-axis as in Fig. 6.1, this becomes:

|⃗k1| · sinθ1 = |⃗kr | · sinθr = |⃗k2| · sinθ2 (6.2)

The reflected wave and the incident wave are in the same medium so |⃗k1| =
|⃗kr | =ω/c1 and therefore θi = θ1 = θr when θr is counted from the normal to
the right.

For the refracted wave, the speed of sound/light is different in the two
media:

ω

c1
· sinθi = ω

c2
· sinθt ⇒ sinθ1

c1
= sinθ2

c2
(6.3)

Snell’s law has its name from 1621 after the Dutch astronomer and mathe-
matician Willebrord Snellius (1580-1626). It was described already in 1602 by
English Thomas Harriott (1560-1621), but not published [Siegmund-Schultze,
2016]. Later research has brought to light that the law was described already
around year 984 by the Persian Abu Said al-Ala Ibn Sahl (940-1000) [Kwan
et al., 2002]

6.2 Sound speed profiles in typical media

In practical media, there may not be sharp interfaces like in Fig. 6.1, but
rather gradual variations so sound speed varies with coordinates as in item 4
in Chap. 1:

c = c(x, y, z). (6.4)

These media are therefore characterized by sound speed profiles. It is in-
structive to compute the effect of the simplest sound speed profile, a linear
gradient. Here geometrical acoustics is assumed, i.e. an approximate theory
which assumes very small acoustic wavelengths, or that medium variations
are small over a wavelength.1

1See https://en.wikipedia.org/wiki/Geometrical_acoustics

https://commons.wikimedia.org/wiki/File:Snells_law2.svg
https://commons.wikimedia.org/wiki/File:Snells_law2.svg
https://en.wikipedia.org/wiki/Geometrical_acoustics
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Example 6.1 A linear sound speed profile. A wave is propagating
horizontally at a depth y0. Snell’s law used on depths y and y −δy will
be:

sinθ(y)

c(y)
= sinθ(y −δy)

c(y −δy).
(6.5)

or
sinθ(y −δy)− sinθ(y)

sinθ(y)
= c(y −δy)− c(y)

c(y)
, (6.6)

which in the limit becomes:

1

sinθ(y)

dsinθ

dy
= 1

c(y)

dc

dy
. (6.7)

Integrate:

ln(sinθ) = ln(c)+C0 ⇒ sinθ(y) =C1c(y), C1 = eC0 (6.8)

Assume now that sound speed increases linearly with depth, c(y) = ay .
Further sinθ(y0) = 1 from horizontal initial propagation. Inserted in
(6.8) this gives a value for C1, and the solution is:

sinθ =C1c(y))|C1=1/(ay0) = y

y0
, (6.9)

which describes a circle of radius y0. The ray will therefore be bent
upwards.

T Waves always bend towards
the slowest medium when
there is a gradient in veloc-
ity

The following sections on seawater and air have been taken from and
expand on [Holm, 2019b, Sect. B.1].

6.2.1 Seawater

In water the bulk modulus is approximately K=2.2 GPa and the density is
ρ0 = 1000 kg/m3 giving c0 = 1483 m/s. Seawater is denser because of the
salt and the bulk modulus and density also vary with temperature and other
parameters.

Figure 6.2 Speed of sound as a
function of depth at a position
north of Hawaii in the Pacific
Ocean derived from the 2005
World Ocean Atlas. Wikipedia
https://en.wikipedia.org/wiki/
Speed_of_sound#/media/File:
Underwater_speed_of_sound.svg

Example 6.2 Speed of sound in seawater. An empirical formula for the
speed of sound is the nine-term equation of [Mackenzie, 1981]:

c0 = 1448.96+4.591T −5.304 ·10−2T 2 +2.374 ·10−4T 3

+1.340(S −35)+1.630 ·10−2D +1.675 ·10−7D2

−1.025 ·10−2T (S −35)−7.139x10−13T D3,

(6.10)

where T is temperature in ◦C, S is salinity in parts per thousand and D
is depth in meters. It will give values in the range from 1435.2 to 1535.7
m/s with the parameter values for the various oceans of Fig. 3.7.

The formula will even predict the surprisingly high value of 1855 m/s
for the Dead Sea (S=330 ppt, T=23 ◦C, D=0). This is not far from typical
measured value of 1840 m/s, although the formula may not have been
intended to be accurate for such a high salinity.

https://en.wikipedia.org/wiki/Speed_of_sound#/media/File:Underwater_speed_of_sound.svg
https://en.wikipedia.org/wiki/Speed_of_sound#/media/File:Underwater_speed_of_sound.svg
https://en.wikipedia.org/wiki/Speed_of_sound#/media/File:Underwater_speed_of_sound.svg
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Fig. 6.2 shows that near the surface in warm waters, the speed of sound
increases according to the second term of (6.10), 4.591T . There is also an
increase with temperature, e.g. 1.630 ·10−2D, which means that there is a
minimum at about 700 m depth. In Norwegian fjords in winter, on the other
hand, with a cold surface and with fresh water from rivers on top, the higher
speed of sound near the surface is not so prominent if it exists at all.

Accurate knowledge of the speed of sound is important in some imaging
applications, like for exact focusing in synthetic aperture sonar [Hansen
et al., 2011] and medical ultrasound [Austeng and Holm, 2002]. The effect of
sound speed profiles in seawater is also that there will exist regions which
are invisible to sonar. The existence and location of these regions vary with
environmental parameters. This is the background for a cat-and-mouse game
between sonars and military submarines that try to avoid being detected.

Sound waves will move towards the depth of the minimum sound speed.
This channel of minimum velocity may stretch over long distances and form
a waveguide for favorable sound propagation over thousands of km called the
SOFAR (Sound Fixing and Ranging) channel, [Kuperman and Lynch, 2004].

6.2.2 Air

According to the ideal gas law, pressure varies with absolute temperature,
T ′, and absolute volume, V ′, as p ′ = nRT ′/V where R = 8314.51 J/(mol K)
is the universal gas constant and n is the number of moles. The density is
also ρ′ = nM/V ′ where M is the molar mass of the gas, which for dry air is
0.0289645 kg/mol. Around the equilibrium point where p ′ = p0 and ρ′ = ρ0,
combination with (2.10) gives:

c0 =
√

K

ρ0
=

√
γ

p0

ρ0
=

√
γkT ′

m
, (6.11)

where k = 1.38064852 · 10−23 J/K is Boltzmann’s constant and the ratio of
specific heats is γ = cp /cv where cp and cv are the specific heat capacities
under constant pressure and constant volume conditions respectively. The
ratio is also called the adiabatic index and for an ideal diatomic gas it is γ= 1.4.

Example 6.3 Speed of sound in air. Letting temperature, T, be in ◦C
rather than K by T ′ = 273.15+T results in

c0 =
√

273.15 ·γk

m
(1+ T

273.15
) ≈ 331.3+0.606 ·T. (6.12)

This gives a value of 343.2 m/s at 20◦C and 340.4 m/s at 15◦C.

Normal pressure is p0 = 1.01 ·105 Pa and according to (2.10) this gives a
bulk modulus of K = 1.414 ·105 Pa. At 15◦, the density can be found from (2.8)
and the speed of sound and is ρ0 = K /c2

0 = 1.22 kg/m3.
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Figure 6.3 Density and pressure decrease smoothly with altitude, but temperature
(red) does not. The speed of sound (blue) depends only on the complicated tem-
perature variation at altitude and can be calculated from it since isolated density
and pressure effects on the speed of sound cancel each other. Wikipedia: https:
//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Comparison_US_
standard_atmosphere_1962.svg/1659px-Comparison_US_standard_atmosphere_
1962.svg.png

Fig. 6.3 also shows density and pressure variations and their influence.
Concentrating on the lowest 10 km, it is evident how temperature drops
and so does speed of sound according to (6.12). Usually sound waves will
therefore be bent up and into the atmosphere. Under special atmospheric
conditions, called inversion, temperature may increase with height in the first
km or so and speed of sound will increase with height, and waves will be bent
back towards the surface and sound may carry longer. Elephants may for this
reason communicate at infrasound frequencies over distances larger than 10
km at dusk or dawn [Larom et al., 1997].

Above the lowest 10 km, minima in the sound speed can be seen at heights
10–20 km and 80–90 km. Typically, there are either tropospheric (maximum
at 1̃5 km), stratospheric (maximum at 5̃0 km), or thermospheric (maximum
at 1̃00 km) waveguides. These ducts are important for long range propagation
of infrasound where absorption in air is small, see Fig. 3.8. The maxima in
the speed of sound above these ducts will bend sound back to earth. This
is important for e.g. verification of the nuclear test-ban treaty and for long
term prediction of pressure events that are pre-cursors to changes in weather
[Smets et al., 2015].

https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Comparison_US_standard_atmosphere_1962.svg/1659px-Comparison_US_standard_atmosphere_1962.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Comparison_US_standard_atmosphere_1962.svg/1659px-Comparison_US_standard_atmosphere_1962.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Comparison_US_standard_atmosphere_1962.svg/1659px-Comparison_US_standard_atmosphere_1962.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Comparison_US_standard_atmosphere_1962.svg/1659px-Comparison_US_standard_atmosphere_1962.svg.png
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Chapter 7

From diffraction to the Fourier transform

This chapter starts with the Rayleigh-Sommerfeld integral and shows how the
Fresnel and Fraunhofer zones for the near and far fields respectively can be
seen as approximations to the integral. The Fourier transform relationship
between an aperture function and the far field, which is a central concept in
array signal processing, is also shown. This chapter builds on [Johnson and
Dudgeon, 1992, Sect. 2.4].

7.1 Huygen’s principle

Huygen’s principle says that each point on a traveling wavefront can be con-
sidered as a secondary source of spherical radiation. Each such source will
therefore spread according to the spatial part of the equation for spherical
spreading in (2.16):

s(r, t ) = A

r
exp{i(ωt −kr )}. (7.1)

Adding up contributions, s(−→x h), over an aperture, A, then results in:

s(−→x ) ∝
∫ ∫

A
s(−→x h)

exp{ikr }

r
dA. (7.2)

This principle is due to Christian Huygens, (1629-1695, Netherlands). The
principle also expresses how an acoustic source like an oscillating piston is
formed.

Other contributors to this field, which originally was concerned with
optics, were:

• Joseph von Fraunhofer (D) 1787 - 1826

• Augustin Jean Fresnel (F) 1788 - 1827

• Gustav Robert Kirchhoff (D) 1824 –1887

• Lord Rayleigh, John William Strutt (GB) 1842 - 1919, Nobel prize physics,
1904.

• Arnold Johannes Wilhelm Sommerfeld (D) 1868 - 1951

7.2 Rayleigh–Sommerfeld diffraction formula

Eq. (7.2) captures the most essential part of diffraction, but the accurate
formulation for the field from an aperture A is expressed in the Rayleigh-
Sommerfeld diffraction formula, see [Goodman, 1996, Chap. 3]:

s(−→x ) = 1

iλ

∫ ∫
A

s(−→x h)
exp{ikr }

r
cosθdA. (7.3)
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It says that the wave at position−→x is a superposition of fields from the hole,
due to the linearity of the wave equation as expressed in Huygen’s principle.
Each contribution is weighted by a spherical spreading function expikr /r .
There is also weighting by 1/λ. In addition there is an obliquity factor cosθ
and finally a phase shift of π/2 due to the factor 1/i.

There are two important approximations to the Rayleigh-Sommerfeld
formula, the Fresnel approximation which is for the near field and small
angles, and the Fraunhofer approximation which is valid in the far field. Inside
the region where the Fresnel approximation is valid, the beam is collimated,
i.e. it has the same diameter as the source itself. Some examples are x-ray
beams in medical imaging and a laser point which maintains an almost
constant beam width over the range of interest.

The following derivation leads to important estimates for the near field –
far field transition distance. It also leads to the important result that there is a
Fourier relationship between the aperture excitation and the field in the far
field.

7.2.1 The Fresnel approximation

Eq. (7.3) is approximated for small angles by letting cosθ ≈ 1 and r ≈ d .
This is substituted for the amplitude factor. But it cannot be used in the
phase of the complex exponential as the end result is much more sensitive to
approximations in the phase factor than in the amplitude factor.

For the phase the spherical surfaces are instead approximated by a quadratic
function, therefore this is called a parabolic approximation:

r = [(x − x̃)2 + (y − ỹ)2 +d 2]1/2 = d [1+ (x − x̃)2 + (y − ỹ)2

d 2 ]1/2 (7.4)

≈ d + (x − x̃)2 + (y − ỹ)2

2d
.

This leads to:

s(x, y) ≈ exp{ikd}

iλd
·
∫ ∫

A
s(x̃, ỹ)exp{

ik[(x − x̃)2 + (y − ỹ)2]

2d
}d x̃d ỹ . (7.5)

The result is a near field approximation which is fine within approximately
±15◦ of the axis perpendicular to the aperture, the z-axis. It is also called the
paraxial approximation. It can only be used when the distance to position −→x
doesn’t vary too much over the aperture.

The Fresnel approximation expresses a 2D convolution between the field
in the field in the original aperture and and transfer function h(x, y):

h(x, y) = exp{ikd}

iλd
exp{

ik(x2 + y2)

2d
} (7.6)

This is a quadratic phase function which is the phase shift that a secondary
wave encounters during propagation. More details about the Fresnel approxi-
mation can be found in [Goodman, 1996, Chap. 4.2].
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7.2.2 Fraunhofer approximation

Here the phase term of the Fresnel approximation in Eq. (7.5) is expanded
and the quadratic phase term variation over the aperture is neglected:

(x − x̃)2 + (y − ỹ)2 = x2 + y2 −2xx̃ −2y ỹ + x̃2 + ỹ2 ≈ x2 + y2 −2xx̃ −2y ỹ .
(7.7)

If D is the maximum linear dimension of the aperture and d is the distance
from source, then this is equivalent to assuming:

x̃2

2d
≤ (D/2)2

2d
<<λ/2 => d >> D2

4λ
. (7.8)

This is the definition of the Fresnel limit.
The Fraunhofer approximation is the result of inserting Eq. (7.7) in Eq.

(7.5):

s(x, y) ≈ exp{ikd}

iλd
exp{

ik(x2 + y2)

2d
} ·

∫ ∫
A

s(x̃, ỹ)exp{
ik(xx̃ + y ỹ)

d
}d x̃d ỹ .

(7.9)

The result is a far field approximation which is valid far away from aperture.
It should now be evident that s(x, y) is the 2D Fourier transform of field in
hole, s(x̃, ỹ).

In order to link it more directly to a Fourier transform between the aper-
ture function and the wavenumber domain, imagine substituting new vari-
ables kx̃ = kx̃/d and k ỹ = k ỹ/d , changing the integral to s(kx̃ ,k ỹ ). In the end
we therefore have an integral between the spatial aperture domain and the
wavenumber domain [Johnson and Dudgeon, 1992, Chap. 2.4].

This result links the physics and the signal processing via the important
Fourier transform. It is also the basis for a simplified expression like angular
resolution θ ≈λ/D , which says that a small aperture leads to wide beam and
vice versa just like a short time-function has a wide spectrum in temporal
signal processing.

More details about the Fraunhofer approximation can be found in [Good-
man, 1996, Chap. 4.3].

7.3 Practical consequences of diffraction in ultrasound

7.3.1 Near field–far field limit

The transition from the near field to the far field is gradual in practice and
there is no clear point where it takes place. Therefore there exists several
limits which are used. Here they are listed according to increasing distance
from the aperture or source:

• dF = D2/(4λ) : Fresnel limit of (7.8)

• d =πr 2/λ=π/4 ·D2/λ : Diffraction limit

• dR = 2D2/λ : Rayleigh distance, maximum path length difference λ/16
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Figure 7.1 Acoustic field from a 1 MHz D =13 mm aperture unfocused transducer.
Observe how the field starts transitioning to one with a uniform angle at depth
D2/(4λ) ≈ 28 mm and that the transition is more or less complete at πD2/(4λ) ≈ 88
mm. Simulated with Ultrasim [Holm, 2001]

In all cases, the transition point distance is proportional to D2/λ. The differ-
ence between the various criteria is the multiplication factor, which can be
0.25, 0.79, or 2. This is illustrated in Fig. 7.1 which is a simulation of a 1 MHz
ultrasound with aperture 13 mm.

A simple interpretation and rule-of-thumb is that whenever the aperture
tries to resolve objects that are smaller than the size of the aperture itself,
the imaging takes place in the near field. This principle can be formulated
by starting with the resolution of an aperture at a distance de which is θde ,
where the angular resolution is θ ≈λ/D. Setting this equal to the size of the
aperture gives:

T If the object is smaller than
the aperture, the system is
operating in the near field

D = θd = deλ/D ⇒ de = D2/λ (7.10)

7.3.2 Hard and soft baffle in acoustics

The validity of the Rayleigh Sommerfeld diffraction formula of Eq. (7.3) was
tested against measurements for common ultrasound transducer elements in
[Selfridge et al., 1980]. It was found that the cosθ term indeed was important.
The result was that the common formula for the far field pressure radiation
pattern of a strip element of length d must be multiplied by the same factor:

p = p0
sin(πd/λsinθ)

πd/λsinθ
X (θ) (7.11)

where the obliquity factor is X (θ) = cosθ.
This is actually the soft baffle case in acoustics, where the surroundings

of the acoustic element is such that the pressure is zero. The other case is
a hard baffle, where the boundary condition outside the source has zero
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Figure 7.2 Dynamic aperture and dynamic weighting as typically used in medical
ultrasound

particle velocity, and then the obliquity factor is just X (θ) = 1. In [Szabo,
2014] (chapter 7) it is argued that in some cases even an average of the two,
X (θ) = (1+cosθ)/2 describes realistic transducer elements.

The three cases are also found in [Goodman, 1996, Chap. 3.6] where they
correspond to three different approximations in the Kirchoff and Rayleigh-
Sommerfeld formulations of diffraction:

X (θ) =


cosθ, First Rayleigh-Sommerfeld solution

1, Second Rayleigh-Sommerfeld solution

(1+cosθ)/2, Kirchoff theory.

(7.12)

7.3.3 Lower limit for range

In ultrasound imaging, the small angle limit of the Fresnel approximation and
the resulting approximation r ≈ d , is expressed by the ratio of the distance
and the aperture, f# = d/D . This is called the f-number.

T The f-number should never
be less than 1–2.

The angle, θ, will be given by tanθ/2 = (D/2)/d = 0.5/ f#. A rule-of-thumb
is that the f-number should not be lower than 1 to 2, otherwise the image
quality may actually deteriorate with a larger aperture. This corresponds
to angles θ/2 = 14. . .26.6◦ degrees which corresponds quite well with the
previously stated limitation of the Fresnel theory at θ/2 ≈ 15◦.

This limit is also justified by the mainlobe width of the resulting beam. It
can for instance be found from Eq. (7.11) by finding the peak to zero distance
which is sinθ =λ/d . Therefore the resolution at a distance D is D sinθ ≈λ f#.
As f# approaches 1, the resolution approaches the wavelength, λ, and the
geometric wave propagation theory underlying eq. (7.11) breaks down.

This is the idea behind the concept of the expanding aperture often used
in ultrasound imaging as shown in Fig. 7.2. It usually expands linearly with
range or depth, maintaining a constant f#, out to the range where the full
aperture is activated and from then on the full aperture is used.
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Simultaneously the aperture weighting function is changed dynamically
from a smooth function like a Hamming window to a rectangular one. The
smooth function decreases sidelobes and increases image quality for objects
near the transducer while the rectangular function maximizes sensitivity as
the penetration limit is reached.
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Chapter 8

Angular spectrum simulation of acoustic fields

The following sections will give an introduction to concepts which are impor-
tant in practical numerical simulation methods.

8.1 Helmholtz equation

Equation (2.12) may be decomposed into a product of a spatial and a temporal
term:

u(x, t ) =U (x) ·T (t ). (8.1)

When inserted into the lossless wave equation of (2.11), one gets

∇2U

U
= 1

c2
0T

d2T

dt 2 . (8.2)

Here the left-hand side only depends on the spatial variable, x, and the right-
hand side only depends on time, t . Both sides must therefore be a constant,
which we call −k2 where k will be the wave number. The spatial equation
then becomes: (∇2 +k2)U = 0. (8.3)

This is the Helmholtz equation.

8.2 Spatial impulse response or Green’s function

Assume a 1-D lossless wave equation with a source term:

∇2u − 1

c2
0

∂2u

∂t 2 = S(x, t ). (8.4)

The Green’s function is the spatial impulse response and therefore the solution
is the convolution of the Green’s function and the source term:

u(x, t ) =
∫ t

0

∫ ∞

−∞
G(x −x ′, t − t ′) ·S(x ′, t ′) dx ′ dt ′ =G(x, t )∗S(x, t ) (8.5)

The Green’s function can be found analytically1 and depends on the number
of dimensions [Cox and Treeby, 2017]:

G1D (x, t ) = c0

2
u(t −|x|/c0), (8.6)

G2D (⃗x, t ) = u(t − |⃗x|/c0)

2π
√

t 2 − |⃗x|2/c2
0

, (8.7)

1see e.g. Wikipedia: https://en.wikipedia.org/wiki/Green%27s_function

https://en.wikipedia.org/wiki/Green%27s_function
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G3D (⃗x, t ) = δ(t − |⃗x|/c0)

4π|⃗x| , (8.8)

where u(t ) and δ(t ) are the unit step and impulse functions respectively.2

The Helmholtz equation of (8.3) has this Green’s function in 3D:

G3D (⃗x, t ) = −e−ikr

4πr
, r = |⃗x|, (8.9)

which bears some resemblance to the spatial component of the solution to
the spherical wave equation of (2.16).

The Green’s function method is based on a linear, lossless theory, but
losses may be added to the method as done in the Field II simulation program
[Jensen et al., 1993].

8.3 The angular spectrum method

In the angular spectrum method for simulation, a plane wave is propagated
in the z-direction. The method assumes that the field U (x, y, z = z0) in the
(x, y, z = z0)-plane is known and gives a method for finding U (x, y, z) in a new
parallel plane (x, y, z). This is done via the spatial Fourier transform in the
(x, y)-plane.

The initial Fourier transform is:

A(u, v ; z0) =
∞Ï

−∞
U (x, y, z0)exp[−i2π(ux +uy)]dx dy. (8.10)

The inverse transform shows how this is a decomposition of the field in a sum
of plane waves:

U (x, y, z0) =
∞Ï

−∞
A(u, v ; z0)exp[i2π(ux + v y)]du dv, (8.11)

where U (·) is the spatial component of the field from (8.1).
The spatial frequencies3 u and v relate to the components of the wave

vector, k⃗, in a similar way as temporal frequency, f , relates to angular fre-
quency ω= 2π f . Thus (u, v) = (kx ,ky )/(2π). If a plane wave is propagating in
directions (φ,θ) in spherical coordinates,4 the components of the wave vector
of (2.12) are [Latychevskaia and Fink, 2015]:

k⃗ = 2π

λ

(
cosφsinθ, sinφsinθ,cosθ

)= 2π(u, v, w), (8.12)

where θ is the polar angle, or angle with respect to the z-axis, φ is the azimuth
angle, and w is the spatial frequency in the z-direction (not used here).

2Note difference between u(t ) - displacement, and u(t ) - the unit step function
3Note that u and v without any argument are spatial frequencies
4For spherical to Cartesian transformation, see Wikipedia https://en.wikipedia.org/wiki/

Spherical_coordinate_system#Cartesian_coordinates

https://en.wikipedia.org/wiki/Spherical_coordinate_system#Cartesian_coordinates
https://en.wikipedia.org/wiki/Spherical_coordinate_system#Cartesian_coordinates
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The components of the wave vector are also called direction cosines,

α= cosφsinθ, (8.13)

β= sinφsinθ,

γ= cosθ,

and where α2 +β2 +γ2 = 1. Therefore the Fourier transform, A(u, v ; 0), is a
decomposition of the field, U (x, y, 0), in plane wave components at different
angles. It is therefore called the angular spectrum.

8.3.1 The diffraction step

We want to propagate the field via the angular spectrum in order to find

U (x, y, z) =
∞Ï

−∞
A(u, v ; z)exp[i2π(ux + v y)]du dv. (8.14)

The condition is that the field has to satisfy the Helmholtz equation of (8.3)
which takes care of diffraction. It is shown in [Goodman, 1996, Chap. 3.10]
that the new angular spectrum then can be found as

A(u, v ; z) = A(u, v ; z0) ·exp

(
i
2π

λ
z
√

1−α2 −β2

)
. (8.15)

As long as the expression in the square root of (8.15) is positive so γ= cosθ ≤ 1
there will be a real propagation angle, θ, relative to the z-axis. Propagation
will then only change the phase of the component of the angular spectrum
and not the amplitude.

However, if α2 +β2 > 1, the propagation factor becomes a real expo-
nential and the angular spectrum component will be attenuated. These
non-propagating wave components are called evanescent waves.

The Angular Spectrum Approach (ASA) algorithm is illustrated in Fig. 8.1.

8.3.2 Attenuation and nonlinearity

The angular spectrum method as presented builds on Helmholtz equation.
Therefore the operator of (8.15) only accounts for diffraction between each
step in the simulation and is only valid for a single frequency. Broad-band
signals may be handled by propagating several frequencies, and attenuation,
dispersion, refraction, and nonlinearity may also be included in the substep
assuming that their effects are small.

When nonlinearity is included, many harmonics of the initial fundamen-
tal frequency will have to be propagated per substep. A method that accounts
for the physics of diffraction, attenuation and nonlinearity is given in [Christo-
pher and Parker, 1991], even for axis symmetric sources. In that case the 2-D
Fourier transform of (8.14) is substituted with a 1-D discrete Hankel trans-
form for computational efficiency. The 1-D Hankel transform method was
used for the nonlinear simulations of [Synnevåg and Holm, 1998] and [Prieur
et al., 2012].
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U (x, y, z = z0)

A(u, v ; z0) =Î ∞
−∞U (x, y, z0)exp[−i2π(ux + v y)] d x d y

A(u, v ; z) = A(u, v ; z0)exp
[

i 2π
λ z

√
1−α2 −β2

]

U (x, y, z) =Î ∞
−∞ A(u, v ; z)exp[i2π(ux + v y)] du d v

INPUT: U (x, y, z0)
Measured/specified
field data in
plane z0

OUTPUT: U (x, y, z)
Predicted
field in
plane z

2D Fourier transform

Propagate the transform

Invert the transform

Figure 8.1 Illustration of the Angular Spectrum Approach algorithm (from Andreas
Austeng)

The k-Wave simulation program is based on a pseudo-spectral method
which can account for attenuation, dispersion, and refraction. It uses frac-
tional derivatives indirectly because the attenuation model is expressed with
a modification of the fractional Laplacian of [Chen and Holm, 2004] which
was developed in [Treeby et al., 2012]. The fractional Laplacian is a fractional
derivative in space rather than time.
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Appendix A

Approximations and terminology

A.1 Power series approximation

One version of Newton’s generalized binomial theorem is [Rottmann, 2003]:

(1+x)n/m = 1+ n

m
x − n(m −n)

2!m2 x2 + n(m −n)(2m −n)

3!m3 x3 +·· · (A.1)

Often used approximations are based on keeping only the first two or
three terms and are valid when x ≪ 1:

1

1+x
= (1+x)−1 ≈ 1−x +x2 +·· · (A.2)

p
1+x = (1+x)1/2 ≈ 1+ x

2
− x2

8
+ x3

16
−·· · (A.3)

1/
p

1+x = (1+x)−1/2 ≈ 1− x

2
+ 3

8
x2 − 5

16
x3 +·· · (A.4)

A.2 McLaurin series for trigonometric functions

The argument is always expressed in radians in these formulas:

sinθ = θ− 1

3!
θ3 + 1

5!
θ5 −·· · (A.5)

cosθ = 1− 1

2!
θ2 + 1

4!
θ4 −·· · (A.6)

tanθ = θ+ 1

3
θ3 + 2

15
θ5 −·· · (A.7)

The small angle approximations use only a single term:

sinθ ≈ tanθ ≈ θ (A.8)

cosθ ≈ 1 (A.9)

When the argument θ < 0.2 radians ≈ 11.50◦ the error in sinθ is less than
0.7 %, the error in tanθ is less than 1.4 %, and the error in cosθ is less than 2
%. In practice the approximate formulas are useful up to approximately 0.25
radians or 15◦.
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A.3 Norwegian terminology

• Bølgeligningen

• Planbølger, sfæriske bølger

• Propagerende bølger, bølgetall

• Sinking/sakking: α⃗

• Dispersjon

• Attenuasjon eller demping

• Refraksjon

• Ikke-linearitet

• Diffraksjon; nærfelt, fjernfelt

• Gruppeantenne ( = array)

Kilde: Bl.a. [Hovem, 1999].
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