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ΛCDM cosmology
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A great success 
on large scales...

Springel, Frenk & White, 
Nature ’06

Figure 1: �2(k) ⌘ 4⇡(k/2⇡)3P(k), the linear power spectrum of density fluctuations at z = 0. The solid line is the
canonical cold DM model with an Eisenstein & Hu (1997) [10] transfer function. The dashed line is a thermal relic warm
DM model with mWDM = 8 keV [11]. The dotted line is an atomic DM model [12]. We used WMAP7 cosmological
parameters [13], ⌦m = 0.265, ⌦⇤ = 0.735, ⌦b = 0.0449, h = 0.71, �8 = 0.801, and ns = 0.963.

the important questions to tackle, and how best to do so? What developments should be pursued
in order to take advantage of technological advances?

2. Dark Matter Simulations and the Dark Universe

The numerical simulation discussed in this review together span an enormous range of length
scales, more than 8 orders of magnitude reaching from near horizon scale (⇠ 20 Gpc) down to
sub-Galactic (tens of pc). Individually they focus on di↵erent regimes (see §3 and Table 2), but
all have in common that they evolve the growth of DM density fluctuations all the way to the
present epoch at redshift zero.1

The shape of the CDM power spectrum results in a hierarchical, bottom-up process of struc-
ture formation, in which small and low mass objects collapse first and over time merge to form
ever more massive structures, until the onset at z ⇡ 1 of DE induced accelerated expansion begins
to halt further collapse. In Fig. 1 we show a plot of the linear dimensionless matter power spec-
trum �2(k) ⌘ 4⇡(k/2⇡)3P(k) at z = 0 versus the wavenumber k of the fluctuation. Where � & 1,
gravitational collapse will have proceeded to the non-linear regime and typical objects of the cor-
responding mass will have collapsed. Cosmic scales, including the Baryon Acoustic Oscillation

1We deliberately omit from our discussion multi-billion particle simulations that focus only on the first billion years
of cosmic evolution, for studying the epoch of reionization [14] or early supermassive black hole growth [15].
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Kuhlen, Vogelsberger & Angulo, PDU ’12

Figure 1: The galaxy distribution obtained from spectroscopic redshift surveys and from mock

catalogues constructed from cosmological simulations. The small slice at the top shows the CfA2

“Great Wall”3, with the Coma cluster at the centre. Drawn to the same scale is a small section of the

SDSS, in which an even larger “Sloan Great Wall” has been identified100. This is one of the largest

observed structures in the Universe, containing over 10,000 galaxies and stretching over more than 1.37

billion light years. The wedge on the left shows one-half of the 2dFGRS, which determined distances

to more than 220,000 galaxies in the southern sky out to a depth of 2 billion light years. The SDSS

has a similar depth but a larger solid angle and currently includes over 650,000 observed redshifts

in the northern sky. At the bottom and on the right, mock galaxy surveys constructed using semi-

analytic techniques to simulate the formation and evolution of galaxies within the evolving dark matter

distribution of the “Millennium” simulation5 are shown, selected with matching survey geometries and

magnitude limits.
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Small-scale problems
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...but less impressive on small scales !?
2. Cusps or cores?

6 de Blok et al.

Fig. 2.— Histogram of the values of the inner power-law slope α of the mass density profiles presented in Fig. 1. We distinguish between
well-resolved (hatched histogram) and unresolved (blank histogram) galaxies. The unresolved galaxies generally have higher values of α.

Fig. 3.— Value of the inner slope α of the mass density profiles plotted against the radius of the innermost point. Black dots are from the
dBMR sample, stars are from the de Blok & Bosma (2001) sample, open circles represent the four LSB galaxies from the Verheijen (1997)
sample. Over-plotted are the theoretical slopes of a pseudo-isothermal halo model (dotted lines) with core radii of 0.5 (left-most), 1 (canter)
and 2 (right-most) kpc. The full line represents a NFW model (Navarro, Frenk & White 1996), the dashed line a CDM r−1.5 model (Moore
et al. 1999). Both of the latter models have parameters c = 8 and V200 = 100 km s−1, which were chosen to approximately fit the data points
in the lower part of the diagram.
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Blok et al., ApJ ’01

Cuspy inner density 
profiles predicted by 
simulations not found in 
(all) observations 

3. Too big to fail?

The `Too big to fail’ problem
6 M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat

Figure 3. Rotation curves for all subhalos with V
infall

> 30 km s�1 and V
max

> 10 km s�1, after excluding Magellanic Cloud analogs, in
each of the six Aquarius simulations (top row, from left to right: A, B, C; bottom row: D, E, F). Subhalos that are at least 2� denser
than every bright MW dwarf spheroidal are plotted with solid curves, while the remaining subhalos are plotted as dotted curves. Data
points with errors show measured V

circ

values for the bright MW dSphs. Not only does each halo have several subhalos that are too
dense to host any of the dSphs, each halo also has several massive subhalos (nominally capable of forming stars) with V

circ

comparable
to the MW dSphs that have no bright counterpart in the MW. In total, between 7 and 22 of these massive subhalos are unaccounted for
in each halo.

of V
circ

(r
1/2) for the bright Milky Way dwarf spheroidals.

As in Fig. 2, we plot only halos with V
infall

> 30 km s�1

and V
max

(z = 0) > 10 km s�1. Subhalos that are at least 2�
more massive than every dwarf (at r

1/2) are plotted as solid
curves; these are the “massive failures” discussed in BBK,
and each halo has at least four such subhalos. Fig. 3 shows
that each halo has several other subhalos with V

infall

> 30
that are unaccounted for as well: for example, halo B has
three subhalos that are not massive failures by our defini-
tion but that are inconsistent at 2� with every dwarf except
Draco. Even ignoring the subhalos that are completely un-
accounted for (and are yet more massive than all of the MW
dSphs), the remaining massive subhalos do not resemble the
bright MW dSph population.

3.3 High redshift progenitors of massive subhalos

To investigate the possible impact of reionization on our re-
sults, we show the evolution of the progenitors of all subhalos
with V

infall

> 30 km s�1 in Figure 4. The solid curve show
the median M(z), while the shaded region contains 68% of
the distribution, centered on the median, at each redshift.

For comparison, we also show T
vir

(z) = 104 K (the tempera-
ture at which primordial gas can cool via atomic transitions)
and 105 K (dashed lines), as well as the mass Mc(z) below
which at least half of a halo’s baryons have been removed
by photo-heating from the UV background (Okamoto et al.
2008). Subhalos with V

infall

> 30 km s�1 lie above Mc and
T
vir

= 104 K at all redshifts plotted, indicating that they are
too massive for photo-ionization feedback to significantly al-
ter their gas content and thereby inhibit galaxy formation.

Figure 5 focuses on the z = 6 properties of these sub-
halos. It shows the distribution of halo masses at z = 6
for “massive failures” (open histogram) and the remaining
subhalos (filled histogram), which are possible hosts of the
MW dSphs. The massive failures are more massive at z = 6,
on average, than the potentially luminous subhalos. This
further emphasizes that reionization is not a plausible ex-
planation of why the massive failures do not have stars: the
typical massive failure is a factor of ten more massive than
the UV suppression threshold at z = 6. Implications of this
result will be discussed in Boylan-Kolchin et al. (in prepa-
ration).

In a series of recent papers, Broderick, Chang, and

c� 2012 RAS, MNRAS 000, 1–17

Most massive subhalos in simulations are too 
dense to host observed brightest dwarf galaxies
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Most massive subhalos 
in simulations are too 
dense to form observed 
brightest dwarf galaxies

1. Missing satellites?

Many more satellites in 
simulations of MW-like 
galaxies than observed

2 DARK MATTER SUBSTRUCTURE

2. SUBSTRUCTURE WITHIN GALAXIES AND CLUSTERS

We simulate the hierarchical formation of dark matter
halos in the correct cosmological context using a high res-
olution parallel treecode pkdgrav. An object is chosen
from a simulation of an appropriate cosmological volume.
The small scale waves of the power spectrum are realised
within the volume that collapses to this object with pro-
gressively lower resolution at increasing distances from the
object. The simulation is then re-run to the present epoch
with the higher mass and force resolution. We have ap-
plied this technique to several halos identified from a 106

Mpc3 volume, including a cluster similar to the nearby
Virgo cluster (Ghigna et al. 1998) and a galaxy with a
circular velocity and isolation similar to the Milky Way.

Fig. 1.— The density of dark matter within a cluster halo of mass
5×1014M⊙ (upper) and a galaxy halo of mass 2×1012M⊙ (lower).
The edge of the box is the virial radius, 300kpc for the galaxy and
2000 kpc for the cluster (peak circular velocities of 200 km s−1 and
1100 km s−1 respectively).

The cosmology that we investigate is a universe dom-
inated with a critical density of cold dark matter, nor-
malised to reproduce the local abundance of galaxy clus-

ters. The important numerical parameters to remember
are that each halo contains more than one million particles
within the final virial radius rvir , and we use a force reso-
lution ∼ 0.1%rvir. Further details of computational tech-
niques and simulation parameters can be found in Ghigna
et al. (1998) and Moore et al. (1999). Here we focus our
attention directly on a comparison with observations.

Figure 1 shows the mass distribution at a redshift z = 0
within the virial radii of our simulated cluster and galaxy.
It is virtually impossible to distinguish the two dark mat-
ter halos, even though the cluster halo is nearly a thou-
sand times more massive and forms 5 Gyrs later than the
galaxy halo. Both objects contain many dark matter sub-
structure halos. We apply a group finding algorithm to
extract the sub-clumps from the simulation data and use
the bound particles to directly measure their kinematical
properties; mass, circular velocity, radii, orbital parame-
ters (c.f. Ghigna et al. 1998). Although our simulations
do not include a baryonic tracer component, we can com-
pare the properties of these systems with observations us-
ing the Tully-Fisher relation (Tully & Fisher 1977). This
provides a simple benchmark for future studies that in-
corporate additional physics such as cooling gas and star-
formation.

Fig. 2.— The abundance of cosmic substructure within our
Milky Way Galaxy, the Virgo cluster and our models of comparable
masses. We plot the cumulative numbers of halos as a function of

their circular velocity (vc =
√

(Gmb/rb), where mb is the bound
mass within the bound radius rb of the substructure, normalised to
the circular velocity, Vglobal of the parent halo that they inhabit.
The dotted curve shows the distribution of the satellites within the
Milky Way’s halo (Mateo 1998) and the open circles with Poisson
errors is data for the Virgo galaxy cluster (Binggeli et al. 1985). We
compare these data with our simulated galactic mass halo (dashed
curves) and cluster halo (solid curve). The second dashed curve
shows data for the galaxy at an earlier epoch, 4 billion years ago -
dynamical evolution has not significantly altered the properties of
the substructure over this timescale.

Figure 2 shows the observed mass (circular velocity)
function of substructure within the Virgo cluster of galax-
ies compared with our simulation results. The circular ve-
locities of substructure halos are measured directly from

Moore et al., ApJ ’99
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Kai Schmidt-Hoberg  |  What can we learn from self-interacting dark matter?  |  26 May 2017  |  Page 17

• The collisionless cold dark matter paradigm fits perfectly at large scales

• There are however various discrepancies between N-body simulations of
collisionless cold DM and astrophysical observations on galactic scales:

 Cusp-vs-core problem

 Too-big-to-fail problem

 Missing-satellite problem

 Diversity problem

DM self-interactions may solve

some (or all) of these problems

Spergel & Steinhard: astro-ph/9909386

Aarsen, Bringmann, Pfrommer, 1205.5809

Motivation: Cosmology

But it's clearly all 
baryons, as shown in 

1702.xxxxx!

But baryons clearly 
cannot do it, see

1702.yyyyy!

Courtesy: Kai Schmidt-Hoberg

Small-scale problems
current status:
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Conclusions	&	Overview	
Missing	
satellites	

Cusp	vs.	core	 Too	big	to	fail	

Baryons	 ✓	 ✓	 ✓	

SIDM	 ✗	 ✓	 ✓	

SIDM	+	DR	 ✓	 ✓	 ✓	

WDM	 ✓	 ✗	 ✓	

DDM	 ✓	 ✗	 ✓	

LFDM	 ✓	 ✗	 ✓	

BSI	 ✓	 ✓	 ✗	

Broken-Scale-Invariance	inflaFonary	model	
	

The	model	predicts	an	excess	of	power	wrt	to	ΛCDM	before	the	cutoff;	thus	it	is	highly	
constrained	by	Ly-α.	
	
	

Kamionkowski	et	al.,	PRL	(2000)

Summary slide by M. Archidiacono, 
SIDM workshop Copenhagen 08/2017

(warm DM)

(decaying DM)

(Late Forming DM)

(Inflation w/ broken 
scale-invariance)

this talk
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Bode & Ostriker, ApJ 556, 93 (2001)

z = 3

z = 2

z = 1

CDM m� = 350 eV m� = 175 eV Free streaming of warm DM 
washes out density contrasts 
on small scales 
Strongest constraints from Lyman-alpha observations

Missing satellites could 
be explained this way

WDM also produces 
cores in dwarfs
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Warm Dark Matter
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Bode & Ostriker, ApJ 556, 93 (2001)

z = 3

z = 2

z = 1

CDM m� = 350 eV m� = 175 eV Free streaming of warm DM 
washes out density contrasts 
on small scales 
Strongest constraints from Lyman-alpha observations

Missing satellites could 
be explained this way

WDM also produces 
cores in dwarfs

but only if so warm that 
free-streaming length 
larger than dwarf size!

“catch 22”
Macció, MNRAS ‘12
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ABSTRACT
We examine the circular velocity profiles of galaxies in ! cold dark matter (CDM) cosmo-
logical hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and
compare them with a compilation of observed rotation curves of galaxies spanning a wide
range in mass. The shape of the circular velocity profiles of simulated galaxies varies system-
atically as a function of galaxy mass, but shows remarkably little variation at fixed maximum
circular velocity. This is especially true for low-mass dark-matter-dominated systems, reflect-
ing the expected similarity of the underlying CDM haloes. This is at odds with observed
dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum
rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do
not. The latter are systems where the inferred mass enclosed in the inner regions is much lower
than expected for CDM haloes and include many galaxies where previous work claims the
presence of a constant density ‘core’. The ‘cusp versus core’ issue is thus better characterized
as an ‘inner mass deficit’ problem than as a density slope mismatch. For several galaxies, the
magnitude of this inner mass deficit is well in excess of that reported in recent simulations
where cores result from baryon-induced fluctuations in the gravitational potential. We con-
clude that one or more of the following statements must be true: (i) the dark matter is more
complex than envisaged by any current model; (ii) current simulations fail to reproduce the
diversity in the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass
profiles of ‘inner mass deficit’ galaxies inferred from kinematic data are incorrect.

Key words: galaxies: haloes – galaxies: structure – dark matter.

1 IN T RO D U C T I O N

Cosmological simulations have led to a detailed theoretical charac-
terization of the clustering of dark matter on galaxy scales. It is now
well established that, when baryons may be neglected, the equilib-
rium mass profiles of cold dark matter (CDM) haloes are approxi-
mately self-similar and can be adequately approximated by a simple
formula (Navarro, Frenk & White 1996, 1997). The ‘NFW profile’,
as this is commonly known, has a formally divergent density ‘cusp’
near the centre, ρ ∝ r−γ , with γ = 1, and steepens gradually at
larger radii. The corresponding circular velocity profile, Vcirc(r), is
thus relatively steep near the centre, Vcirc ∝ r1/2, in contrast with
the rotation curves of some dwarf galaxies, where the inner rota-

⋆E-mail: koman@uvic.ca
†Senior CIfAR Fellow.

tion speed rises linearly with radius. The latter behaviour suggests
that the dark matter density profile has a shallower inner slope than
predicted by simulations, closer to a constant density ‘core’ rather
than a steeply divergent ‘cusp’. This ‘cusp versus core’ problem
(Flores & Primack 1994; Moore 1994) has been known since the
mid-1990s and has elicited a number of proposed solutions.

One is that the dark matter is not ‘cold’. Cores can be produced
in dark matter haloes by particle physics effects if the dark matter
particles have specific properties that differ from those of weakly
interacting massive particles or axions, the standard CDM candi-
dates. For example, phase space constraints give rise to cores in
warm dark matter (WDM) haloes (e.g. Bode, Ostriker & Turok
2001; Lovell et al. 2012), although current lower limits on WDM
particle masses imply cores that are much smaller than those in-
ferred for many dwarfs (Macciò et al. 2012a; Shao et al. 2013; Viel
et al. 2013).

C⃝ 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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Key words: galaxies: haloes – galaxies: structure – dark matter.

1 IN T RO D U C T I O N

Cosmological simulations have led to a detailed theoretical charac-
terization of the clustering of dark matter on galaxy scales. It is now
well established that, when baryons may be neglected, the equilib-
rium mass profiles of cold dark matter (CDM) haloes are approxi-
mately self-similar and can be adequately approximated by a simple
formula (Navarro, Frenk & White 1996, 1997). The ‘NFW profile’,
as this is commonly known, has a formally divergent density ‘cusp’
near the centre, ρ ∝ r−γ , with γ = 1, and steepens gradually at
larger radii. The corresponding circular velocity profile, Vcirc(r), is
thus relatively steep near the centre, Vcirc ∝ r1/2, in contrast with
the rotation curves of some dwarf galaxies, where the inner rota-
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tion speed rises linearly with radius. The latter behaviour suggests
that the dark matter density profile has a shallower inner slope than
predicted by simulations, closer to a constant density ‘core’ rather
than a steeply divergent ‘cusp’. This ‘cusp versus core’ problem
(Flores & Primack 1994; Moore 1994) has been known since the
mid-1990s and has elicited a number of proposed solutions.

One is that the dark matter is not ‘cold’. Cores can be produced
in dark matter haloes by particle physics effects if the dark matter
particles have specific properties that differ from those of weakly
interacting massive particles or axions, the standard CDM candi-
dates. For example, phase space constraints give rise to cores in
warm dark matter (WDM) haloes (e.g. Bode, Ostriker & Turok
2001; Lovell et al. 2012), although current lower limits on WDM
particle masses imply cores that are much smaller than those in-
ferred for many dwarfs (Macciò et al. 2012a; Shao et al. 2013; Viel
et al. 2013).
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ABSTRACT
We examine the circular velocity profiles of galaxies in ! cold dark matter (CDM) cosmo-
logical hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and
compare them with a compilation of observed rotation curves of galaxies spanning a wide
range in mass. The shape of the circular velocity profiles of simulated galaxies varies system-
atically as a function of galaxy mass, but shows remarkably little variation at fixed maximum
circular velocity. This is especially true for low-mass dark-matter-dominated systems, reflect-
ing the expected similarity of the underlying CDM haloes. This is at odds with observed
dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum
rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do
not. The latter are systems where the inferred mass enclosed in the inner regions is much lower
than expected for CDM haloes and include many galaxies where previous work claims the
presence of a constant density ‘core’. The ‘cusp versus core’ issue is thus better characterized
as an ‘inner mass deficit’ problem than as a density slope mismatch. For several galaxies, the
magnitude of this inner mass deficit is well in excess of that reported in recent simulations
where cores result from baryon-induced fluctuations in the gravitational potential. We con-
clude that one or more of the following statements must be true: (i) the dark matter is more
complex than envisaged by any current model; (ii) current simulations fail to reproduce the
diversity in the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass
profiles of ‘inner mass deficit’ galaxies inferred from kinematic data are incorrect.
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that the dark matter density profile has a shallower inner slope than
predicted by simulations, closer to a constant density ‘core’ rather
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mid-1990s and has elicited a number of proposed solutions.

One is that the dark matter is not ‘cold’. Cores can be produced
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Figure 4. Four examples of galaxies in our sample with rotation curves that are in good agreement with the circular velocity curves of our !CDM
hydrodynamical simulations. The four galaxies have been chosen to span a wide range in maximum circular velocity, from ∼30 (top left) to ∼120 km s−1

(bottom right). As in Fig. 2, the solid curves and shaded areas show the median (and 10th–90th percentile range) of all simulated galaxies in 20 per cent-width
bins centred at the maximum circular velocity of the galaxy in each panel (see legend). The solid black curve corresponds to the median circular velocity curve
of our DMO simulations.

4 O BSERVED V ERSUS SIMULATED
ROTAT I O N C U RV E S

4.1 The similarity of simulated circular velocity curves

The general properties of the rotation curves of simulated galax-
ies shown in Fig. 2 are in reasonable agreement with those of
observed galaxies, thus extending the agreement between EAGLE
and observations noted by Schaller et al. (2015, e.g. their fig. 6)
for Vmax > 100 km s−1 to lower mass systems. Circular velocities
tend to rise sharply and stay flat in massive galaxies, but to rise
more slowly in dwarf systems, where baryons play a less important
role.

The agreement is not just qualitative. This may be seen in Fig. 4,
where we compare directly the rotation curves of four galaxies of
different circular velocity with the simulation results. The com-
parison is made with simulated systems whose maximum circular
velocity matches, within 10 per cent, that of the observed galaxy,
without any rescaling. The match in Vmax ensures as well that the
baryonic masses of simulated and observed galaxies are compa-
rable, since the simulated systems satisfy the observed baryonic
Tully–Fisher relation (Sales et al., in preparation).

The excellent agreement shown in Fig. 4 is meant to illustrate
a more general point: the rotation curves of many galaxies, dwarfs
included, are actually consistent with !CDM predictions. This is
important to emphasize, since it is often thought that !CDM rota-
tion curves are in conflict with data for all or a majority of galaxies,
especially dwarfs.

4.2 The diversity of observed rotation curves

Actually, the main difference between simulated and observed rota-
tion curves is the great diversity of the latter (especially for dwarfs),
which is unexpected according to our results. We illustrate this in
Fig. 5, where the rotation curves of four different dwarf galaxies
of similar maximum circular velocity are compared with simulated
galaxies of matching Vmax.

The four galaxies in this figure have been selected to illustrate
the large diversity of rotation curve shapes at fixed Vmax. According
to the baryonic Tully–Fisher relation (McGaugh 2012), these four
galaxies have similar total baryonic masses, so the differences in
rotation curve shape must be due to either systematic variations in
the spatial distribution of the baryons, or to varying amounts of dark
matter.

The baryon distribution is at least partly responsible, since it is
well documented that high surface brightness galaxies have more
steeply rising rotation curves than low surface brightness systems
(see e.g. McGaugh & de Blok 1998; Swaters et al. 2009, and ref-
erences therein). Quantitatively, however, the differences cannot be
fully ascribed to baryons (see below), so the diversity seen in Fig. 5
reflects large systematic variations in the inner dark matter content
as well.

4.3 The challenge to !CDM

The comparison between observed and simulated rotation curves
thus highlights two challenges to !CDM. One is to understand the

MNRAS 452, 3650–3665 (2015)
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Figure 5. Rotation curves of four dwarf irregular galaxies of approximately the same maximum rotation speed (∼80–100 km s−1) and galaxy mass, chosen
to illustrate the diversity of rotation curve shape at given Vmax. As in previous figures, coloured solid curves and shaded areas correspond to the median (and
10th–90th percentile) circular velocity curve of simulated galaxies matching (within 10 per cent) the maximum circular velocity of each galaxy. Note that the
observed rotation curves exhibit a much wider diversity than seen in the EAGLE and LG simulations, from galaxies like UGC 5721, which are consistent with
our simulations, to galaxies like IC 2574, which show a much more slowly rising rotation curve compared with simulations, either hydrodynamical (coloured
lines) or DMO (black lines).

origin of the diversity at fixed Vmax, especially in dwarf galaxies,
which tend to be dark-matter-dominated. These are all galaxies that
form in similar haloes, have approximately the same baryonic mass,
and similar morphologies. Some diversity induced by differences in
the distribution of the baryonic component is expected, but clearly
the observed diversity is much greater than in our simulations.

The second, and more worrying, concern is the inner mass deficit
that some of these galaxies seem to exhibit relative to the !CDM
simulation predictions. Indeed, except for UGC 5721, all of the
galaxies shown in Fig. 5 have less mass in the inner 8 kpc than
expected not only from our hydro simulations (shaded coloured
regions) but also from a !CDM halo alone (solid black lines).
Systems like UGC 11707 seem marginally consistent, and could
perhaps be interpreted as outliers, but cases like IC 2574, or LSB
F583-1 are too extreme to be accommodated by our model without
significant change.

The mass deficit we highlight here has been noted before in
the context of the ‘cusp versus core’ debate (see e.g. McGaugh
et al. 2007, and references therein). Indeed, if constant density
‘cores’ were imposed on the dark matter it would be relatively
straightforward to reproduce the data shown in Fig. 5. Such cores,
however, would need to vary from galaxy to galaxy, even at fixed
halo mass and galaxy mass. Indeed, a core at least as large as
∼5 kpc would be needed to explain the fact that the rotation
curve of IC 2574 rises linearly out to ∼8 kpc, but ought to be
much smaller in LSB F583-1 and even smaller, if at all present, in
UGC 5721.

4.4 The challenge to baryon-induced core formation

The diversity of observed rotation curves presents a challenge not
only to our simulations, but also to the baryon-induced ‘core’ cre-
ation mechanism: why would baryons carve out cores so different
in galaxies that are so similar in terms of morphology, halo mass,
and galaxy mass? Further, we would expect the dark matter to be
most affected in systems where baryons play a more important role
in the potential, such as high surface brightness galaxies, whereas
observations seem to suggest the opposite trend.

A second challenge concerns the magnitude of the effect needed
to create a core as large as that inferred, for example, for IC 2574.
Published simulations where baryon effects create cores tend to
have overall a modest effect on the total inner mass profile of the
galaxy. One example is provided in Fig. 1; although baryons have
carved a ∼1 kpc core in the dark matter halo in the simulated galaxy
DG1, the total inner mass profile is actually quite similar to what
is expected for galaxies of that circular velocity in our simulations
(green-shaded region), which do not produce cores. This is because,
to first order, the baryons that displace the dark matter to create a
core take its place, leading to a modest net change in the total mass
profile.

In other words, ‘flattening the dark matter cusp’ is not enough
to explain galaxies like IC 2574. A net removal of large amounts
of mass from the inner regions is needed to reconcile such galaxies
with !CDM, at least if we equate the measured rotation curve
with the circular velocity curve. In the case of IC 2574, at least
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Adding baryons significantly improves 
agreement with some observations
(also by increasing the scatter…)

But cannot explain the diversity of 
observed rotation curves!
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Conclusions	&	Overview	
Missing	
satellites	

Cusp	vs.	core	 Too	big	to	fail	

Baryons	 ✓	 ✓	 ✓	

SIDM	 ✗	 ✓	 ✓	

SIDM	+	DR	 ✓	 ✓	 ✓	

WDM	 ✓	 ✗	 ✓	

DDM	 ✓	 ✗	 ✓	

LFDM	 ✓	 ✗	 ✓	

BSI	 ✓	 ✓	 ✗	

Broken-Scale-Invariance	inflaFonary	model	
	

The	model	predicts	an	excess	of	power	wrt	to	ΛCDM	before	the	cutoff;	thus	it	is	highly	
constrained	by	Ly-α.	
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 Allow for DM-DM interaction strength 
Spergel & Steinhardt, PRL ‘99

�/m� ⇠ (0.5� 500) cm2/g

ΛCDM unchanged above Mpc scales
[less than one collision per Hubble time]

DM (sub)halos will develop cores
[scattering increases entropy of DM phase spase distribution]

more spherical (sub)halos
[same as above]

Less dense subhalos will `evaporate'
[scattering destroys substructure]

Expectation:

7 �/m� � 1cm2/g

only for

Update after 
detailed simulations: 

3

3

3

�/m� ⇠ 1cm2/g
for cusp/core, need

indeed gives rise to 
relevant constraints
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Self-interactions isotropise DM in inner halo 
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Figure 2. Density (left panels) and velocity dispersion profiles (right panels) of haloes of different masses. The top panels are for the case of a constant
cross section (�max

T

/m
�

= 10 cm2 g�1) showing the profiles after 25 t
0

. Bottom panels are for the case of a velocity-dependent cross section (v
max

=
30 km s�1, �max

T

/m
�

= 10 cm2 g�1) after 1 Gyr. In scaled units, the constant cross section curves for all masses collapse to a single one. For the
velocity-dependent case, evolution progresses faster for lower mass systems, because (�

T

v) peaks at a velocity of 30 km/s.

and velocity distribution functions we can now calculate the num-
ber of expected scattering events and compare this to the N-body
/ Monte Carlo results obtained with the technique presented in the
paragraphs above.

As an example of the number of scattering events expected in
a DM halo, we take a smooth spherical distribution of DM with a
Hernquist density profile (Hernquist 1990):

⇢(r) =
Ma

2⇡r
1

(r + a)3
, (7)

where M is the total mass of the halo and a its scale length. The
velocity dispersion profile for the Hernquist halo follows from the
Jeans equation, which for an isotropic velocity distribution and us-

ing Eq. (7) gives:
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It is then straightforward to compute the scattering rate using
Eq. (5). To compare these analytical expectations with N-body
simulations, it is necessary to take into account the mass resolu-
tion of the simulation. We therefore need to multiply Eq. (5) with
m

�

/m

dm

, where m

dm

is the DM particle mass of the simulation,
which yields the number of scatter events in the simulation volume.

The left panel of Figure 1 shows the analytically calcu-
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a DM halo, we take a smooth spherical distribution of DM with a
Hernquist density profile (Hernquist 1990):

⇢(r) =
Ma

2⇡r
1

(r + a)3
, (7)

where M is the total mass of the halo and a its scale length. The
velocity dispersion profile for the Hernquist halo follows from the
Jeans equation, which for an isotropic velocity distribution and us-

ing Eq. (7) gives:

�

2

vel

(r) =
GM

12a


12r(r + a)3

a

4

ln
⇣
r + a

r

⌘
(8)

� r

r + a

✓
25 + 52

⇣
r

a

⌘
+ 42

⇣
r

a

⌘
2

+ 12
⇣
r

a

⌘
3

◆�
.

It is then straightforward to compute the scattering rate using
Eq. (5). To compare these analytical expectations with N-body
simulations, it is necessary to take into account the mass resolu-
tion of the simulation. We therefore need to multiply Eq. (5) with
m

�

/m

dm

, where m

dm

is the DM particle mass of the simulation,
which yields the number of scatter events in the simulation volume.

The left panel of Figure 1 shows the analytically calcu-
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Same effect also mitigates too-big-to-fail problem!
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Figure 3. Density profiles of Pippin (left) and Merry (right) in collisionless CDM and in SIDM (see legend) at z = 0. All SIDM runs with �/m �
0.5 cm2 g�1 produce central density profiles with well-resolved cores within ⇠ 500 pc. Core densities are the lowest (and core sizes the largest) for cross
sections in the range �/m = 5�10 cm2 g�1. The 50 cm2 g�1 run of Pippin has undergone a mild core collapse, with a resultant central density intermediate
between the 10 cm2 g�1 run and 1 cm2 g�1 run. For velocity dispersion profiles of these halos, see Appendix A. NFW fits to the CDM profiles of each halo
yield scale radii of ⇠ 2.7 kpc.

dense enough to reside in a CDM halo larger than 40 km s�1. The
rest appear to reside in halos that are significantly less dense than
expected for the ten most massive systems predicted in CDM sim-
ulations. These missing, or overdense, V

max

' 40 km s�1 halos
are the systems of concern for the TBTF problem.

Figure 4 illustrates this problem explicitly by comparing the
circular velocities of nearby field dwarfs at their half-light radius
(data points) to the circular velocity profiles of our simulated ha-
los (lines), each of which has V

max

' 40 km s�1 and is there-
fore nominally a TBTF halo. The data points indicate dwarf galax-
ies (M⇤ < 1.7 ⇥ 107) farther than 300 kpc from both the Milky
Way and Andromeda that are dark matter dominated within their
half-light radii ( r

1/2), with estimates for their circular velocities
at r

1/2 (V
1/2). We have excluded Tucana, which has an implied

central density so high that it is hard to understand even in the
context of CDM (see Garrison-Kimmel et al., 2014b, for a discus-
sion). V

1/2 for the purely dispersion galaxies are calculated using
the Wolf et al. (2010) formula, where measurements for stellar ve-
locity dispersion, �?, are taken from Hoffman et al. (1996), Simon
& Geha (2007), Epinat et al. (2008), Fraternali et al. (2009), Collins
et al. (2013), and Kirby et al. (2014). However, WLM and Pegasus
also display evidence of rotational support, indicating that they are
poorly described by the Wolf et al. (2010) formalism. For the for-
mer, we use the Leaman et al. (2012) estimate of the mass within
the half-light radius, obtained via a detailed dynamical model. The
data point for Pegasus is obtained via the method suggested by
Weiner et al. (2006), wherein �2

? is replaced with �2

? + 1

2

(v sin i)2

in the Wolf et al. (2010) formula, where v sin i is the projected ro-
tation velocity (also see §5.2 of Kirby et al., 2014).

As expected, the data points all lie below the CDM curves
(black lines), demonstrating explicitly that both Merry and Pippin
are TBTF halos. The SIDM runs, however, provide a much better

match, and in fact all of the SIDM runs with �/m � 0.5 cm2 g�1

alleviate TBTF.

3.3 Expectations for the stellar-mass halo-mass relation

A problem related to TBTF, but in principle distinct from it, con-
cerns the relationship between the observed core densities of galax-
ies and their stellar masses. Specifically, there does not appear to be
any correlation between stellar mass and inner dark matter den-
sity inferred from dynamical estimates of dwarf galaxies in the
Local Group (Strigari et al., 2008; Boylan-Kolchin et al., 2012;
Garrison-Kimmel et al., 2014b). If dark matter halos behave as ex-
pected in dissipationless ⇤CDM simulations, then we would ex-
pect more massive galaxies to have higher dark matter densities at
fixed radius. This ultimately stems from the expectation, borne out
at higher halo masses, that more massive dark matter halos tend to
host more massive galaxies.

Consider, for example, the two galaxies Pegasus (r
1/2 ' 1

kpc) and Leo A (r
1/2 ' 500 pc) in Figure 4. Both of these

galaxies have about the same stellar mass M? ' 107M�. Ac-
cording to the expectations of abundance matching (Garrison-
Kimmel et al., 2014b), each of these galaxies should reside within
a V

max

' 40 km s�1 halo. Instead, their central densities are such
that, if their dark matter structure follows the CDM-inspired NFW
form, they need to have drastically different potential well depths:
V
max

' 30 and 12 km s�1 for Pegasus and Leo A, respectively
(see Figure 12 of Garrison-Kimmel et al., 2014b). However, if we
instead interpret their densities in the context of SIDM, the results
are much more in line with abundance matching expectations.

Abundance matching relations remain unchanged in SIDM
because halo mass functions in SIDM are identical to those in
CDM (Rocha et al., 2013). That is, in SIDM, just like CDM, we
would naively expect both Pegasus and Leo A to reside in ha-

c� 2014 RAS, MNRAS 000, 1–9
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Idea: DM profile independent of assembly history 
(if self-interactions strong enough)

ansatz: change profile only inside some radius     :  

2

our main conclusions.
II. SIDM halo model. Scattering between DM particles

is more prevalent in the halo center where the DM density is
largest. It is useful to divide the halo into two regions, sepa-
rated by a characteristic radius r

1

where the average scatter-
ing rate per particle times the halo age (t

age

) is equal to unity.
Thus,

rate⇥ time ⇡ h�vi
m

⇢(r
1

) t
age

⇡ 1 , (1)

where � is the scattering cross section, m is the DM parti-
cle mass, v is the relative velocity between DM particles and
h...i denotes ensemble averaging. Since we do not assume
� to be constant in velocity, we find it more convenient to
quote h�vi/m rather than �/m. We set t

age

= 5 and 10 Gyr
for clusters and galaxies, respectively. Although Eq. (1) is a
dramatic simplification for time integration over the assembly
history of a halo, we show by comparing to numerical simu-
lations that it works remarkably well.

For halo radius r > r
1

, where scattering has occurred
less than once per particle on average, we expect the DM
density to be close to a Navarro-Frenk-White (NFW) profile
⇢(r) = ⇢s(r/rs)�1

(1+r/rs)�2 characteristic of collisionless
CDM [26]. In the halo center, for radius r < r

1

, scattering
has occurred more than once per particle. Here, we expect
DM particles to behave like an isothermal gas satisfying the
ideal gas law p = ⇢�2

0

, where p, ⇢ are the DM pressure and
mass density and �

0

is the one-dimensional velocity disper-
sion. Since the inner halo achieves kinetic equilibrium due
to DM self-interactions, the density profile can be determined
by requiring hydrostatic equilibrium, rp = �⇢r�

tot

. Here,
�

tot

is the total gravitational potential from DM and bary-
onic matter, which satisfies Poisson’s equation r2

�

tot

=

4⇡G(⇢ + ⇢b), where G is Newton’s constant and ⇢b is the
baryonic mass density. These equations yield

�2

0

r2

ln ⇢ = �4⇡G(⇢+ ⇢b) , (2)

which we solve to obtain ⇢(r) assuming spherical symmetry.
We model the full SIDM profile by joining the isothermal

and collisionless NFW profiles together at r = r
1

:

⇢(r) =

⇢
⇢
iso

(r) , r < r
1

⇢
NFW

(r) , r > r
1

(3)

where ⇢
iso

is the solution to Eq. (2). We fix the NFW param-
eters (⇢s, rs) by requiring that the DM density and enclosed
mass for the isothermal and NFW profiles match at r

1

. Thus,
our SIDM halo profile is specified by three parameters: the
central DM density ⇢

0

⌘ ⇢(0), velocity dispersion �
0

, and
r
1

. Lastly, we note that this model exhibits a two-fold degen-
eracy in solutions for h�vi/m. We keep the smaller h�vi/m
solutions but note that this situation may be indicative of the
degeneracy between halo profiles with cores that are growing
or shrinking in time [5].

III. SIDM fits. To constrain DM self-interactions, we con-
sider a set of six relaxed clusters and twelve galaxies with
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FIG. 1: Self-interaction cross section measured from astrophysical
data, given as the velocity-weighted cross section per unit mass as
a function of mean collision velocity. Data includes dwarfs (red),
LSBs (blue) and clusters (green), as well as halos from SIDM
N-body simulations with �/m = 1 cm2/g (gray). Diagonal
lines are contours of constant �/m and the dashed curve is the
velocity-dependent cross section from our best-fit dark photon model
(Sec. V).

halo masses spanning 10

9 � 10

15 M�. These objects ex-
hibit central density profiles that are systematically shallower
than ⇢ / r�1 predicted from CDM simulations. To determine
the DM profile for each system, we perform a Markov Chain
Monte Carlo (MCMC) scan over the parameters (⇢

0

,�
0

, r
1

)

characterizing the SIDM halo, as well as the mass-to-light ra-
tio ⌥⇤ for the stellar density. The value for ⇢(r

1

) determines
the velocity-weighted cross section h�vi/m from Eq. (1), as a
function of average collision velocity hvi = (4/

p
⇡)�

0

for
a Maxwellian distribution. We also verify our model and
MCMC fit procedure using a mock data set from simulations.

Clusters. We consider the relaxed clusters from the data
set of Newman, et al. [19, 27] for which spherical modeling
is appropriate (MS2137, A611, A963, A2537, A2667, and
A2390). These clusters have stellar kinematics as well as
strong and weak lensing measurements allowing the mass pro-
file to be measured from stellar-dominated inner region (⇠ 10

kpc) out to the virial radius (⇠ 3 Mpc). The baryonic and
DM densities are disentangled by constraining ⌥⇤ through
the assumption that all the clusters share a similar star for-
mation history. The inferred DM density profile is consistent
with CDM expectations except in the inner O(10) kpc region
where a mass deficit is inferred [19]. These small core sizes
dictate the preference for a velocity-dependent cross section.

We model each cluster using Eq. (3) and fit directly to the
stellar line-of-sight velocity dispersion data [27]. We include
the gravitational effect of the stars following Eq. (2) and allow
for a ±0.1 dex spread in ⇢b to account for systematic uncer-
tainties [19, 27]. Further, as a proxy for fitting to the gravi-
tational lensing data at large radii, we fit to posteriors of the
maximum circular velocity V

max

and the corresponding radius
r
max

that have been obtained from the lensing data [27].
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mass for the isothermal and NFW profiles match at r
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. Thus,
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solutions but note that this situation may be indicative of the
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FIG. 1: Self-interaction cross section measured from astrophysical
data, given as the velocity-weighted cross section per unit mass as
a function of mean collision velocity. Data includes dwarfs (red),
LSBs (blue) and clusters (green), as well as halos from SIDM
N-body simulations with �/m = 1 cm2/g (gray). Diagonal
lines are contours of constant �/m and the dashed curve is the
velocity-dependent cross section from our best-fit dark photon model
(Sec. V).
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for
a Maxwellian distribution. We also verify our model and
MCMC fit procedure using a mock data set from simulations.

Clusters. We consider the relaxed clusters from the data
set of Newman, et al. [19, 27] for which spherical modeling
is appropriate (MS2137, A611, A963, A2537, A2667, and
A2390). These clusters have stellar kinematics as well as
strong and weak lensing measurements allowing the mass pro-
file to be measured from stellar-dominated inner region (⇠ 10

kpc) out to the virial radius (⇠ 3 Mpc). The baryonic and
DM densities are disentangled by constraining ⌥⇤ through
the assumption that all the clusters share a similar star for-
mation history. The inferred DM density profile is consistent
with CDM expectations except in the inner O(10) kpc region
where a mass deficit is inferred [19]. These small core sizes
dictate the preference for a velocity-dependent cross section.

We model each cluster using Eq. (3) and fit directly to the
stellar line-of-sight velocity dispersion data [27]. We include
the gravitational effect of the stars following Eq. (2) and allow
for a ±0.1 dex spread in ⇢b to account for systematic uncer-
tainties [19, 27]. Further, as a proxy for fitting to the gravi-
tational lensing data at large radii, we fit to posteriors of the
maximum circular velocity V
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and the corresponding radius
r
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that have been obtained from the lensing data [27].
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How to include baryons in the model?
SIDM distribution should still be thermal (inside some     ),  
independent of assembly history!  

r1

simply replace ⇢
iso

(r) / e�DM/�2
0 ⇢

iso

(r) / e(�DM+�b)/�
2
0with

First SIDM simulations with baryons ongoing… 

In this way, the diversity 
problem might be addressed 
by correlating DM and 
baryon distributions! 

Solving the Diversity Problem
UGC 5721, c200:+2σ, M200:5×1010M⊙
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• Scatter in the halo concentration-mass relation
• Baryon distribution
• DM self-interactions thermalize the inner halo and correlate DM and baryon 
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with Kamada, Kaplinghat, Pace (2016)
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True SIDM profile with the baryonic influence 
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Cluster �/m Method used Ref.

Bullet Cluster < 3 cm

2
/g Scattering depth (⌃dm ⇡ 0.3 cm

2
/g) [264]

(1E 0657-558) < 0.7 cm

2
/g Mass loss < 23% [68]

< 1.2 cm

2
/g DM-galaxy offset 25 ± 29 kpc [68]

Abell 520 3.8 ± 1.1 cm

2
/g Scattering depth (⌃dm ⇡ 0.07 cm

2
/g) [292]

0.94 ± 0.06 cm

2
/g Scattering depth (⌃dm ⇡ 0.14 cm

2
/g) [92]

Abell 2744 < 1.28 cm

2
/g Offset [306]

< 3 cm

2
/g Scattering depth (⌃dm ⇡ 0.3 cm

2
/g) [295]

Musket Ball Cluster < 7 cm

2
/g Scattering depth (⌃dm ⇡ 0.15 cm

2
/g) [282]

(DLSCL J0916.2+2951)
Baby Bullet < 4 cm

2
/g Scattering depth (⌃dm ⇡ 0.25 cm

2
/g) [284]

(MACS J0025.4-1222)
Abell 3827 ⇠ 1.5 cm

2
/g Offset [91]

TABLE II: Summary of merging cluster constraints on SIDM. All values are for �/m are upper limits
except for Abell 520. For Abell 520, the quoted value of �/m is the obtained by assuming that ⌧s =

⌃dm�/m ⇡ 0.25 [292] or 0.13 [92] under different assumptions.

The second method for constraining SIDM is based on mass loss [264]. For the Bullet Cluster,
both subclusters have similar mass-to-light ratios, which is consistent with general expectations for
clusters (e.g., see Ref. [310]). Assuming both subclusters began with equal mass-to-light ratios
prior to merger, present observations require that the Bullet halo could not have lost more than
⇠ 23% of its initial DM mass within its innermost 150 kpc at 68% CL [68]. SIDM simulations by
Randall et al. [68] show that �/m < 0.7 cm

2/g is required to satisfy this constraint. While this is
the strongest quoted bound from the Bullet Cluster, it relies on theoretical priors for the unobserved
initial condition of the subclusters, as well as the merger itself not substantially affecting the star
formation rate, which may not be the case (see, e.g., Ref. [311]).

The third method for probing self-interactions is based on offsets. Markevitch et al. [264]
proposed that self-interactions can lead to an effective drag force for the Bullet halo as it traverses
the main halo, with DM particles losing momentum through scattering. This causes an apparent
offset between the galactic and DM centroids, provided the drag force is sufficient to exceed the
gravitational restoring force attracting the components together. From the measured null offset in
the Bullet subcluster, Randall et al. [68] obtained a limit �/m < 1.25 cm

2/g at 68% CL according
to their simulations.

In principle, offsets provide more robust constraints on SIDM free from theoretical priors
for mass-to-light ratios and with sensitivity to smaller �/m outside the optically thick regime.
Consequently, this method has received much theoretical attention, including N-body simula-
tions [68, 272, 273, 274], analytic methods based on an effective drag force description for self-
interactions [275], and hybrid approaches [93].

The offset effect depends on the type of self-interaction assumed [93, 274]. Due to the strong
directionality inherent for mergers, it is important to distinguish between isotropic hard-sphere
scattering and long-range interactions where scattering is forward-peaked (a la Rutherford scatter-
ing).19 The drag force description generally applies only for long-range interactions, in which the

19 Long-range does not necessarily mean macroscopic over galactic distances, but rather long-range with respect to the

44

Many constraints at 
all scales
e.g. from merging clusters

extensive & updated 
review: Tulin & Yu, 1705.02358 

gone…

  

Structure formation within SIDM: 
could DM particles collide with themselves?

average scattering rate per particle:

~ 1 scatter / particle / Hubble time

Neither a fluid nor a 
collisionless system:

~ rarefied gas
(Knudsen number = λmean/L >~ 1)

constraints allow
collisional DM that is 

astrophysically significant
in the center of galaxies

σ / m≾2cm
2/ gr (Robertson+16)

Improved analysis for the Bullet cluster

case in this talk: 
rare interactions, 

large momentum transfer

opposite case: afternoon session

A. Robertson’s talk

Rough agreement:

“cluster constraints are 
severe — but constant 
scattering cross section 

may still work”

Fig: Jesús Zavala, 
SIDM workshop 
Copenhagen 08/17

(R. Massey)
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FIG. 12: Left: Velocity-weighted self-interaction cross section per unit mass as a function of average relative
particle velocity in a halo. Data points from astrophysical observations correspond to THINGS dwarf
galaxies (red), LSB galaxies (blue), and clusters (green). Diagonal lines show constant values of �/m.
Gray points are mock data from SIDM N-body simulations, with fixed �/m = 1 cm

2
/g, as a test of the Jeans

method to reproduce the input cross section. Reprinted from Ref. [80]. Right: Comparison of DM density
profiles for simulated SIDM-only halo (green dots) to SIDM halo with baryons (dashed curves), either with
(black) or without (red) adiabatic contraction. The SIDM profile with baryons is virtually identical to the
collisionless DM profile (NFW) except for the innermost ⇠ 0.5 kpc. Reprinted from Ref. [81].

in these systems. While galaxy-scale observations favor �/m ⇡ 2 cm

2/g, data from clusters
prefers a much smaller cross section, �/m ⇡ 0.1 cm

2/g [80]. Taken at face value, these data imply
that SIDM can provide a consistent solution to the core-cusp problem, provided self-interactions
are relatively suppressed in clusters compared to dwarf galaxies. Such a behavior is well-motivated
from a particle physics perspective, as discussed below. The data given here may be fit by a
massive dark photon model (dashed orange curve in Fig. 12). Lastly, to verify the validity of the
Jeans approach, Ref. [80] considered mock rotation curves from eight SIDM halos in a similar
mass range from N-body simulations [72, 75]. In all cases, the input cross section value (1 cm

2/g
in all cases) was reproduced within uncertainties using the Jeans method.

Next, we turn to another important question: what is the interplay between self-interactions
and baryons? The first simulations including both baryons with feedback processes and self-
interactions for DM have only recently been performed (see §III E), mainly targeting dwarf ha-
los [76, 77]. The Jeans method provides complementary insights into the effect of baryons on
SIDM, especially in systems like the MW or larger that have a significant baryon fraction [81].

Although the Jeans approach is limited to quasi-equilibrium solutions (hence the dynamics
of feedback is ignored), the static gravitational potential from baryons can dramatically change
the predictions for observations compared to SIDM-only simulations. The baryon density enters
through ⇢b in Eq. (13), modifying the solution for ⇢dm from the usual cored isothermal profile.
If ⇢b dominates over ⇢dm in the inner halo, the core radius shrinks substantially compared to the
SIDM-only halo without baryons. This effect is shown in Fig. 12 (right) for a MW-like halo and a
self-interaction cross section of �/m ⇡ 0.5 cm

2/g. While the SIDM-only halo has a core of size
⇠ 5 kpc, the core size reduced by an order of magnitude due to the baryonic potential from stars.
Except for the innermost ⇠ 0.5 kpc, the density profiles for both collisionless and collisional DM
are virtually identical.

The baryon density may affect the shape of the DM halo as well. While SIDM-only simulations
predict halos that are spherical within the core radius, this conclusion changes once baryons are

35
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simulations 
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max. cluster core 
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Most stringent constraints from cluster core size 
fit same analytical (SIDM only) model to existing data
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Scattering of non-relativistic 
particles in a Yukawa potential:

The case for dark matter scattering with sterile neutrinos
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It has recently been pointed out that TeV-scale dark matter with the characteristic velocity-
dependent self-interaction rate resulting from a light mediator particle can address all small-scale
problems of standard ⇤CDM cosmology simultaneously, provided that kinetic decoupling happens
su�ciently late. Here, we argue that dark matter scattering with sterile neutrinos charged under
a new U(1) gauge interaction is a particularly natural realization of this idea. Interestingly, those
sterile neutrinos may act as a – possibly rather small – dark radiation component at late times,
making the scenario a promising target for both current and upcoming observations of the cosmic
microwave background. We discuss various model-building avenues, current constraints as well as
prospects for a future experimental verification of such scenarios.

I. INTRODUCTION

We consider the scenario of [1], where the dark matter
scatters o↵ light particles (possibly contributing to dark
radiation), which solves all three small-scale problems of
structure formation.

• 1st par: CDM success + shortcomings (many refs)

• 2nd par: point out only existing ‘solution for ev-
erything’ + possible connection to dark radiation

• 3rd: motivations for sterile neutrinos

• connect everything, give a short outlook on the sce-
narios that are interesting

II. SELF-INTERACTING DARK MATTER AND
⇤CDM AT SMALL SCALES

Self-interacting DM (SIDM) has early been proposed
as a way to change the predictions of ⇤CDM at small
scales [2]. The original proposal of a constant cross sec-
tion for the scattering rate, however, faces severe phe-
nomenological problems deriving from the observed el-
lipticity of clusters [3], the survivability of large galaxies
in clusters or dwarf galaxies in the Local Group [4], as
well as the imminent relaxation of halo cores to even
denser states in a ‘gravothermal catastrophe’ [5]; also
the observation of cluster mergers places relevant con-
straints on the self-interaction rate [6]. More recently, it
was realized that the characteristic velocity-dependence
of the scattering rate expected for a Yukawa potential be-
tween the DM particles may not only alleviate the above

⇤Electronic address: Torsten.Bringmann@fys.uio.no
†Electronic address: Jasper.Hasenkamp@desy.de
‡Electronic address: Joern.Kersten@desy.de

mentioned problems [7] but indeed potentially address
all shortcomings of ⇤CDM mentioned in the introduc-
tion simultaneously [1].
The idea of SIDM with a Yukawa potential (YIDM)

corresponds to the existence of a light messenger particle
� that mediates this ’dark force’, which means that it is
much better motivated from a particle physics point of
view than SIDM with a constant interaction rate (or with
an ad-hoc velocity dependence as studied e.g. in Ref. [8]).
In this Section, we adopt a purely phenomenological ap-
proach and work out the general requirements to address
the ⇤CDM small-scale problems in this framework. In
the remainder of this article, we will then translate these
considerations to concrete particle physics models that
can realize this general idea.

A. DM self-scattering

Rather than the full di↵erential scattering cross sec-
tion, d�/d⌦, one typically only considers the transfer
cross section

�
T

⌘
Z

d⌦(1� cos ✓)
d�

d⌦
(1)

in the context of DM scattering as this conveniently
regulates divergences appearing for forward scattering –
which anyway does not change the DM distribution (see
Ref. [9] for an extensive discussion).
Assuming a coupling constant g

�

in the interaction
term between the DM particles and the (vector or scalar)
messenger � in the Lagrangian, the resulting Yukawa po-
tential is given by

V (r) = ±↵
�

r
e�m

�

r , (2)

where ↵
�

⌘ g2
�

/(4⇡). For scalar � as well as self-
conjugate DM, like Majorana fermions, the potential is
always repulsive (+); otherwise it can be both attractive
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FIG. 2: Left: Numerical calculation of �
T

/m

X

, truncated at fixed `max, showing convergence with in-
creasing `max. The parameter point chosen corresponds to the classical regime with an attractive potential.
The convergence to the classical analytic result shown by dashed line. Right: Numerical calculation (solid
blue) of �

T

/m

X

versus m
�

, showing convergence to the classical analytical formula (dotted pink) and Born
approximation (dashed gold) in the classical and Born regimes.

of Ref. [26] requires integrating Eq. (13) to much larger x than in our method, and is therefore
much less efficient. Thus, Ref. [26] truncates at `max = 5 in their calculation, whereas we are
able to perform efficient calculations with `max ⇠ 1000. We demonstrate this point in Fig. 2,
showing how �

T

depends on `max for one parameter choice in the classical regime. Our numerical
calculation (solid line) converges for `max & 1000, in good agreement with the classical cross
section (dashed line).3

We can also see the convergence to classical and Born analytic formulae in the right panel of
Fig. 2. The dashed gold and dotted pink lines show the results for the Born and classical analytic
formulae, and we see that in the regime of validity, our numerical results (solid blue line) agree
well with the analytic formulae. In the quantum resonant regime, neither of the analytic formulae
reproduce the behavior of the resonant peaks and anti-resonant valleys. Also note that the Born
approximation over-estimates the cross section in the classical regime.

B. Velocity-dependence in dark matter scattering

The most important feature that emerges from our numerical study is the highly nontrivial
velocity-dependence of �

T

within the resonant regime. While previous studies have focused on
either constant �

T

or specific v-dependencies, a rich array of possibilities can arise in general, and
the velocity behavior can be rather complicated.

In Fig. 3, we show the cross section as a function of velocity for an attractive potential with
↵

X

= 10

�2. Each curve corresponds to a different value for b (where b ⌘ ↵

X

m

X

/m

�

), as
indicated by the numerical values in the figures. The quantity �

T

m

2
X

is a useful normalization
for the cross section since, for fixed ↵

X

, it depends on v and m

X

/m

�

only (as opposed to m

X

and m

�

separately). Thus, to obtain the required level scattering in dwarf halos, each curve can

3 The reader should not be troubled by the fact that �T can be negative for certain values of `
max

. Due to the fact
that the momentum and orbital angular momentum operators do not commute, the transfer cross section, defined in
terms of momentum eigenstates, is a physical quantity only in the limit `

max

! 1, not for a particular value of `.

10

see e.g. Tulin, Yu & Zurek, PRD ‘13 

✓
�r

2

m�
+ V

◆
 (r) = m�v2  (r)

+ characteristic velocity dependence !

2

parameters remains open. Nonetheless, the absence of
dramatic departures from CDM predictions has allowed
important constraints to be placed [24, 25].

In this Letter, we examine the possible existence of a
dark force from a di↵erent perspective. Rather than limit
its allowed range of parameters based on observations,
we show that it can ameliorate tensions in astrophysi-
cal data. In particular, we find that a Yukawa force in
dark matter scattering would naturally produce cores in
dwarf galaxies while avoiding the myriad constraints on
SIDM which arise in systems with a much larger veloc-
ity dispersion, such as clusters of galaxies. The specific
velocity dependence of the interaction cross-section, as
well as the possible exothermic nature of the interaction,
alleviate earlier concerns about the SIDM model. To dis-
tinguish from previous approaches with a constant cross
section or a simple power law velocity dependence, we
label this scenario as Yukawa-Potential Interacting Dark
Matter (YIDM).

Dark Forces. The mediator of the force � could be
either a scalar or a vector, as magnetic-type interactions
are negligible. The force could couple to standard model
fields through kinetic mixing with the photon, or through
mass mixing with the Higgs boson. Constraints on the
presence of such a force come from a wide range of pro-
cesses [26, 27], but ample parameter space remains for

a small mixing angle, ✏
<⇠ 10�3. New searches are un-

derway to find precisely such a force carrier at ⇠ GeV
energy experiments [28].

Scattering through a massive mediator is equivalent to
having a Yukawa potential. The elastic scattering prob-
lem is then analogous to the screened Coulomb scatter-
ing in a plasma [29], which is well fit by a cross-section
[24, 30],

h�i ⇡

8
>>><

>>>:

4⇡
m2

�
�2 ln(1 + ��1), �

<⇠ 0.1,

8⇡
m2

�
�2/(1 + 1.5�1.65), 0.1

<⇠ �
<⇠ 103,

⇡
m2

�

�
ln� + 1� 1

2

ln�1 �
�
2

, �
>⇠ 103,

(1)
where � = ⇡v2�/v

2 = 2↵dm�/(m�v
2), and v is the rela-

tive velocity of the particles. We use angular brackets to
denote that this is the momentum-transfer weighted cross
section. Here, v� is the velocity at which the momentum-
weighted scattering rate h�vi peaks at a cross section
value of �

max

= 22.7/m2

�. The above expression can be
approximately generalized to the inelastic case by sub-
stituting m� !

p
m�� for the characteristic minimum

momentum transfer when m� <
p
m�� (see discussion

in [30]). This expression is derived using classical physics,
and thus, it is important to note what quantum e↵ects
can come into play. In cases where the de Broglie wave-
length is longer than the Compton wavelength of the
force m�1

� , the quantum calculation should be consid-
ered for quantitative results. Nonetheless, the same qual-

1 10 100 1000
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0.1

1
Dwarf Milky Way Cluster

v @km s-1D

<
s
v>
ê<s

v>
m
ax

FIG. 1: Dependence of the self-interaction cross-section (�) on
the relative velocity (v) for dark matter interacting through a
Yukawa potential. The normalizations of � and v are set by
free parameters in the underlying Lagrangian (see Appendix),
and we show two possible curves peaking at v

�

= 10 km s�1

and = 100 km s�1 (blue, solid and purple, dashed, respec-
tively).

itative features should remain: the cross section should
saturate at low velocities near � ⇠ m�2

� , and at high
velocities, where the classical approximation is valid, it
should fall rapidly.
Figure 1 depicts the velocity dependence of the elas-

tic cross-section in Eq. (1). Interestingly, the scattering
rate is nearly constant at low velocities, peaks at a ve-
locity v�, and declines sharply at v > v�, allowing it to
introduce cores in dwarf galaxies where the velocity dis-
persion is low (v ⇠ 10 km s�1) but not in clusters of
galaxies where the characteristic velocities are larger by
two orders of magnitude (v ⇠ 103 km s�1). The nor-
malizations of the cross-section and velocity are deter-
mined by free parameters in the interaction Lagrangian
(see Appendix), with the Compton wavelength of the in-
teraction setting the relevant spatial scale. We show two
possible values of the peak velocity, one that would pro-
duce cores only in dwarf galaxies (v� = 10 km s�1), and
another that would produce cores in more massive galax-
ies (v� = 102 km s�1) as implied by data on low surface
brightness galaxies [31]. At any given halo mass, we ex-
pect scatter in the core properties of individual halos,
due to variations in their age and assembly history.
Having one collision per Hubble time at the character-

istic core density of dwarf galaxies ⇠ 0.1M� pc�3, trans-
lates to the condition (m�/10GeV)(m�/100MeV)2 ⇠ 1
(see Appendix). An order of magnitude larger cross-
sections are also allowed by the data. Figure 2 shows
the allowed parameter ranges [25] that would naturally
explain the dark matter distribution in observed astro-
physical objects. We find that even though collisions
shape the central profiles of dwarf galaxies, the standard
collisionless treatment still provides an excellent approx-
imation for the dark matter dynamics in X-ray clusters.

Loeb & Weiner, PRL ’11

[resonances only for attractive potential]
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FIG. 9: Parameter space for self-interacting DM as in Fig. 6 with ↵

X

fixed to obtain the observed relic
density via X

¯

X ! �� annihilation at freeze-out. The left (right) panel shows the vector (scalar) mediator
case whwere annihilation is s-wave (p-wave). Crosses show benchmark points in Table VI. The lines and
colored regions are as in Fig. 6.

case (right), DM self-interactions are purely attractive. It is clear that the allowed region for
solving the small scale anomalies is still broad even after we impose the relic density constraint
on ↵

X

.

VIII. OBSERVATIONAL TESTS

Self-interacting DM has distinct signatures in direct detection experiments because self-
interactions thermalize the DM velocity distribution [92]. In this section, we discuss signatures
of self-interacting DM in indirect detection observations, when DM in halos self-annihilates. As
we have shown, the existence of a light mediator is essential for generating a large enough self-
scattering cross section. The same mediator can also lead to Sommerfeld enhancements for DM
annihilation in halos if DM is symmetric. Since the enhancement effect increases as the DM
velocity decreases, we expect DM particles in dwarf galaxies to have a larger self-annihilation
cross section than those in the Milky Way or clusters. This scale-dependent feature of the DM
annihilation cross section can be potentially determined by studying signal fluxes from different
astrophysical objects.

Here, we take a few examples from the self-interacting DM models given in Section VI to
show Sommerfeld enhancements for DM annihilation in halos. We consider the case where DM
particles annihilate to SM states in DM halos with s-wave processes.13 To illustrate the point in a

13 A familiar example is usual symmetric DM. Asymmetric DM can also generate annihilation signals if DM-anti-DM
oscillations occur in the late epoch [88–91].

23

 Dirac,     Vector:� �

s-wave
excluded 
by Bullet 
cluster   

& co

affect core/
cusp + TBTF

h�T i/m� ⇠ 1 cm2/g

Additional advantage:Thermal production via               �� $ ��

↵ = ↵(m�,m�) fix



  —  Torsten Bringmann ‒SIDM and (sterile) neutrinos

Sommerfeld effect

20

a)

χ

χ

φ

φ

φ ...

mφ ∼ GeV

b)

χ

χ

φ

φ

�

�

��

�
Arkani-Hamed, Finkbeiner, Slatyer & Weiner, PRD ’09 Kinematical situation:

non-relativistic DM particle 

light exchange particle, 

�

m� ⌧ m�

each ‘rung’ of ladder contributes at 

resummation necessary!

O(↵/v)

long range interaction, 
potential distorts wave function:

short range interaction, 
standard QFT result: 

�0

✓
�r

2

m�
+ V

◆
 (r) = m�v2  (r)

S(v) = | (0)|2� = S(v)�0



  —  Torsten Bringmann ‒SIDM and (sterile) neutrinos

Sommerfeld effect for SIDM

21

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
10-26
10-25
10-24
10-23
10-22
10-21
10-20
10-19
10-18

v/c

σv
[c
m
3 s

-1
]

Planck
CMB

Ferm
idw

arfs

A
M
S
positrons

relic
density

Dirac DM
mχ =1TeV

s-wave

p-wave

TB, Kahlhoefer, Schmidt-Hoberg & Walia, 1612.00845

During CMB, DM moves at (most at) pedestrian speed!



  —  Torsten Bringmann ‒SIDM and (sterile) neutrinos

Constraints

22

�

�

�

�

Som
merf
eld

10-4 10-3 10-2 10-1 100
10-1

100

101

102

103

104

mϕ [GeV]

m
χ
[G
eV

]

Planck excluded

Fermi-L
AT exclu

ded

AMS-02 excluded

0.1-1 cm 2
g -1

1-10 cm 2
g -1

O
ve
rc
lo
su
re
an
d/
or

ga
m
m
a
ra
y
ba
ck
gr
ou
nd

mϕ
> m

χ

Kinetic mixing

All relevant parameter space excluded !

TB, Kahlhoefer, Schmidt-Hoberg & Walia, PRL ‘17

-     must decay to be 
cosmologically viable

- helps to thermalise dark 
sector in the first place (?)

- …

+
� SM

SM
�



  —  Torsten Bringmann ‒SIDM and (sterile) neutrinos

Ways out?

23

   not in thermal equilibrium during DM freeze-out �
 Tdark/Tvisiblethermal contact at earlier time  

no thermal production at all  

p-wave rather than s-wave annihilation
only possible for scalar mediators! 

predictivity ? 3

exception: tuned(?) mixing between scalar and pseudoscalar 3

ruled out by direct detection! 
E.g. Kaplinghat, Tulin & Yu, PRD ’14; Bernal+, JCAP ‘16

Kahlhoefer, Schmidt-Hoberg & Wild, 1704.02149

7

cannot be too small!
conclusions ~unchanged! TB+, PRL ‘17

7

Invisible decays!
Cheating? Proposed in this context before those constraints were known… 

van den Aarssen, TB & Pfrommer, PRL ’12
3
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WIMP interactions with heat bath of SM particles:
� SM
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(annihilation) (scattering)

n�Boltzmann suppression of 
scattering processes much more frequent
continue even after chemical decoupling (“freeze-out”) at Tcd � m�/25

Kinetic decoupling much later:
Random walk in 
momentum space
� Ncoll � m�/T

Schmid, Schwarz, & Widerin,  PRD ’99; Boehm, Fayet & Schaeffer; Green, Hofmann & Schwarz, JCAP ’05, ...

�r(Tkd) � Ncoll/�el ⇥ H�1(Tkd)
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FIG. 2. Transfer function of the CDM density pertur-
bation amplitude (normalized by the primordial amplitude
from inflation). We show two cases: (i) Td/M = 10−4 and
Td/Teq = 107; (ii) Td/M = 10−5 and Td/Teq = 107. In each
case the oscillatory curve is our result and the other curve is
the free-streaming only result that was derived previously in
the literature [4,7,8].

kpeak = (8, 15.7, 24.7, ..)η−1
d ∝

Mpl

T0Td
. (22)

This same scale determines the “oscillation” damping.
The free streaming damping scale is,

ηdcd(ηd) ln(ηeq/ηd) ∝
MplM1/2

T0T
3/2
d

ln(Td/Teq), (23)

where Teq is the temperature at matter radiation equal-
ity, Teq ≈ 1 eV. The free streaming scale is parametri-
cally different from the “oscillation” damping scale. How-
ever for our fiducial choice of parameters for the CDM
particle they roughly coincide.

The vanishing of the sound speed during the QCD
phase transition amplifies perturbations which have
ω∆ηQCD > 1, where ∆ηQCD is the duration of the tran-
sition. In Figure 2 the affected modes are those with
xd = kηd >

√
3 (ηQCD/∆ηQCD) (ηd/ηQCD). Typical

values of ηd/ηQCD ∼ 10−15 and ηQCD/∆ηQCD ∼ 3−10
relate this condition to modes with xd > 50− 260. Thus
the affected scales are severely damped by the effects con-
sidered in this paper.

Finally we want to stress the fact that the damping
scale is significantly smaller than the scales observed di-
rectly in the Cosmic Microwave Background or through
large scale structure surveys. For example, the ratio of
the damping scale to the scale that entered the horizon
at equality is ηd/ηeq ∼ Teq/Td ∼ 10−7 and to our present
horizon ηd/η0 ∼ (TeqT0)1/2/Td ∼ 10−9. In the context
of inflation, these scales were created 16 and 20 e–folds
apart. Given the large extrapolation, one could certainly
imagine that a change in the spectrum could alter the
shape of the power spectrum around the damping scale.

However, for smooth inflaton potentials with small de-
partures from scale invariance this is not likely to be the
case. On scales much smaller than the horizon at matter
radiation equality, the spectrum of perturbations density
before the effects of the damping are included is approx-
imately,

∆2(k) ∝ exp

[

(n − 1) ln(kηeq) +
1

2
α2 ln(kηeq)

2 + · · ·
]

× ln2(kηeq/8) (24)

where the first term encodes the shape of the primordial
spectrum and the second the transfer function. Primor-
dial departures from scale invariance are encoded in the
slope n and its running α. The effective slope at scale k
is then,

∂ ln ∆2

∂ ln k
= (n − 1) + α ln(kηeq) +

2

ln(kηeq/8)
. (25)

For typical values of (n − 1) ∼ 1/60 and α ∼ 1/602

the slope is still positive at k ∼ η−1
d , so the cut-off in the

power will come from the effects we calculate rather than
from the shape of the primordial spectrum. However
given the large extrapolation in scale, one should keep in
mind the possibility of significant effects resulting from
the mechanisms that generates the density perturbations.

Implications We have found that acoustic oscilla-
tions, a relic from the epoch when the dark matter cou-
pled to the cosmic radiation fluid, truncate the CDM
power spectrum on a comoving scale larger than effects
considered before, such as free-streaming and viscosity
[4,7,8]. For SUSY dark matter, the minimum mass of
dark matter clumps that form in the universe is there-
fore increased by more than an order of magnitude to a
value of ∗

Mcut =
4π

3

(

π

kcut

)3

ΩMρcrit

≃ 10−4

(

Td

10 MeV

)−3

M⊙, (26)

where ρcrit = (H2
0/8πG) = 9 × 10−30 g cm−3 is the crit-

ical density today, and ΩM is the matter density for the
concordance cosmological model [2]. We define the cut-
off wavenumber kcut as the point where the transfer func-
tion first drops to a fraction 1/e of its value at k → 0.
This corresponds to kcut ≈ 3.3 η−1

d .
Recent numerical simulations [15,16] of the earliest and

smallest objects to have formed in the universe [17], need

∗Our definition of the cut-off mass follows the convention of
the Jeans mass, which is defined as the mass enclosed within
a sphere of radius λJ/2 where λJ ≡ 2π/kJ is the Jeans wave-
length [14].
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Similar effect from 
baryonic /‘dark acoustic’ 
oscillations

Cutoff in power spectrum       
corresponds to smallest 
gravitationally bound 
objects in the universe

Free streaming of WIMPs 
after      washes out density 
contrasts on small scales

tkd

Loeb & Zaldarriaga, PRD ’05 
Bertschinger, PRD ’06

e.g. Green, Hofmann & Schwarz, JCAP ’05
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Strong dependence on particle physics properties! 
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N-body simulations confirm 
very similar suppression of 
halo mass function as for 
WDM cosmology: 

Dark matter physics and the small-scale CDM problems 1405

Table 3. Basic characteristics of the MW-size halo formed in the different
DM models. We list the mass (M200, crit), radius (R200, crit), maximum circular
velocity (Vmax), radius where the maximum circular velocity is reached
(Rmax), and the number of resolved subhaloes within 300 kpc (Nsub).

Name M200, crit R200, crit Vmax Rmax Nsub
(1010 M⊙) (kpc) (km s−1) (kpc)

CDM 161.28 244.05 176.82 68.29 16 108
ETHOS-1 160.47 243.64 178.12 62.58 590
ETHOS-2 164.70 245.75 181.49 63.72 971
ETHOS-3 163.36 245.09 180.60 64.37 1080
ETHOS-4 163.76 245.30 178.78 69.18 1366

2014). It was also used to find that self-interactions can leave im-
prints in the stellar distribution of dwarf galaxies by performing the
first SIDM simulation with baryons presented in Vogelsberger et al.
(2014a).

4 R ESULTS

In the following, we first discuss some features of the large-scale
(100 h−1 Mpc) parent simulations, followed by the main focus of
our work, the resimulated galactic halo. We show here only the
results for CDM, and ETHOS-1 to ETHOS-3 since ETHOS-4 has
the same initial power spectrum as ETHOS-3 and a significantly
smaller self-interaction cross-section. The impact of SIDM effects
on large scales is thus much smaller for ETHOS-4 compared to
ETHOS-1 to ETHOS-3. We have therefore not performed a uniform
box simulation for ETHOS-4.

4.1 Large-scale structure

We first quantify the large-scale distribution of matter in Fig. 2,
where we present the dimensionless power spectra, !(k)2 =
k3P (k)/(2π2), at redshifts z = 10, 6, 4, 2, 0 for our parent simula-
tions. The dashed grey line shows the shot-noise power spectrum
caused by the finite particle number of the simulation, it gives an
indication of the resolution limit in this plot at low redshifts. The
DAO features of the ETHOS-1 to ETHOS-3 models, clearly visible
on the primordial power spectrum (see left-hand panel of Fig. 1),
are only preserved down to z ∼ 10 (where the first oscillation is
marginally resolved for model ETHOS-1). At lower redshifts, the
imprint of these features is significantly reduced and is essentially
erased at z = 0. At this time, although the power spectra of the
non-CDM simulations are relatively close to the CDM case, there is
a slight suppression of power in the ETHOS-1 to ETHOS-3 models
for scales smaller than k ! 102 h Mpc−1. This suppression is largest
for ETHOS-1 and smallest for ETHOS-3, which reflects the fact
that the initial power spectrum damping is largest for ETHOS-1
and smallest for ETHOS-3. Our results therefore confirm the previ-
ous finding of Buckley et al. (2014), namely that in the weak DAO
regime, the non-linear evolution makes the differences with CDM
in the power spectra relatively small at low redshifts. We note that
we do not present images of the large-scale density field since the
different models are indistinguishable on these scales.

Although the power spectra are similar at z = 0 between the
different DM models, there are significant differences in the halo
mass function today due to the delay in the formation of low mass
haloes at high redshift. This is shown in Fig. 3 where we plot the
differential FoF mass function at z = 0. Here we see a clear suppres-
sion of low-mass haloes in ETHOS-1 to ETHOS-3 compared to the
CDM case (below a few times ∼1011 M⊙ for model ETHOS-1).

Figure 2. Non-linear dimensionless power spectra, !(k)2 =
k3P (k)/(2π2), of the parent simulations for the different DM mod-
els at the indicated redshifts (z = 10, 6, 4, 2, 0). The dashed grey line
denotes the shot-noise limit expected if the simulation particles are a
Poisson sampling from a smooth underlying density field. The sampling
is significantly sub-Poisson at high redshifts and in low-density regions,
but approaches the Poisson limit in non-linear structures. The non-CDM
models deviate significantly from CDM at high redshifts, but this difference
essentially vanishes towards z = 0.

Figure 3. Differential FoF halo mass function (multiplied by FoF mass
squared) for the different DM models at z = 0. Approximating the first DAO
feature in the linear power spectrum with a sharp power-law cutoff, we show
the resulting analytic estimates for the differential halo mass function of the
different DM models (yellow dashed). The lower panel shows the ratios
between the different simulation models relative to CDM.

The strongest suppression is seen for ETHOS-1 and the weakest for
ETHOS-3. This is again expected given the initial power spectra
of the different models. The lower panel of Fig. 3 shows that the
suppression factor for haloes around ∼1010 h−1 M⊙ is more than
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Mcut,WDM = 1011
⇣mWDM
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⌘�4
h�1 M�

Mcut,kd = 5 · 1010
✓

Tkd

100 eV

◆�3

h�1 M�

[solid lines; NB: up to factor ~2 same as analytic estimate!]

[dashed lines; would-be result from WDM free-streaming]

The `missing satellite problem’ may be 
equally well addressed by cold dark matter!

[alt.:        can be constrained by Ly-α just as well as             ]Tkd mWDM
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van den Aarssen, TB & Pfrommer, PRL ’12

Assume light vector mediator coupling to dark matter 
and (sterile) neutrinos: 3
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cuto↵
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant �T .
We also note that �T drops with larger v such that for
galaxy clusters only the very central density profile at
r . O(1 � 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v2

max

= g2�mV /(2⇡2m�) at
which �T v becomes maximal and �max

T ⌘ �T (vmax

) =
22.7m�2

V . In particular, v
max

should not be too di↵er-
ent from the typical velocity dispersion �v ⇠ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of �max

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing g� by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (m�,mV ) and the astrophysically relevant param-
eters (v

max

,�max

T ). As demonstrated in Fig. 2, a so-
lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of m� & 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
m� . 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger m� an imminent
gravothermal catastrophe is more constraining.

The small-scale cuto↵.— For small kinetic decou-
pling temperatures T

kd

, acoustic oscillations [52] are
more e�cient than free streaming e↵ects to suppress the
power spectrum [4, 53]. The resulting exponential cuto↵
can be translated into a smallest protohalo mass of

M
cut

⇡ 4⇡

3

⇢�
H3

���
T=Tkd

= 1.7⇥ 108
✓
T
kd

keV

◆�3

M� , (4)

where H is the Hubble rate and we assumed late kinetic
decoupling such that the e↵ective number of relativistic
degrees of freedom g

e↵

= 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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Figure 2: The white area corresponds to DM and mediator
masses that may solve the ‘cusp vs. core’ problem. The crosses
indicate two benchmark models for which detailed simulations
[44] have found a solution to the ‘too big to fail’ problem.
Dashed and solid lines show contours of the astrophysical rel-
evant quantities �T
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and v
max

. See text for further details.
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Figure 3: This plane shows the mediator mass mV vs. the
coupling strength g⌫ . Large values of g⌫ and small values of
mV lead to late kinetic decoupling and thus a large mass M

cut

of the smallest protohalos. M
cut

& 5 ⇥ 1010M� is excluded
by Ly-↵ data while M

cut

& 109M� may solve the small-scale
abundance problems of ⇤CDM cosmology.

those expressions to allow for T⌫ 6= T , we find
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where N⌫ is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
T
kd

, and thus M
cut

, is essentially independent of g� and
m�.

Using for definiteness N⌫ = 3 and T⌫ = (4/11)
1
3T� , we

show in Fig. 3 contours of constant M
cut

in the (g⌫ ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for g⌫ & 10�7 (assuming m� ⇠ 1TeV and
mV ⇠ 1MeV; this value is even lower for larger m� and
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cuto↵
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant �T .
We also note that �T drops with larger v such that for
galaxy clusters only the very central density profile at
r . O(1 � 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v2

max

= g2�mV /(2⇡2m�) at
which �T v becomes maximal and �max

T ⌘ �T (vmax

) =
22.7m�2

V . In particular, v
max

should not be too di↵er-
ent from the typical velocity dispersion �v ⇠ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of �max

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing g� by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (m�,mV ) and the astrophysically relevant param-
eters (v

max

,�max

T ). As demonstrated in Fig. 2, a so-
lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of m� & 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
m� . 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger m� an imminent
gravothermal catastrophe is more constraining.

The small-scale cuto↵.— For small kinetic decou-
pling temperatures T

kd

, acoustic oscillations [52] are
more e�cient than free streaming e↵ects to suppress the
power spectrum [4, 53]. The resulting exponential cuto↵
can be translated into a smallest protohalo mass of
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where H is the Hubble rate and we assumed late kinetic
decoupling such that the e↵ective number of relativistic
degrees of freedom g

e↵

= 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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those expressions to allow for T⌫ 6= T , we find
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where N⌫ is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
T
kd

, and thus M
cut

, is essentially independent of g� and
m�.

Using for definiteness N⌫ = 3 and T⌫ = (4/11)
1
3T� , we

show in Fig. 3 contours of constant M
cut

in the (g⌫ ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for g⌫ & 10�7 (assuming m� ⇠ 1TeV and
mV ⇠ 1MeV; this value is even lower for larger m� and
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‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant �T .
We also note that �T drops with larger v such that for
galaxy clusters only the very central density profile at
r . O(1 � 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v2

max

= g2�mV /(2⇡2m�) at
which �T v becomes maximal and �max

T ⌘ �T (vmax

) =
22.7m�2

V . In particular, v
max

should not be too di↵er-
ent from the typical velocity dispersion �v ⇠ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of �max

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing g� by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (m�,mV ) and the astrophysically relevant param-
eters (v

max

,�max

T ). As demonstrated in Fig. 2, a so-
lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of m� & 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
m� . 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger m� an imminent
gravothermal catastrophe is more constraining.

The small-scale cuto↵.— For small kinetic decou-
pling temperatures T

kd

, acoustic oscillations [52] are
more e�cient than free streaming e↵ects to suppress the
power spectrum [4, 53]. The resulting exponential cuto↵
can be translated into a smallest protohalo mass of
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where H is the Hubble rate and we assumed late kinetic
decoupling such that the e↵ective number of relativistic
degrees of freedom g

e↵

= 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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where N⌫ is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
T
kd

, and thus M
cut

, is essentially independent of g� and
m�.

Using for definiteness N⌫ = 3 and T⌫ = (4/11)
1
3T� , we

show in Fig. 3 contours of constant M
cut

in the (g⌫ ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for g⌫ & 10�7 (assuming m� ⇠ 1TeV and
mV ⇠ 1MeV; this value is even lower for larger m� and
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TB, Ihle, Kersten & Walia, PRD ‘16

Consider all spin-combinations (DM/DR) 

Take into account inevitably related processes
relic density (rotate diagrams)  
DM self-interactions (DM-DM scattering)

Organize possible Lagrangians by topology of 
scattering diagrams
assume DM is stabilised by Z2 

consider all possible (gauge-invariant)               terms

or vector particle, respectively (for the sake of brevity,
we will however not explicitly consider pseudoscalars and
axial vectors in our analysis). For simplicity, and to avoid
unphysical results, we will assume that a vector boson is
always associated with a gauge symmetry—which may
however be spontaneously broken to allow for m~γ ≠ 0.
We further require that DM be stabilized by a Z2 symmetry;
i.e. we do not allow for vertices with an odd number of χ
particles. For a quick overview of our results for this type of
models, we refer the reader to Fig. 6.

A. Pointlike interactions

Let us start with the case of a single, pointlike contact
interaction, as depicted in Fig. 7. The simplest possibility
to obtain this is with a dimension-4 operator. Due to gauge
invariance, the only such operator that we need to study
separately is in fact the case of a “portal interaction”
between a scalar χ and a scalar ~γ, leading to a constant
scattering amplitude. This is because a four-point coupling
involving (broken or unbroken) gauge fields would imply
the existence of further three-point couplings that unavoid-
ably lead to additional diagrams of the form studied in the
subsequent Secs. III B and III C.
Higher dimensional operators that lead to an (almost)

constant scattering rate will have the same phenomenology,
albeit with a suppressed amplitude, and hence do not
have to be studied separately. Alternatively, a higher-
dimensional operator containing derivatives or fermionic
DR could add an energy dependence to the scattering rate.
As any such operator is irrelevant in the language of
effective field theory, i.e. suppressed at low energies, it
will necessarily yield n > 0 in Eq. (3). Given that cn is
suppressed by a large mass scale, Fig. 3 then tells us that
this possibility will not succeed in producing sufficiently
large values of Mcut.
The only pointlike interaction we have to consider in

more detail at this point is thus a portal interaction of the
form L ⊃ λ

4 χ
2 ~γ2. This implies jMj2 ¼ λ2 ¼ hjMj2it and,

cf. Eqs. (3)–(4),

M4S
cut ≃ 8.4 × 1010ξ6λ3

!
mχ

10 GeV

"−9=2
M⊙; ð11Þ

seemingly implying that a cutoff in the desired range can be
obtained for any DM mass smaller than a few GeV.
As stressed in Sec. II B 1, however, an additional upper

bound on λ results from the requirement that the DM
annihilation rate χχ → ~γ ~γ should not become so large that
it would deplete the initial DM abundance (thermally
produced or not) below the currently observed value. In
Eq. (6) we should thus simply replace g0 →

ffiffiffi
λ

p
, and require

the resulting value for Ωχ not to be smaller than the
observed one. This leads to3

M4S
cut ≲ 3 × 1010ξ15=2

!
mχ

MeV

"−3=2
M⊙; ð12Þ

where the maximal value for λ, and henceMcut, is achieved
if DM is actually produced thermally (and this process is
dominated by the same portal coupling between DM and
DR). Given that ξ≳ 1 is strongly constrained by CMB
observations (see also footnote 1), DM in this simplest
scenario must thus be lighter than about 1 MeV in order to
produce a cutoff in an observationally interesting range. As
discussed, free-streaming effects start to further increase the
cutoff mass for mχ ≲ 0.1 MeV (or even lighter DM masses
if ξ ≪ 1). The resulting additional suppression of structure
implies that the same value of Mcut can be achieved for
smaller values of ξ, which allows us to satisfy the strong
CMB constraints on this quantity by an even larger margin
(while mχ ≪ 0.1 MeV would simply result in the standard
WDM case). We leave a full exploration of this interesting
regime for future work.
For this mass range, the DM annihilation bound becomes

λ≲ 7 × 10−7ξ0.5mχ=MeV. Even though it is parametrically
suppressed by a factor of λ4, however, the induced DM
self-coupling (see Fig. 5) for this model is actually log
divergent. To be able to remove this divergence by
renormalization, we thus must add an interaction term
ΔL ¼ ðλ0=4!Þχ4. Its finite part can thus be tuned to any
desired value, independent of the above discussion, leading
to a velocity-independent DM self-interaction cross sec-
tion. Let us conclude the discussion of this case by
remarking that the required small value of λ might most
naturally be realized by a dim > 4 operator (as long as it
leads to an approximately constant scattering rate, with

FIG. 7. Diagram illustrating a pointlike interaction of a DM
particle χ with a (possibly dark) relativistic particle ~γ. Because we
focus on unsuppressed interactions, only dimension-4 operators
are considered, which restricts the analysis of this topology to
bosonic particles.

3We note that xf depends logarithmically on the DMmass, and
we used here the approximation given by Kolb and Turner [108].
Furthermore, we took into account the impact of T ~γ ≠ T during
freeze-out by assuming xf ∝ ξ in Eq. (6). We checked this latter
assumption explicitly by solving the full Boltzmann equation
provided in Ref. [90], finding that the actual scaling is more
accurately given by xf ∝ ξr, with 1.1≲ r ≲ 1.2 (where r is larger
for smaller values of mχ and/or ξ). Note that we assume that ξ
remains constant between chemical and kinetic decoupling.
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n ¼ 0). See Refs. [37,51] for examples of large cutoff
masses resulting from such effective operators (and
sub-GeV DM masses).

B. Scattering exclusively via s=u-channel

Let us next consider situations where the scattering
proceeds exclusively via the s-channel (and hence also
the u-channel). The requirement to stabilize DM via a Z2

symmetry then implies, as illustrated in Fig. 8, that the
virtual particle must be χ (recall that by assumption no
further particle beyond χ and ~γ can be involved in our
simplified two-particle model). This means that ~γ must be
bosonic, and we fully need to take into account the
stringent constraints on DM self-interactions discussed in
Sec. II B 2. Here, we only consider the situations that arise
when ~γ is a scalar or an Abelian gauge boson, and χ is either
a scalar or a fermion. Otherwise—i.e. for non-Abelian DR
or vector DM—there are necessarily four-point, s=u- and
t-channel diagrams involved in the scattering process; we
defer the treatment of these cases to Sec. III D. We calculate
all relevant matrix elements in Appendix B, and list the
results in Table I.
While both diagrams in Fig. 8 individually contain a

resonance, those leading contributions cancel exactly in the
t → 0 limit in all cases. The result is an effective scattering
amplitude that is to a very good approximation independent
of the energy ω of the relativistic scattering partners. We
thus obtain the same result as in the contact interaction
case, Eq. (11), with the understanding that we should
replace λ2 by the corresponding expression for hjMj2i=ηχ
stated in Table I, where ηχ denotes the number of internal
degrees of freedom of the DM particle. The essential
difference, however, is that now we have a three-point
coupling giving rise to a strong Yukawa potential between
the DM particles. We can thus combine the result for the
cutoff mass, Eq. (4), with the constraint hσTi30=mχ ≲
10 cm2=g on the transfer cross section, where hσTi30 is
supplied in Eq. (8). This results in

Ms=u
cut ≲ 2 × 10−7ξ6r

3
2

!
m~γ

keV

"!
mχ

100 GeV

"1
2

M⊙: ð13Þ

Here, we have introduced r≡ hjMj2i=ðηχg4χÞ, where gχ is
the dimensionless coupling constant that enters the Yukawa
potential—for the scalar/scalar (fermion/vector) case, e.g.,
we have r ¼ 1=2 (r ¼ 16=3).
Equation (13) clearly demonstrates that the strong

constraints on DM self-interactions make it impossible
to achieve late kinetic decoupling if the scattering is only
mediated through s- and u-channel diagrams. We note that
we arrived at this conclusion completely independently of
the DM production mechanism. We have assumed in this
argument, however, that the DM self-scattering takes place
in the classical regime. For very light, (sub-)MeV DM [e.g.
scalar DM scattering with hidden Uð1Þ vectors [38]] it may
thus be possible to achieve large cutoff values and evade the
self-scattering constraints.

C. Scattering dominantly via t-channel

Due to the Z2 symmetry for the χ particles, any scattering
diagram involving a t-channel exchange is of the form
displayed in Fig. 9. Just as for the s=u case, this topology
thus only allows scalar or non-Abelian ~γ. Here, we only
consider the former case, deferring a dedicated discussion
of the latter case to the next subsection. Such models have
two independent coupling constants for the χ − χ − ~γ and
~γ − ~γ − ~γ vertices. The presence of the former induces
s- and u-channel diagrams of the type discussed above.
Here, we will thus require that those couplings be small
enough to satisfy the self-interaction constraints of Fig. 4,
cf. Eq. (8), and that the t-channel diagram dominate the
scattering process. We note that this is indeed the generic
situation, even for a ~γ − ~γ − ~γ coupling much smaller than
the χ − χ − ~γ coupling, because of the strong kinematic
enhancement of the t-channel diagram. We calculate the
two relevant matrix elements, i.e. those for scalar and
fermionic DM, in Appendix B and list the results in Table I.
As expected from the familiar Coulomb case, the

scattering amplitude from the t-channel exchange of a
massless particle diverges, and has to be regulated by
introducing a nonvanishing DR mass term. In fact, such a
mass term can be argued to arise from requiring the
potential to be bounded from below: in our simplified
model, this can only be achieved by adding a four-point

FIG. 8. As in Fig. 7, but in the presence of a χ-χ-~γ coupling,
which leads to a resonance in the s- (left) and u-channel (right).

FIG. 9. As in Fig. 8, but in the presence of an additional 3-~γ
coupling, which leads to a resonance in the t-channel in addition
to the s=u resonances shown in Fig. 8.
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potential—for the scalar/scalar (fermion/vector) case, e.g.,
we have r ¼ 1=2 (r ¼ 16=3).
Equation (13) clearly demonstrates that the strong

constraints on DM self-interactions make it impossible
to achieve late kinetic decoupling if the scattering is only
mediated through s- and u-channel diagrams. We note that
we arrived at this conclusion completely independently of
the DM production mechanism. We have assumed in this
argument, however, that the DM self-scattering takes place
in the classical regime. For very light, (sub-)MeV DM [e.g.
scalar DM scattering with hidden Uð1Þ vectors [38]] it may
thus be possible to achieve large cutoff values and evade the
self-scattering constraints.

C. Scattering dominantly via t-channel

Due to the Z2 symmetry for the χ particles, any scattering
diagram involving a t-channel exchange is of the form
displayed in Fig. 9. Just as for the s=u case, this topology
thus only allows scalar or non-Abelian ~γ. Here, we only
consider the former case, deferring a dedicated discussion
of the latter case to the next subsection. Such models have
two independent coupling constants for the χ − χ − ~γ and
~γ − ~γ − ~γ vertices. The presence of the former induces
s- and u-channel diagrams of the type discussed above.
Here, we will thus require that those couplings be small
enough to satisfy the self-interaction constraints of Fig. 4,
cf. Eq. (8), and that the t-channel diagram dominate the
scattering process. We note that this is indeed the generic
situation, even for a ~γ − ~γ − ~γ coupling much smaller than
the χ − χ − ~γ coupling, because of the strong kinematic
enhancement of the t-channel diagram. We calculate the
two relevant matrix elements, i.e. those for scalar and
fermionic DM, in Appendix B and list the results in Table I.
As expected from the familiar Coulomb case, the

scattering amplitude from the t-channel exchange of a
massless particle diverges, and has to be regulated by
introducing a nonvanishing DR mass term. In fact, such a
mass term can be argued to arise from requiring the
potential to be bounded from below: in our simplified
model, this can only be achieved by adding a four-point

FIG. 8. As in Fig. 7, but in the presence of a χ-χ-~γ coupling,
which leads to a resonance in the s- (left) and u-channel (right).

FIG. 9. As in Fig. 8, but in the presence of an additional 3-~γ
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dim  4

4-point s/u channel t channel

Simplified model classification: 
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Conditions for late KD

30

Very late kinetic decoupling of DM is possible
but not for scattering with SM particles [caveat: higher-dim operators!]

various cosmologically interesting options for restricted 
ranges of DM mass [recovered all concrete models studied before (+more)]

Most generic solution: dark matter

dark radiation

(t-channel) 
mediator

cold, MeV—TeV

<< keV

“For free”:
[for MeV mediators]

……

… relic density

self-scattering 
with Yukawa potential

NB: WDM can not 
address all small-scale 
problems — catch 22

Macció, MNRAS ‘12

TB, Ihle, Kersten & Walia, PRD ‘16
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Tying DM to sterile 
neutrinos

Concrete model building example
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A dark sector with a U(1)X

32

Standard 
Model

SU(3)c ⇥ SU(2)L ⇥ U(1)Y

Dark 
Sector

U(1)X

Particles contained in Dark Sector:
~TeV CDM particle
Majorana sterile neutrinos N1 (~eV), N2 (~MeV)
~MeV U(1)X gauge boson 

� }charges(1, X⌫R ,�X⌫R)

“Higgs 
portal”

Dark Higgs Θ for SSB of U(1)X

LHiggs � |�|2|⇥|2

TB,  Hasenkamp & Kersten, JCAP ‘14

Scalar ξ for active-sterile neutrino mixing ( MLR ⇠ v�v⇠/⇤)
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Thermalisation & Decoupling of DS

33

Full thermalisation of U(1)X sector at T > m�
�

2

TeV scale, which will form the CDM, and two right-
handed neutrinos ⌫

R1,2 . Those new particles are neu-
tral under GSM but carry U(1)

X

charges, while the SM
particles are neutral under U(1)

X

. Anomaly cancella-
tion requires the ⌫

R1,2 to carry charges of opposite sign
with equal absolute value; for concreteness, we take the
charges of (�, ⌫

R1 , ⌫R2) to be (1, X
⌫

R

,�X
⌫

R

).
We further assume that the U(1)

X

is spontaneously
broken at the MeV scale by the vacuum expectation value
(VEV) v⇥ of a complex Higgs field ⇥, which is a represen-
tation (1, 0, 2X

⌫

R

) under SU(2)L⇥U(1)
Y

⇥U(1)
X

, while
the Higgs field � responsible for the electroweak symme-
try breaking is a (2, 1/2, 0). Another complex scalar ⇠,
with charges (1, 0, X

⌫

R

) and VEV v
⇠

< v⇥, is introduced
to enable active-sterile neutrino mixing.

After symmetry breaking the low-energy, e↵ective La-
grangian of our theory reads

L = LSM + L
R

+ L
x

+ Lkin. mix. + LHiggs . (2)

Here, LSM denotes SM terms and L
R

contains

L
R

�� 1

2
⌫c
R1

M1⌫R1 �
1

2
⌫c
R2

M2⌫R2

� ⌫c
R1

M
RR

⌫
R2 � ⌫

L

M
LR

⌫
R1 + h.c. , (3)

in addition to kinetic terms and Majorana mass terms
for the SM neutrinos. The active-sterile neutrino mixing
arises from a dimension-5 operator with M

LR

⇠ v
�

v
⇠

/⇤,
suppressed by a scale ⇤ defined by the UV completion of
the theory. The mass eigenstates (⌫1, ⌫2, ⌫3, N1, N2) are
mixtures of the flavor eigenstates (⌫

e

, ⌫
µ

, ⌫
⌧

, ⌫c
R1

, ⌫c
R2

).
We choose masses such that m

N2 ⇠ M2 ⇠ MeV �
m

N1 ⇠ M1 ⇠ eV, having in mind the short baseline
anomalies, and note that even a very small mixing be-
tween ⌫

R1,2 , with M
RR

/M2 & 10�6, allows the cosmo-
logically fast decay of ⌫

R2 .
Terms in L related to V and the new fermions are

L
x

= �̄(i/@ �m
�

)�� 1

4
F x

µ⌫

F xµ⌫ � 1

2
m2

V

V
µ

V µ (4)

� g
X

V
µ

(X
⌫

R

⌫
R1

�µ⌫
R1 �X

⌫

R

⌫
R2

�µ⌫
R2 + �̄�µ�) ,

where g
X

denotes the U(1)
X

gauge coupling. To en-
sure the stability of � we might impose a discrete Z2

symmetry under which only � is assigned a negative par-
ity. The symmetries also allow a kinetic mixing term
Lkin. mix. = � ✏

2F
x

µ⌫

Fµ⌫ , where F xµ⌫ (Fµ⌫) denotes the
U(1)

X

(electromagnetic) field strength tensor. We as-
sume ✏ ⌧ 1 to satisfy the severe existing constraints on
this parameter [46, 47].

We refer to Ref. [48] for a general discussion of the
Higgs sector for ⇥ and � as contained in LHiggs, adopt-
ing that m

V

and the mass of the new light Higgs boson
h
x

are of the same order of magnitude in the relevant
cases. The “Higgs portal” term in LHiggs � |�|2|⇥|2 �


4 v��⇥
2 ' 

4 v�hh
2
x

, where we have assumed a negligible
mixing between h

x

and the SM-like Higgs h in the last
step, connects the SM and the new U(1)

X

sector.

Figure 1: Schematic overview of the cosmology implied by the
model defined in Eq. (2).

Thermalization via the Higgs portal and decoupling of
the Dark Sector.— In Fig. 1 we provide a schematic
overview of the cosmology arising from our model repre-
sented by Eq. (2). Before electroweak symmetry break-
ing, the 4-scalar interaction |⇥|2|�|2 keeps the U(1)

X

sector in thermal equilibrium with the SM bath if the
thermalization rate �th = n

h

x

h�thvreli ⇠ 10�32T is
larger than the expansion rate H ⇠ 10T 2/Mpl. In those
expressions, n

h

x

denotes the number density of h
x

and
h�thvreli the thermally averaged annihilation cross sec-
tion of h

x

pairs. If we, e.g., require thermal equilibrium
at temperatures below 10 TeV, i.e. above the CDM mass
m

�

, we obtain a lower bound on the Higgs portal cou-
pling of  & 10�6. After electroweak symmetry breaking

the relevant process becomes h
x

h
x

h! ff̄ , controlled by
the 

4 v�hh
2
x

coupling. The thermalization rate is then
�th ⇠ 10�3 2T 3m2

f

/m4
h

, with f corresponding to the
heaviest relativistic SM fermion, so the decoupling tem-
perature becomes T dpl

x

⇠ 103m4
h

/(2m2
f

Mpl). For details
on thermalization via the Higgs portal we refer to [49–
51], where thorough calculations of h

x

abundances for
m

h

x

⇠ TeV were performed (while in our case h
x

decou-
ples relativistically).

The particles in the dark sector are tightly coupled
to each other due to the U(1)

X

interaction, and more
weakly to the SM via the Higgs portal. Once the lat-
ter ceases to be e↵ective, the whole U(1)

X

sector there-
fore decouples from the SM bath and entropy is con-
served separately in the two sectors. Whenever a parti-
cle in equilibrium becomes non-relativistic it thus heats

Higgs portal coupling

Decoupling of whole U(1)X sector
when Higgs portal no longer effective

entropy conserved separately in SM and dark sector 
(note strong U(1)X coupling!)

when particles become non-relativistic, 
temperature increases as 
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Figure 2: In the yellow area, the CDM self-interaction is
strong enough to flatten density cusps in the inner parts of
(dwarf) galaxies [30] and likely also solves the too-big-to-fail
problem (as explicitly demonstrated in N -body simulations
for parameter values corresponding to the crosses [31]). The
dark area is excluded by astrophysics [29, 30, 55, 56]. The
blue band addresses the missing satellite problem [33] and

scales as mV / X1/2
⌫
R

(TN1/T )
3/2
kd , c.f. Eq. (8). Here, we show

for reference the case of X⌫
R

= 0.2 and (TN1/T )
4
kd = 0.46.

its bath, thereby increasing the temperature by a fac-
tor (gbefore⇤,⌫/N1

/gafter⇤,⌫/N1
)

1
3 , where g⇤,i counts the e↵ective de-

grees of freedom (d.o.f.) determining the entropy density
of the sector in thermal equilibrium with the species i.
The non-standard contribution to the radiation density
is then given by

�Ne↵(T ) =
T 4
N1

T 4
⌫

=

✓
g⇤,⌫
g⇤,N1

◆ 4
3

�����
T

✓
g⇤,N1

g⇤,⌫

◆ 4
3

�����
T

dpl
x

. (5)

The maximal possible value of this quantity at the onset
of big bang nucleosynthesis (BBN), at T ⇠ 1MeV, is then
obtained if all new particles but the light sterile neutrino,
N1, have become non-relativistic by then. This results in

�Ne↵|max
bbn ' ⇥

58.4/g⇤,⌫(T
dpl
x

)
⇤ 4

3 , (6)

well within bounds from BBN [52–54] for T dpl
x

& 1GeV.
Self-interacting CDM.— At high temperatures, the

DM particles are kept in chemical equilibrium via �� $
V V (for unit sterile neutrino charges, X

⌫

R

⇠ 1, also the
annihilation into ⌫

R

⌫
R

, h
x

h
x

and ⇠⇤⇠ via a virtual V be-
comes important). For TeV-scale DM the number density
freezes out at su�ciently early times (T fo

�

⇠ m
�

/25) to
still have T

V

= T . Assuming for simplicity X
⌫

R

⌧ 1, the
CDM relic density then becomes

⌦cdmh
2 = 2⌦

�

h2 ⇠ 0.11

✓
0.67

g
X

◆4 ⇣ m
�

TeV

⌘2

(7)

up to O (1) corrections due to the Sommerfeld e↵ect [57],
which we fully take into account [33]. This fixes g

X

for a
given m

�

throughout this work.
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [67, 68]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
�N1. For a thermal distribution of sterile neutrinos, the
decoupling temperature is given by [33]

T kd
�

' 62 eV

X
1
2
⌫

R

g
X

✓
T

T
N1

◆ 3
2

kd

⇣ m
�

TeV

⌘ 1
4
⇣ m

V

MeV

⌘
, (8)

which translates into a cuto↵ in the power spectrum
of matter density perturbations at Mcut ⇠ 1.7 ⇥
108(T kd

�

/keV)�3M�. We note that the light mass eigen-
states ⌫

i

also acquire a U(1)
X

charge from their ⌫c
R

com-
ponent; this will further lower T kd

�

if sin ✓ & (T
N1/T⌫

)3/2.

After structure formation, the U(1)
X

-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoid-
ing constraints on DM self-interactions on larger scales
[30]. At the same time, the late kinetic decoupling ad-
dresses the missing satellites by suppressing the mat-
ter power spectrum at dwarf galaxy scales [33] (see also
Refs. [24, 59–61]). In Fig. 2, we show the desired pa-
rameter space for m

V

and m
�

(based on Ref. [33], but
using an improved parameterization [62] of the Yukawa
scattering cross section [28, 63–66]).

The HDM component.— We will now address the
question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1

production mechanism, see the discussion further down,
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strong enough to flatten density cusps in the inner parts of
(dwarf) galaxies [30] and likely also solves the too-big-to-fail
problem (as explicitly demonstrated in N -body simulations
for parameter values corresponding to the crosses [31]). The
dark area is excluded by astrophysics [29, 30, 55, 56]. The
blue band addresses the missing satellite problem [33] and
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [67, 68]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
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After structure formation, the U(1)
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-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoid-
ing constraints on DM self-interactions on larger scales
[30]. At the same time, the late kinetic decoupling ad-
dresses the missing satellites by suppressing the mat-
ter power spectrum at dwarf galaxy scales [33] (see also
Refs. [24, 59–61]). In Fig. 2, we show the desired pa-
rameter space for m

V

and m
�

(based on Ref. [33], but
using an improved parameterization [62] of the Yukawa
scattering cross section [28, 63–66]).

The HDM component.— We will now address the
question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1
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(dwarf) galaxies [30] and likely also solves the too-big-to-fail
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [67, 68]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
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After structure formation, the U(1)
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-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoid-
ing constraints on DM self-interactions on larger scales
[30]. At the same time, the late kinetic decoupling ad-
dresses the missing satellites by suppressing the mat-
ter power spectrum at dwarf galaxy scales [33] (see also
Refs. [24, 59–61]). In Fig. 2, we show the desired pa-
rameter space for m
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and m
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(based on Ref. [33], but
using an improved parameterization [62] of the Yukawa
scattering cross section [28, 63–66]).

The HDM component.— We will now address the
question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1

production mechanism, see the discussion further down,
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(dwarf) galaxies [30] and likely also solves the too-big-to-fail
problem (as explicitly demonstrated in N -body simulations
for parameter values corresponding to the crosses [31]). The
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blue band addresses the missing satellite problem [33] and
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [67, 68]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
�N1. For a thermal distribution of sterile neutrinos, the
decoupling temperature is given by [33]
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which translates into a cuto↵ in the power spectrum
of matter density perturbations at Mcut ⇠ 1.7 ⇥
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After structure formation, the U(1)
X

-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoid-
ing constraints on DM self-interactions on larger scales
[30]. At the same time, the late kinetic decoupling ad-
dresses the missing satellites by suppressing the mat-
ter power spectrum at dwarf galaxy scales [33] (see also
Refs. [24, 59–61]). In Fig. 2, we show the desired pa-
rameter space for m

V

and m
�

(based on Ref. [33], but
using an improved parameterization [62] of the Yukawa
scattering cross section [28, 63–66]).

The HDM component.— We will now address the
question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1

production mechanism, see the discussion further down,
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FIG. 9: Parameter space for self-interacting DM as in Fig. 6 with ↵

X

fixed to obtain the observed relic
density via X

¯

X ! �� annihilation at freeze-out. The left (right) panel shows the vector (scalar) mediator
case whwere annihilation is s-wave (p-wave). Crosses show benchmark points in Table VI. The lines and
colored regions are as in Fig. 6.

case (right), DM self-interactions are purely attractive. It is clear that the allowed region for
solving the small scale anomalies is still broad even after we impose the relic density constraint
on ↵

X

.

VIII. OBSERVATIONAL TESTS

Self-interacting DM has distinct signatures in direct detection experiments because self-
interactions thermalize the DM velocity distribution [92]. In this section, we discuss signatures
of self-interacting DM in indirect detection observations, when DM in halos self-annihilates. As
we have shown, the existence of a light mediator is essential for generating a large enough self-
scattering cross section. The same mediator can also lead to Sommerfeld enhancements for DM
annihilation in halos if DM is symmetric. Since the enhancement effect increases as the DM
velocity decreases, we expect DM particles in dwarf galaxies to have a larger self-annihilation
cross section than those in the Milky Way or clusters. This scale-dependent feature of the DM
annihilation cross section can be potentially determined by studying signal fluxes from different
astrophysical objects.

Here, we take a few examples from the self-interacting DM models given in Section VI to
show Sommerfeld enhancements for DM annihilation in halos. We consider the case where DM
particles annihilate to SM states in DM halos with s-wave processes.13 To illustrate the point in a

13 A familiar example is usual symmetric DM. Asymmetric DM can also generate annihilation signals if DM-anti-DM
oscillations occur in the late epoch [88–91].
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cuto↵
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant �T .
We also note that �T drops with larger v such that for
galaxy clusters only the very central density profile at
r . O(1 � 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v2

max

= g2�mV /(2⇡2m�) at
which �T v becomes maximal and �max

T ⌘ �T (vmax

) =
22.7m�2

V . In particular, v
max

should not be too di↵er-
ent from the typical velocity dispersion �v ⇠ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of �max

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing g� by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (m�,mV ) and the astrophysically relevant param-
eters (v

max

,�max

T ). As demonstrated in Fig. 2, a so-
lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of m� & 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
m� . 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger m� an imminent
gravothermal catastrophe is more constraining.

The small-scale cuto↵.— For small kinetic decou-
pling temperatures T

kd

, acoustic oscillations [52] are
more e�cient than free streaming e↵ects to suppress the
power spectrum [4, 53]. The resulting exponential cuto↵
can be translated into a smallest protohalo mass of

M
cut

⇡ 4⇡

3

⇢�
H3

���
T=Tkd

= 1.7⇥ 108
✓
T
kd

keV

◆�3

M� , (4)

where H is the Hubble rate and we assumed late kinetic
decoupling such that the e↵ective number of relativistic
degrees of freedom g

e↵

= 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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those expressions to allow for T⌫ 6= T , we find

T
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where N⌫ is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
T
kd

, and thus M
cut

, is essentially independent of g� and
m�.

Using for definiteness N⌫ = 3 and T⌫ = (4/11)
1
3T� , we

show in Fig. 3 contours of constant M
cut

in the (g⌫ ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for g⌫ & 10�7 (assuming m� ⇠ 1TeV and
mV ⇠ 1MeV; this value is even lower for larger m� and
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Figure 2: In the yellow area, the CDM self-interaction is
strong enough to flatten density cusps in the inner parts of
(dwarf) galaxies [30] and likely also solves the too-big-to-fail
problem (as explicitly demonstrated in N -body simulations
for parameter values corresponding to the crosses [31]). The
dark area is excluded by astrophysics [29, 30, 55, 56]. The
blue band addresses the missing satellite problem [33] and
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The maximal possible value of this quantity at the onset
of big bang nucleosynthesis (BBN), at T ⇠ 1MeV, is then
obtained if all new particles but the light sterile neutrino,
N1, have become non-relativistic by then. This results in
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [67, 68]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
�N1. For a thermal distribution of sterile neutrinos, the
decoupling temperature is given by [33]
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which translates into a cuto↵ in the power spectrum
of matter density perturbations at Mcut ⇠ 1.7 ⇥
108(T kd
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/keV)�3M�. We note that the light mass eigen-
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charge from their ⌫c
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ponent; this will further lower T kd
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After structure formation, the U(1)
X

-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoid-
ing constraints on DM self-interactions on larger scales
[30]. At the same time, the late kinetic decoupling ad-
dresses the missing satellites by suppressing the mat-
ter power spectrum at dwarf galaxy scales [33] (see also
Refs. [24, 59–61]). In Fig. 2, we show the desired pa-
rameter space for m

V

and m
�

(based on Ref. [33], but
using an improved parameterization [62] of the Yukawa
scattering cross section [28, 63–66]).

The HDM component.— We will now address the
question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1

production mechanism, see the discussion further down,
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strong enough to flatten density cusps in the inner parts of
(dwarf) galaxies [30] and likely also solves the too-big-to-fail
problem (as explicitly demonstrated in N -body simulations
for parameter values corresponding to the crosses [31]). The
dark area is excluded by astrophysics [29, 30, 55, 56]. The
blue band addresses the missing satellite problem [33] and
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [67, 68]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
�N1. For a thermal distribution of sterile neutrinos, the
decoupling temperature is given by [33]
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which translates into a cuto↵ in the power spectrum
of matter density perturbations at Mcut ⇠ 1.7 ⇥
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After structure formation, the U(1)
X

-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoid-
ing constraints on DM self-interactions on larger scales
[30]. At the same time, the late kinetic decoupling ad-
dresses the missing satellites by suppressing the mat-
ter power spectrum at dwarf galaxy scales [33] (see also
Refs. [24, 59–61]). In Fig. 2, we show the desired pa-
rameter space for m

V

and m
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(based on Ref. [33], but
using an improved parameterization [62] of the Yukawa
scattering cross section [28, 63–66]).

The HDM component.— We will now address the
question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1

production mechanism, see the discussion further down,
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strong enough to flatten density cusps in the inner parts of
(dwarf) galaxies [30] and likely also solves the too-big-to-fail
problem (as explicitly demonstrated in N -body simulations
for parameter values corresponding to the crosses [31]). The
dark area is excluded by astrophysics [29, 30, 55, 56]. The
blue band addresses the missing satellite problem [33] and
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of big bang nucleosynthesis (BBN), at T ⇠ 1MeV, is then
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [67, 68]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
�N1. For a thermal distribution of sterile neutrinos, the
decoupling temperature is given by [33]
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which translates into a cuto↵ in the power spectrum
of matter density perturbations at Mcut ⇠ 1.7 ⇥
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After structure formation, the U(1)
X

-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoid-
ing constraints on DM self-interactions on larger scales
[30]. At the same time, the late kinetic decoupling ad-
dresses the missing satellites by suppressing the mat-
ter power spectrum at dwarf galaxy scales [33] (see also
Refs. [24, 59–61]). In Fig. 2, we show the desired pa-
rameter space for m

V

and m
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(based on Ref. [33], but
using an improved parameterization [62] of the Yukawa
scattering cross section [28, 63–66]).

The HDM component.— We will now address the
question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1

production mechanism, see the discussion further down,
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cuto↵
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant �T .
We also note that �T drops with larger v such that for
galaxy clusters only the very central density profile at
r . O(1 � 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v2

max

= g2�mV /(2⇡2m�) at
which �T v becomes maximal and �max

T ⌘ �T (vmax

) =
22.7m�2

V . In particular, v
max

should not be too di↵er-
ent from the typical velocity dispersion �v ⇠ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of �max

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing g� by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (m�,mV ) and the astrophysically relevant param-
eters (v

max

,�max

T ). As demonstrated in Fig. 2, a so-
lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of m� & 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
m� . 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger m� an imminent
gravothermal catastrophe is more constraining.

The small-scale cuto↵.— For small kinetic decou-
pling temperatures T

kd

, acoustic oscillations [52] are
more e�cient than free streaming e↵ects to suppress the
power spectrum [4, 53]. The resulting exponential cuto↵
can be translated into a smallest protohalo mass of

M
cut

⇡ 4⇡

3

⇢�
H3

���
T=Tkd

= 1.7⇥ 108
✓
T
kd

keV

◆�3

M� , (4)

where H is the Hubble rate and we assumed late kinetic
decoupling such that the e↵ective number of relativistic
degrees of freedom g

e↵

= 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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Figure 3: This plane shows the mediator mass mV vs. the
coupling strength g⌫ . Large values of g⌫ and small values of
mV lead to late kinetic decoupling and thus a large mass M
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of the smallest protohalos. M
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& 5 ⇥ 1010M� is excluded
by Ly-↵ data while M
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& 109M� may solve the small-scale
abundance problems of ⇤CDM cosmology.

those expressions to allow for T⌫ 6= T , we find

T
kd

=
0.062 keV

N
1
4
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4
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where N⌫ is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
T
kd

, and thus M
cut

, is essentially independent of g� and
m�.

Using for definiteness N⌫ = 3 and T⌫ = (4/11)
1
3T� , we

show in Fig. 3 contours of constant M
cut

in the (g⌫ ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for g⌫ & 10�7 (assuming m� ⇠ 1TeV and
mV ⇠ 1MeV; this value is even lower for larger m� and
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Tension between cosmological 
data at high (              ) and 
low redshifts (          )
normalisation σ8 of matter density 
perturbations higher in Planck data than 
in local galaxy cluster data
Expansion rate H0 higher in local 
redshift-distance measurements than in 
measurements of acoustic scale (CMB, 
BAO)

z & 1000
z . 10

3

FIG. 1. Tensions between datasets and their neutrino alleviations.

Black, red, and blue curves represent the M⌫-Md, S⌫-Md, and S⌫-
Td model-data combinations respectively. Bottom: H0 and S8 pos-

teriors (curves) vs. local measurements (bands, 68% CL). Lack of

overlap in M⌫-Md is alleviated in S⌫-Md leading to better concor-

dance in S⌫-Td. The dashed line shows the change in S8 from the

9% cluster mass o↵set. Top: �8 and ⌦m 68% and 95% confidence

regions. Neutrino parameters open a direction mainly orthogonal

to S8. “⇥” marks ML models; “+” shows its shift for a 9% cluster

mass o↵set. A⌫ model results are similar.

is insu�cient to bring about concordance.

These predictions depend on our assumptions about
neutrinos. The presence of extra relativistic species in
the early Universe alters the expansion rate and thus the
physical length scale associated with both the CMB and
the BAO. Allowing Ne↵ to vary changes this scale and
broadens the allowed range for H0. In Fig. 1 (bottom),
we see that in the S⌫ case, the H0 posterior implied by
Md broadens to include substantial overlap with the mea-
surements. A similar broadening occurs for the A⌫ case.

Allowing part of the matter to be composed of neu-
trinos with eV scale masses suppresses the growth of
structure below their free-streaming length. This al-
lows �8 to be substantially lower and still be compati-
ble with the Md CMB datasets (see Fig. 1). However,
since the CDM component ⌦ch

2 is well constrained in-
dependently, adding neutrinos increases ⌦m, leading to
a less pronounced modification to the cluster observable
(see Fig. 1, bottom right and top panels). Also, rais-
ing Ne↵ to reduce the H0 tension requires an increase in
the tilt ns to compensate for the reduction of power in
the CMB damping tail, which further reduces the impact
(see e.g. [22] Fig. 3). Nonetheless the overlap between
the posterior of the Md dataset and the measurements is

Sν-Td Sν-Ad

Aν-Td Aν-Ad

ML
ML +9% Mass

FIG. 2. Neutrino mass and e↵ective number constraints, labelled

as in Fig. 1 (⇥ indicates the ML model, + its shift from a 9%

cluster mass increase). Bottom: S⌫ sterile case for Td (left) and

Ad (right). The region excluded by the mDW
s < 7eV prior is left of

the dashed line. Top: A⌫ active case for Td (left) and Ad (right).

In all cases the minimal

P
m⌫ = 0.06eV, Ne↵= 3.046 and ms = 0

is highly excluded.

now visible for the S⌫ model, whereas it was negligible
with the M⌫ model. Furthermore, a 9% shift in cluster
masses now brings the observations into reasonable con-
cordance. Slightly more tension remains in the A⌫ case
because spreading the mass among three species gives
lower true masses for each. Including the BAO and H0

data also somewhat enhance the residual tension with
high mass [23].

A joint analysis of the Td data set supports these con-
clusions (see Tab. II). For the S⌫ model, the minimal
neutrino values of ms = 0 and Ne↵= 3.046 are individu-
ally disfavored at 3.5� and 2� respectively. Fig. 2 shows
that the joint exclusion is even stronger, with the minimal
Ne↵ at ms = 0 rejected at high confidence. The maxi-
mum likelihood (ML) S⌫ model has a 2� lnL = 15.5 with
two extra parameters (ms = 0.43eV and Ne↵= 3.73) over
that of the M⌫ model. Note that these two parameters
combine to imply an actual ML massmDW

s = 0.62eV. For
the A⌫-Td case, the minimal

P
m⌫ and Ne↵ are disfa-

vored at 3.4� and 2.3� respectively with 2� lnL = 14.05
(
P

m⌫ = 0.46eV, Ne↵= 3.82).

Including all of the data with Ad reduces these prefer-
ences somewhat (see Tab. II and Fig. 2). This is mainly
due to the high resolution CMB data which can break
degeneracies between parameters like Ne↵ and ns. But
the preference for non-minimal masses remains: 3.2� and

Ade+ [Planck coll.], 
A&A ‘14

~same:
Hamann & Hasenkamp, JCAP ’13

Battye & Moss, PRL ‘14
Gariazzo, Giunti & Laveder, JHEP ‘13

Figure 2. Joint 68%- and 95%-credible contours of the marginalised posterior for the extra parameters
of the sterile model. Red contours correspond to CMB data only, while the blue contours represent
the full data combination. The vanilla model is located at the origin. Fully thermalised neutrinos
correspond to �Ne↵ = 1 by construction. Parameter values corresponding to a low mass sterile
neutrino as motivated by the reactor and gallium anomalies are marked with an asterisk (*). A small
region around the point marked by a cross (+) is motivated by the accelerator anomaly.

ms, which becomes, for the CMB, indistinguishable from the CDM component. This tail is
also responsible for the multimodal nature of some of the 1-dimensional posteriors in the left
panel of Fig. 1.

The overlap between both contours is substantial. This is simply due to the fact that
the contour of the full data combination lies at small �Ne↵ . 1 and me↵

s so small that the
CMB loses major parts of its sensitivity to them. Most interestingly, we can infer from Fig. 2
that the vanilla model, located at the origin, is rejected at 3-� if all data are combined.

Even though the non-CMB data sets do not directly constrain �Ne↵ and me↵
s , they

nonetheless do so indirectly, by breaking parameter degeneracies the CMB data are subject
to. We illustrate this e↵ect in Fig. 3. The physical origin of the degeneracy directions
introduced by allowing the radiation density or the sum of neutrino masses to vary can be
understood by looking at parameter combinations which leave the main observed features of
the angular power spectrum unchanged, and we refer the reader to Ref. [7] or the appendix
of Ref. [34] for an in-depth discussion of this issue. Note in particular the fact that the
Hubble parameter is positively correlated with �Ne↵ , but anti-correlated with me↵

s . Thus,
fitting HST and cluster data at the same time, which leads to an increase �Ne↵ and me↵

s ,
will introduce a small degree of tension within the CMB data (resulting in a deterioration
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Table 1. Physical parameters and prior ranges of the models considered.

Parameter Symbol Prior range
Baryon density !b [0.005, 0.1]

Cold dark matter density !cdm [0.001, 0.99]
Sound horizon parameter ✓MC [0.5, 10]
Reionisation optical depth ⌧ [0.01, 0.8]
Scalar spectrum amplitude log

⇥
1010As

⇤
[2.7, 4]

Scalar spectral index ns [0.9, 1.1]
Extra radiation degrees of freedom �Ne↵ [0, 2]

E↵ective HDM mass me↵
s /eV [0, 2]

of a cold (C) and a hot (H) component or, in other words, it is a mixture (M) of the two
components in addition to the ordinary neutrinos. Since we parameterise the HDM itself by
cosmological sterile neutrino parameters, we will also refer to the extended model shortened
also as “sterile model”.

For these models we follow the parameterisations chosen in Ref. [1]. The free parameters
(and their respective prior distributions) are listed in Table 1. In addition, we vary 13 nuisance
parameters required for modelling the Planck data, as described in Ref. [18]. From these
base parameters, we can derive a number of other interesting parameters, e.g., the current
expansion rate of the Universe H0, the root-mean-square matter fluctuations in 8h�1 Mpc
spheres today computed in linear theory, �8, and the current matter energy density in units
of the critical energy density ⌦m = ⌦cdm+⌦hdm+⌦b = (!cdm+!hdm+!b)/h2. We adopt the
usual convention of writing today’s Hubble parameter as H0 = 100h km s�1 Mpc�1 and fix
the sum of neutrino masses ⌃m

⌫

= 0.06 eV to take the minimal value indicated by global fits
to recent neutrino oscillation and other data [19]. The Big Bang Nucleosynthesis consistency
relation [20] is imposed to fix the primordial Helium fraction.

The ⇤MDM model contains two additional base parameters to describe the HDM com-
ponent: the e↵ective number of extra neutrino species �Ne↵ and the e↵ective sterile neu-
trino mass me↵

s = (94.1!s) eV with !s = !hdm = ⌦hdmh
2. The former parameterises

any contribution to the radiation energy density at photon decoupling by splitting the ra-

diation density into a sum ⇢rad =
⇣
1 +Ne↵

7
8

�
T⌫
T

�4⌘
⇢
�

of the energy density in photons

⇢
�

and the energy density in SM neutrinos with the well-understood temperature ratio
T
⌫

/T = (4/11)1/3 and NSM
e↵ = 3.046 such that any departure from the standard scenario

shows up as �Ne↵ ⌘ Ne↵ � NSM
e↵ � 0. In the considered case of a thermally distributed

sterile neutrino, the e↵ective sterile neutrino mass is related to its physical mass ms via

me↵
s = (Ts/T⌫

)3ms = (�Ne↵)
3/4ms . (2.1)

Note that both additional parameters, �Ne↵ and me↵
s , can be mimicked by hot thermal

relics of any nature and the considered case is equivalent for cosmological observables to a
species distributed proportionally to active neutrinos. In the absence of further interactions,
the observational e↵ects rely on gravity, which is sensitive to the energy content only, and
thus indi↵erent to the precise nature of the particles, or the details of their production, be it
through oscillations from standard neutrinos or from thermalisation in a mirror sector [14,
21]. We would like to emphasise that qualitatively di↵erent origins for the HDM like late
cosmological particle decay [22] also mimic a sterile neutrino species.

– 3 –
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Neutrinos Help Reconcile Planck Measurements with the Local Universe

Mark Wyman,* Douglas H. Rudd, R. Ali Vanderveld, and Wayne Hu
Kavli Institute for Cosmological Physics, Department of Astronomy & Astrophysics, Enrico Fermi Institute,
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Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the
standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data
suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second,
the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is
significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a
standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into
agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth
of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination,
with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a
nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos
and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass—of interest for
short baseline and reactor anomalies—is well within the allowed range. We caution that (i) unknown
astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to
be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some
variance with analyses that do not include cluster measurements; and (iii) some tension remains among the
data sets even when new neutrino physics is included.

DOI: 10.1103/PhysRevLett.112.051302 PACS numbers: 98.80.Es, 14.60.Pq, 14.60.St

Neutrinos are one of the most elusive constituents of the
standard model of particle physics. They interact only via
the weak force and are nearly massless. In the standard
picture, there are three neutrino species with a summed
mass that solar and atmospheric oscillation observations
bound to be above 0.06 eV (e.g., [1]). However, anomalies
in short baseline and reactor neutrino experiments suggest
that there may be one or more additional eV scale massive
sterile neutrinos (see Refs. [2,3] for reviews).
Meanwhile, cosmological observations have established

a standard model of cosmology—often called inflationary
ΛCDM. With only six basic parameters, its most minimal
incarnation can explain a wide range of phenomena, from
light element abundances, through the cosmic microwave
background (CMB) anisotropy and large scale structure,
the formation and statistical properties of dark matter halos
that host galaxy clusters to the current expansion history
and cosmic acceleration. Precise new data allow us to test
if the subtle effects of eV scale neutrinos and partially
populated sterile species are also present.
Interestingly, the Planck satellite [4] has recently

exposed potential tension between the early and late time
observables in the minimal six-parameter model. In par-
ticular, Planck finds a larger and more precisely measured
matter density at recombination than previous data. This
relatively small change at high redshift cascades into more
dramatic implications for observables today (e.g., [5]): the
current expansion rate, H0, decreases and the amount of

cosmological structure increases. These changes are in
2–3σ tension with direct observations of H0 [6] and the
abundance of galaxy clusters [7], respectively. Meanwhile,
agreement with distance measures from baryon acoustic
oscillations (BAO) [8–10] suggest that the former cannot be
resolved by having evolving dark energy modify the recent
expansion history.
Neutrinos offer a possible means of bringing these

observations into concordance. Sterile neutrinos change
the expansion rate at recombination and hence the cali-
bration of the standard ruler with which CMB and BAO
observations infer distances (e.g., [4]). When either the
sterile or active species are massive, their free streaming
reduces the amount of small scale clustering today and,
hence, the tension with cluster measurements. In the
simplest case, we can think of this modification as adding
a single, massive sterile neutrino to the standard model.
Models and data.—The minimal six-parameter flat

ΛCDM model is defined by fΩch2;Ωbh2; τ; θA; AS; nsg,
where Ωch2 defines the cold dark matter (CDM) density,
Ωbh2 the baryon density, τ the Thomson optical depth to
reionization, θA the angular acoustic scale at recombina-
tion, As the amplitude of the initial curvature power
spectrum at k ¼ 0.05Mpc−1, and ns its spectral index.
With precise constraints on these parameters from CMB
data at high redshift, all other low redshift observables are
precisely predicted: importantly, the Hubble constant,
H0 ¼ 100h ðkm=sÞ=Mpc, the present total matter density
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Figure 2: In the yellow area, the CDM self-interaction is
strong enough to flatten density cusps in the inner parts of
(dwarf) galaxies [30] and likely also solves the too-big-to-fail
problem (as explicitly demonstrated in N -body simulations
for parameter values corresponding to the crosses [31]). The
dark area is excluded by astrophysics [29, 30, 55, 56]. The
blue band addresses the missing satellite problem [33] and

scales as mV / X1/2
⌫
R

(TN1/T )
3/2
kd , c.f. Eq. (8). Here, we show

for reference the case of X⌫
R

= 0.2 and (TN1/T )
4
kd = 0.46.

its bath, thereby increasing the temperature by a fac-
tor (gbefore⇤,⌫/N1

/gafter⇤,⌫/N1
)

1
3 , where g⇤,i counts the e↵ective de-

grees of freedom (d.o.f.) determining the entropy density
of the sector in thermal equilibrium with the species i.
The non-standard contribution to the radiation density
is then given by

�Ne↵(T ) =
T 4
N1

T 4
⌫

=

✓
g⇤,⌫
g⇤,N1

◆ 4
3

�����
T

✓
g⇤,N1

g⇤,⌫

◆ 4
3

�����
T

dpl
x

. (5)

The maximal possible value of this quantity at the onset
of big bang nucleosynthesis (BBN), at T ⇠ 1MeV, is then
obtained if all new particles but the light sterile neutrino,
N1, have become non-relativistic by then. This results in

�Ne↵|max
bbn ' ⇥

58.4/g⇤,⌫(T
dpl
x

)
⇤ 4

3 , (6)

well within bounds from BBN [52–54] for T dpl
x

& 1GeV.
Self-interacting CDM.— At high temperatures, the

DM particles are kept in chemical equilibrium via �� $
V V (for unit sterile neutrino charges, X

⌫

R

⇠ 1, also the
annihilation into ⌫

R

⌫
R

, h
x

h
x

and ⇠⇤⇠ via a virtual V be-
comes important). For TeV-scale DM the number density
freezes out at su�ciently early times (T fo

�

⇠ m
�

/25) to
still have T

V

= T . Assuming for simplicity X
⌫

R

⌧ 1, the
CDM relic density then becomes

⌦cdmh
2 = 2⌦

�

h2 ⇠ 0.11

✓
0.67

g
X

◆4 ⇣ m
�

TeV

⌘2

(7)

up to O (1) corrections due to the Sommerfeld e↵ect [57],
which we fully take into account [33]. This fixes g

X

for a
given m

�

throughout this work.
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [67, 68]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
�N1. For a thermal distribution of sterile neutrinos, the
decoupling temperature is given by [33]

T kd
�

' 62 eV

X
1
2
⌫

R

g
X

✓
T

T
N1

◆ 3
2

kd

⇣ m
�

TeV

⌘ 1
4
⇣ m

V

MeV

⌘
, (8)

which translates into a cuto↵ in the power spectrum
of matter density perturbations at Mcut ⇠ 1.7 ⇥
108(T kd

�

/keV)�3M�. We note that the light mass eigen-
states ⌫

i

also acquire a U(1)
X

charge from their ⌫c
R

com-
ponent; this will further lower T kd

�

if sin ✓ & (T
N1/T⌫

)3/2.

After structure formation, the U(1)
X

-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoid-
ing constraints on DM self-interactions on larger scales
[30]. At the same time, the late kinetic decoupling ad-
dresses the missing satellites by suppressing the mat-
ter power spectrum at dwarf galaxy scales [33] (see also
Refs. [24, 59–61]). In Fig. 2, we show the desired pa-
rameter space for m

V

and m
�

(based on Ref. [33], but
using an improved parameterization [62] of the Yukawa
scattering cross section [28, 63–66]).

The HDM component.— We will now address the
question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1

production mechanism, see the discussion further down,

4

we simply have

�Ne↵|cmb = �Ne↵|max
bbn . (9)

From the definition me↵
hdm ⌘ ⇥

T
N1/T

⇤CDM
⌫

⇤3
m

N1 =

11/4 [T
N1/T ]

3
m

N1 it furthermore follows that

me↵
hdm = (�Ne↵|cmb)

3
4m

N1 . (10)

By choosing the right decoupling temperature in Eq. (6),
which in our model corresponds to adjusting , we can
then reproduce Eq. (1). This is demonstrated in Fig. 3
where we show the allowed region of �Ne↵|cmb and me↵

hdm

[36] in terms of g⇤,⌫(T dpl
x

) and m
N1 .

The thermal production of the CDM component as
treated here requires T dpl

x

& T fo
�

⇠ m
�

/25, correspond-
ing to �Ne↵|cmb . 0.5 for TeV-scale CDM. On the other
hand, g⇤,⌫(T dpl

x

) cannot exceed the full number of SM
d.o.f. even for very early U(1)

X

decoupling. Taken to-
gether, this points to 0.2 eV . m

N1 . 1.2 eV.

Neutrino anomalies.— Oscillation experiments ob-
serving neutrinos from accelerators [39, 40], reactors [41,
42], and radioactive sources [43–45] reported anomalies
that may indicate the existence of sterile neutrinos with
a mass squared di↵erence �m2 ⇠ 1 eV2 to the SM neu-
trinos. In Fig. 3, we show the 2� range for �m2 from
[67, 68] for orientation, assuming m2

N1
= �m2. This

range was obtained from a global fit of oscillation data
assuming the existence of a single sterile neutrino (note
that it is being debated whether a second sterile neutrino
is necessary to achieve a satisfactory fit [69], which would
not be possible to accommodate in our setup). From
Fig. 3 we find that the regions allowed by the HDM sig-
nal and neutrino oscillations indeed overlap. While this
happens only at the 2� level, we note that the corre-
sponding range of �Ne↵ is the same as independently
required by m

�

& 1TeV (as favored from Fig. 2).

Discussion.— Before standard neutrino decoupling
at T ⇠ 1MeV, the e↵ective mixing angle ✓

m

between
active and sterile neutrinos is strongly suppressed due to
the matter potential generated by the U(1)

X

couplings
of the sterile neutrinos [70] (see also [71]). As the Uni-
verse cools, the e↵ective mixing angle eventually reaches
its vacuum value ✓. This may give rise to an additional
production of sterile neutrinos due to their U(1)

X

inter-
action. The largest e↵ect on the scenario sketched above
would result if the neutrinos completely re-thermalized,
creating a thermal N -⌫ bath.

In that case, conservation of entropy density al-
lows us to determine the temperature T

N⌫

of
the newly established neutrino bath as 4T 3

N⌫

=h
NSM

e↵ + (�Ne↵|max
bbn )

3
4

i �
T⇤CDM
⌫

�3
, where NSM

e↵ ' 3.046.

Rather than Eqns. (9, 10), we thus obtain

�Ne↵|cmb =
1

4
1
3

h
NSM

e↵ + (�Ne↵|max
bbn )

3
4

i 4
3 �NSM

e↵ , (11)

me↵
hdm =

1

4

h
NSM

e↵ + (�Ne↵|max
bbn )

3
4

i
m

N1 . (12)

Rewriting this as m
N1 = 2

p
2me↵

hdm/(�Ne↵|cmb +NSM
e↵ ),

we immediately see that in the re-thermalization case a
sterile neutrino can still consistently explain the HDM
signal – but only if its mass is considerably smaller than
required by the neutrino anomalies.
Turning to potential constraints on our scenario, BBN

limits are easily satisfied as already stressed earlier. CDM
also decouples kinetically too early to imprint observ-
able dark acoustic oscillation (DAO) features in the
CMB [72]. Final state V radiation in the decay of
SM particles [73], finally, does not constrain our sce-
nario because V does not couple to left-handed neutri-
nos. An interesting aspect of our HDM component is
that it does not necessarily manifest itself as perfectly
free-streaming particles in the CMB or during structure
formation, which in principle can be probed [74]; by
comparing the elastic scattering rate with the Hubble
expansion, we rather expect complete decoupling only

at T dpl
⌫

R

⌫

R

⇠ 3 eV
�

m

�

TeV

�� 2
3

⇣
X

⌫

R

0.2

⌘� 2
3
⇣

m

2
V

/X

⌫

R

MeV2
/0.2

⌘ 2
3

, where

the last factor must be of order unity (see Fig. 2).
The dominant decay channel of our sterile neu-

trino is N1 ! ⌫⌫⌫. Even though this is strongly
enhanced compared to the analogous common de-
cay via a virtual Z [75], we find the resulting life-
time for the best-fit neutrino mixings [67] to be

⌧
N1 ⇠ 105 t0

�
m

�

TeV

��2
⇣

X

⌫

R

0.2

⌘�2 ⇣
m

2
V

/X

⌫

R

MeV2
/0.2

⌘2 ⇣
eV

m

N1

⌘5

,

which greatly exceeds the age of the Universe t0. We
note that the decay N1 ! ⌫� is even more suppressed
due to the necessarily small value of ✏.
Conclusions.— In this Letter we have considered a

mixed DM model as favored by recent cosmological ob-
servations, which adds a small HDM component to the
dominant CDM, the former consisting of an ⇠ eV sterile
neutrino and the latter of a TeV-scale Dirac fermion. We
have studied the cosmological consequences of equipping
both these particles with charges under a new sponta-
neously broken U(1)

X

gauge theory, under which all SM
particles are singlets.
Thermalizing the U(1)

X

sector in the early universe
via the so-called Higgs portal allows the thermal produc-
tion of the CDM. The sterile neutrinos would also be
thermally produced and elegantly form the HDM com-
ponent, essentially because the U(1)

X

sector decouples
much earlier than SM neutrinos. Remarkably, this is pos-
sible for a set of parameters that equip the CDM particles
with a U(1)

X

mediated self-interaction that is of the right
form and magnitude to provide a simultaneous solution
to the small-scale problems of ⇤CDM cosmology [33].
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we simply have

�Ne↵|cmb = �Ne↵|max
bbn . (9)

From the definition me↵
hdm ⌘ ⇥

T
N1/T

⇤CDM
⌫

⇤3
m

N1 =

11/4 [T
N1/T ]

3
m

N1 it furthermore follows that

me↵
hdm = (�Ne↵|cmb)

3
4m

N1 . (10)

By choosing the right decoupling temperature in Eq. (6),
which in our model corresponds to adjusting , we can
then reproduce Eq. (1). This is demonstrated in Fig. 3
where we show the allowed region of �Ne↵|cmb and me↵

hdm

[36] in terms of g⇤,⌫(T dpl
x

) and m
N1 .

The thermal production of the CDM component as
treated here requires T dpl

x

& T fo
�

⇠ m
�

/25, correspond-
ing to �Ne↵|cmb . 0.5 for TeV-scale CDM. On the other
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decoupling. Taken to-
gether, this points to 0.2 eV . m
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Neutrino anomalies.— Oscillation experiments ob-
serving neutrinos from accelerators [39, 40], reactors [41,
42], and radioactive sources [43–45] reported anomalies
that may indicate the existence of sterile neutrinos with
a mass squared di↵erence �m2 ⇠ 1 eV2 to the SM neu-
trinos. In Fig. 3, we show the 2� range for �m2 from
[67, 68] for orientation, assuming m2

N1
= �m2. This

range was obtained from a global fit of oscillation data
assuming the existence of a single sterile neutrino (note
that it is being debated whether a second sterile neutrino
is necessary to achieve a satisfactory fit [69], which would
not be possible to accommodate in our setup). From
Fig. 3 we find that the regions allowed by the HDM sig-
nal and neutrino oscillations indeed overlap. While this
happens only at the 2� level, we note that the corre-
sponding range of �Ne↵ is the same as independently
required by m

�

& 1TeV (as favored from Fig. 2).

Discussion.— Before standard neutrino decoupling
at T ⇠ 1MeV, the e↵ective mixing angle ✓
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active and sterile neutrinos is strongly suppressed due to
the matter potential generated by the U(1)
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couplings
of the sterile neutrinos [70] (see also [71]). As the Uni-
verse cools, the e↵ective mixing angle eventually reaches
its vacuum value ✓. This may give rise to an additional
production of sterile neutrinos due to their U(1)

X

inter-
action. The largest e↵ect on the scenario sketched above
would result if the neutrinos completely re-thermalized,
creating a thermal N -⌫ bath.
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we immediately see that in the re-thermalization case a
sterile neutrino can still consistently explain the HDM
signal – but only if its mass is considerably smaller than
required by the neutrino anomalies.
Turning to potential constraints on our scenario, BBN

limits are easily satisfied as already stressed earlier. CDM
also decouples kinetically too early to imprint observ-
able dark acoustic oscillation (DAO) features in the
CMB [72]. Final state V radiation in the decay of
SM particles [73], finally, does not constrain our sce-
nario because V does not couple to left-handed neutri-
nos. An interesting aspect of our HDM component is
that it does not necessarily manifest itself as perfectly
free-streaming particles in the CMB or during structure
formation, which in principle can be probed [74]; by
comparing the elastic scattering rate with the Hubble
expansion, we rather expect complete decoupling only
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The dominant decay channel of our sterile neu-
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enhanced compared to the analogous common de-
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which greatly exceeds the age of the Universe t0. We
note that the decay N1 ! ⌫� is even more suppressed
due to the necessarily small value of ✏.
Conclusions.— In this Letter we have considered a

mixed DM model as favored by recent cosmological ob-
servations, which adds a small HDM component to the
dominant CDM, the former consisting of an ⇠ eV sterile
neutrino and the latter of a TeV-scale Dirac fermion. We
have studied the cosmological consequences of equipping
both these particles with charges under a new sponta-
neously broken U(1)

X

gauge theory, under which all SM
particles are singlets.
Thermalizing the U(1)

X

sector in the early universe
via the so-called Higgs portal allows the thermal produc-
tion of the CDM. The sterile neutrinos would also be
thermally produced and elegantly form the HDM com-
ponent, essentially because the U(1)

X

sector decouples
much earlier than SM neutrinos. Remarkably, this is pos-
sible for a set of parameters that equip the CDM particles
with a U(1)

X

mediated self-interaction that is of the right
form and magnitude to provide a simultaneous solution
to the small-scale problems of ⇤CDM cosmology [33].

4

we simply have

�Ne↵|cmb = �Ne↵|max
bbn . (9)

From the definition me↵
hdm ⌘ ⇥

T
N1/T

⇤CDM
⌫

⇤3
m

N1 =

11/4 [T
N1/T ]

3
m

N1 it furthermore follows that

me↵
hdm = (�Ne↵|cmb)

3
4m

N1 . (10)

By choosing the right decoupling temperature in Eq. (6),
which in our model corresponds to adjusting , we can
then reproduce Eq. (1). This is demonstrated in Fig. 3
where we show the allowed region of �Ne↵|cmb and me↵

hdm

[36] in terms of g⇤,⌫(T dpl
x

) and m
N1 .

The thermal production of the CDM component as
treated here requires T dpl

x

& T fo
�

⇠ m
�

/25, correspond-
ing to �Ne↵|cmb . 0.5 for TeV-scale CDM. On the other
hand, g⇤,⌫(T dpl

x

) cannot exceed the full number of SM
d.o.f. even for very early U(1)

X

decoupling. Taken to-
gether, this points to 0.2 eV . m

N1 . 1.2 eV.

Neutrino anomalies.— Oscillation experiments ob-
serving neutrinos from accelerators [39, 40], reactors [41,
42], and radioactive sources [43–45] reported anomalies
that may indicate the existence of sterile neutrinos with
a mass squared di↵erence �m2 ⇠ 1 eV2 to the SM neu-
trinos. In Fig. 3, we show the 2� range for �m2 from
[67, 68] for orientation, assuming m2

N1
= �m2. This

range was obtained from a global fit of oscillation data
assuming the existence of a single sterile neutrino (note
that it is being debated whether a second sterile neutrino
is necessary to achieve a satisfactory fit [69], which would
not be possible to accommodate in our setup). From
Fig. 3 we find that the regions allowed by the HDM sig-
nal and neutrino oscillations indeed overlap. While this
happens only at the 2� level, we note that the corre-
sponding range of �Ne↵ is the same as independently
required by m

�

& 1TeV (as favored from Fig. 2).

Discussion.— Before standard neutrino decoupling
at T ⇠ 1MeV, the e↵ective mixing angle ✓

m

between
active and sterile neutrinos is strongly suppressed due to
the matter potential generated by the U(1)

X

couplings
of the sterile neutrinos [70] (see also [71]). As the Uni-
verse cools, the e↵ective mixing angle eventually reaches
its vacuum value ✓. This may give rise to an additional
production of sterile neutrinos due to their U(1)

X

inter-
action. The largest e↵ect on the scenario sketched above
would result if the neutrinos completely re-thermalized,
creating a thermal N -⌫ bath.

In that case, conservation of entropy density al-
lows us to determine the temperature T

N⌫

of
the newly established neutrino bath as 4T 3

N⌫

=h
NSM

e↵ + (�Ne↵|max
bbn )

3
4

i �
T⇤CDM
⌫

�3
, where NSM

e↵ ' 3.046.

Rather than Eqns. (9, 10), we thus obtain

�Ne↵|cmb =
1

4
1
3

h
NSM

e↵ + (�Ne↵|max
bbn )

3
4

i 4
3 �NSM

e↵ , (11)

me↵
hdm =

1

4

h
NSM

e↵ + (�Ne↵|max
bbn )

3
4

i
m

N1 . (12)

Rewriting this as m
N1 = 2

p
2me↵

hdm/(�Ne↵|cmb +NSM
e↵ ),

we immediately see that in the re-thermalization case a
sterile neutrino can still consistently explain the HDM
signal – but only if its mass is considerably smaller than
required by the neutrino anomalies.
Turning to potential constraints on our scenario, BBN

limits are easily satisfied as already stressed earlier. CDM
also decouples kinetically too early to imprint observ-
able dark acoustic oscillation (DAO) features in the
CMB [72]. Final state V radiation in the decay of
SM particles [73], finally, does not constrain our sce-
nario because V does not couple to left-handed neutri-
nos. An interesting aspect of our HDM component is
that it does not necessarily manifest itself as perfectly
free-streaming particles in the CMB or during structure
formation, which in principle can be probed [74]; by
comparing the elastic scattering rate with the Hubble
expansion, we rather expect complete decoupling only

at T dpl
⌫

R

⌫

R

⇠ 3 eV
�

m

�

TeV

�� 2
3

⇣
X

⌫

R

0.2

⌘� 2
3
⇣

m

2
V

/X

⌫

R

MeV2
/0.2

⌘ 2
3

, where

the last factor must be of order unity (see Fig. 2).
The dominant decay channel of our sterile neu-

trino is N1 ! ⌫⌫⌫. Even though this is strongly
enhanced compared to the analogous common de-
cay via a virtual Z [75], we find the resulting life-
time for the best-fit neutrino mixings [67] to be

⌧
N1 ⇠ 105 t0

�
m

�

TeV

��2
⇣

X

⌫

R

0.2

⌘�2 ⇣
m

2
V

/X

⌫

R

MeV2
/0.2

⌘2 ⇣
eV

m

N1

⌘5

,

which greatly exceeds the age of the Universe t0. We
note that the decay N1 ! ⌫� is even more suppressed
due to the necessarily small value of ✏.
Conclusions.— In this Letter we have considered a

mixed DM model as favored by recent cosmological ob-
servations, which adds a small HDM component to the
dominant CDM, the former consisting of an ⇠ eV sterile
neutrino and the latter of a TeV-scale Dirac fermion. We
have studied the cosmological consequences of equipping
both these particles with charges under a new sponta-
neously broken U(1)

X

gauge theory, under which all SM
particles are singlets.
Thermalizing the U(1)

X

sector in the early universe
via the so-called Higgs portal allows the thermal produc-
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= function of Higgs portal coupling…

Update: νs most likely do re-thermalize Saviano, Pisanti, Mangano & Mirizzi, PRD ’14
Mirizzi, Mangano, Pisanti, Saviano, PRD ’15
Chu, Dasgupta & Kopp, JCAP ‘15� blue region moves down by factor ~2
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Figure 7. DM density projections of the selected MW-like halo for the four different models. The suppression of substructure can clearly be seen for M1 to
M3 compared to the CDM model, which does include power down to small scales without a resolved cutoff, which is present in the ETSF models M1 to M3.
The projection has a side length and depth of 500 kpc.

true although the self-interaction cross-section is smallest for this
model. This trend continues up to MW masses. Those halo masses
are not so strongly affected by the damping so the self-interactions
take offer such that the reduction of the central density is following
the strength of the cross section.

4.2 Galactic halo

NOTE: All results are based on level-2. Level-1 is still running
(those are expensive and running around 1-2 months).

We will now consider the galactic scales by studying the
zoom-in simulation of the selected MW-sized halo. We start by
looking at the density distribution on these scales. Fig. 7 shows

density projections of the halo for CDM simulations and compares
to models M1-M3. At these scales, the suppression of small scale
structure is clearly visible, which is largely driven by the resolved
cutoff scale in the linear power spectra of M1-M3 compared to
CDM. This cutoff reduces the number of resolved subhaloes very
strongly for model M1, which has the largest damping scale. We
stress that self-interactions of the order discussed here largely af-
fect only the internal structure of haloes, but do not significantly
alter the number of subhaloes within MW-like haloes. This would
only happen for cross sections of the order of 10 cm2 g�1 on full
galactic scales, which is prevented in the the models discussed here
prevents due to the strong velocity-dependence. Fig. 7 also demon-

© 2015 RAS, MNRAS 000, 1–13

step 1
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The first step can be demanding,                                
the second in addition computationally very expensive 

But expect large degeneracies, so very inefficient…
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cuto↵
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant �T .
We also note that �T drops with larger v such that for
galaxy clusters only the very central density profile at
r . O(1 � 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v2

max

= g2�mV /(2⇡2m�) at
which �T v becomes maximal and �max

T ⌘ �T (vmax

) =
22.7m�2

V . In particular, v
max

should not be too di↵er-
ent from the typical velocity dispersion �v ⇠ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of �max

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing g� by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (m�,mV ) and the astrophysically relevant param-
eters (v

max

,�max

T ). As demonstrated in Fig. 2, a so-
lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of m� & 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
m� . 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger m� an imminent
gravothermal catastrophe is more constraining.

The small-scale cuto↵.— For small kinetic decou-
pling temperatures T

kd

, acoustic oscillations [52] are
more e�cient than free streaming e↵ects to suppress the
power spectrum [4, 53]. The resulting exponential cuto↵
can be translated into a smallest protohalo mass of

M
cut

⇡ 4⇡

3

⇢�
H3

���
T=Tkd

= 1.7⇥ 108
✓
T
kd

keV

◆�3

M� , (4)

where H is the Hubble rate and we assumed late kinetic
decoupling such that the e↵ective number of relativistic
degrees of freedom g

e↵

= 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending

ââ

++

20

70
60

50
40

30

10

0.5
1
2

5
10
20

ruled out by
astrophysics

not enough flattening
of cuspy profiles

umax @km s-1Dsmax êmc @cm2 g-1D
1 100.05

0.1

0.5

1

5

1

5

1

5 van den Aarssen, Bringmann & Pfrommer H2012L

mc @TeVD
m
V
@Me

VD
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indicate two benchmark models for which detailed simulations
[44] have found a solution to the ‘too big to fail’ problem.
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Figure 3: This plane shows the mediator mass mV vs. the
coupling strength g⌫ . Large values of g⌫ and small values of
mV lead to late kinetic decoupling and thus a large mass M
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those expressions to allow for T⌫ 6= T , we find

T
kd

=
0.062 keV

N
1
4
⌫ (g�g⌫)

1
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✓
T
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◆ 1
2

kd

⇣ m�

TeV

⌘ 1
4
⇣ mV

MeV

⌘
, (5)

where N⌫ is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
T
kd

, and thus M
cut

, is essentially independent of g� and
m�.

Using for definiteness N⌫ = 3 and T⌫ = (4/11)
1
3T� , we

show in Fig. 3 contours of constant M
cut

in the (g⌫ ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for g⌫ & 10�7 (assuming m� ⇠ 1TeV and
mV ⇠ 1MeV; this value is even lower for larger m� and
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parameters (in addition, of course, to the standard ΛCDM
parameters). In this section, we illustrate the impact of
different choices of these parameters on the linear matter
power spectrum, focusing primarily on the combina-
tion fan; αlg.
The left panel of Fig. 1 illustrates the matter transfer

function TðkÞ≡ PETHOSðkÞ=PCDMðkÞ for four different
exponents n parametrizing the redshift dependence of
the DM and DR opacities. The models are normalized
such that they all have the same DM drag epoch zdrag which
we define via the criterion −_κχðzdragÞ ¼ HðzdragÞ. All other
parameters are kept fixed as indicated in the figure caption.
We observe that as n is increased, the frequency of dark
acoustic oscillations (DAO) increases and the transfer
function begins departing from its CDM value at larger
wave numbers (smaller scales). This is due to the faster
decoupling time scale associated with larger values of n.
We illustrate this in the right panel of Fig. 1 where we
display the DM drag visibility function −_κχe−κχ for the
same models as in the left panel. We observe that a larger
value of the exponent n corresponds to a narrower DM drag
visibility function. Since _κχ=H ∝ ð1þ zÞn, a larger value of
n indeed implies a faster transition from the tightly coupled
regime _κχ=H ≫ 1 to the decoupled regime _κχ=H ≪ 1. In
contrast, as n approaches 0, DM spends more time in the
weakly coupled regime and a broader range of k-modes can
be affected by the dark sector physics. This is particularly
apparent for the n ¼ 1 model where a large range of k-
modes are damped by DR diffusion. A longer period spent

in the weak coupling regime also implies that the damping
envelope significantly departs from the exponential relation
e−ðk=kdampÞ2 derived in the tight-coupling limit [85].
In Fig. 2, we study the impact of the angular coefficients

α2 on the matter transfer function. Here, we choose models
with a nonvanishing a4 (left panel) and a2 (right panel)
coefficient, and vary the value of α2 from 1=2 to 5=2 while
keeping everything else fixed. While we realize that it
might not be possible to find a physical DM model
realizing these different values of α2, our goal here is to
illustrate the sensitivity of the DM distribution to these
parameters. The left panel of Fig. 2 shows that α2 has a
significant effect on the damping tail of the matter transfer
function, with a smaller value of α2 associated with more
damping. We can understand this result by noting that the
quantity α2 _κDR−DM controls the growth of the DR quadru-
pole which is associated with DR diffusion damping of
DM perturbations. At a fixed value of the opacity _κDR−DM, a
smaller α2 leads to a faster growth of the DR quadrupole,
which results in a stronger damping term. This can also be
seen from the direct calculation of the Silk damping scale,
which in the tightly coupled regime takes the approximate
form

rSDðτÞ ≈ π

!
−
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Z
τ

0

dτ0
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"
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þ
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FIG. 1. Left panel: Transfer function TðkÞ≡ PETHOSðkÞ=PCDMðkÞ for four different exponents n parametrizing the redshift
dependence of the DM drag opacity _κχ ¼ −ðΩDRh2Þanðð2þ nÞ=3Þð1þ zÞnþ1=ð1þ zDÞn. The values of an are chosen such that all
models have the same DM drag epoch zdrag, which we define via the criterion −_κχðzdragÞ ¼ HðzdragÞ. The actual values used are
fa1; a2; a3; a4g ¼ f2.75; 1.09 × 101; 4.30 × 101; 1.97 × 102g Mpc−1. All models assume ωDR ¼ 1.35 × 10−6, αl ¼ 1, and bn ¼ 0. For
completeness, we also used ξ ¼ 0.5, mχ ¼ 10 GeV, and dn ¼ an, but the results shown above are insensitive to these specific choices.
Right panel: Dark matter drag visibility function for the same models as the left panel. The DM drag visibility function is essentially the
probability distribution function for the time at which a DM particle last scatter off DR.
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atom models. We label the models by their value of the
mass ratio R; the values of the other relevant parameters are
given in the figure caption. As before, the colored points
show the effective ETHOS values of the transfer cross
section over mass for the mapping given in Eq. (57). For the
three models shown here, we observe that the velocity
dependence is very mild over the range of velocities
relevant to a broad spectrum of astrophysical objects (note
for instance the difference of the y-axis between the left and
right panels of Fig. 4). However, the qualitative behavior
of dark atom scattering is similar to the nonperturbative
scattering limit (mχv ≲mϕ) of the Yukawa DM model
presented in the previous subsection.6 This reinforces the
idea that the ETHOS framework can encompass multiple
models using a simple parametrization.

IV. ETHOS: MAPPING PARTICLE MODELS TO
STRUCTURE FORMATION SCENARIOS

In the standard cold DM paradigm, DM is assumed to be
nonrelativistic and to interact primarily via the gravitational
force. These simple hypotheses have been extremely
successful at explaining the structure of the Universe on
large scales. However, we must keep in mind that this
success does not necessarily preclude the existence of
nontrivial DM microphysics that could affect structure

formation at smaller scales, where these hypotheses remain
untested. Indeed, causality dictates that new nongravita-
tional interactions in the DM sector can only modify the
matter distribution on small scales, leaving large scales
intact. Many models have been proposed that either allow
for DM self-interactions inside halos at late times, or for
interactions between DM and other particles in the early
Universe, or both (see Sec. I and references therein). An
immediate difficulty in exploring these models is that
structure formation on small scales is highly nonlinear,
requiring expensive high-resolution simulations in order to
make clear predictions that can be compared with obser-
vations. The cost of these simulations renders nearly
impossible the task of a systematic exploration of all
DM models that lead to modified small-scale structures.
To address this situation, we develop here an “effective
theory of structure formation” (ETHOS), in which the DM
microphysics is systematically mapped to effective param-
eters that directly control astrophysical structure formation.
These effective parameters fully describe the linear evolu-
tion of the growth of structures and provide a convenient
parametrization for DM self-interactions. These two ingre-
dients can then serve as the input for simulations to follow
the growth of structures in the nonlinear regime. The
advantage of developing ETHOS is clear: all DM particle
models that map to a given effective ETHOS model can be
constrained at the same time by comparing a single

FIG. 4. Left panel: Velocity dependence of the self-interaction cross section over mass for DM interacting via a Yukawa potential
mediated by a messenger particle ϕ [22,23,47,91]. The model shown with the thick red solid curve is an example of a symmetric DM
model that primarily scatters in the classical regime (mχv ≫ mϕ) with momentum-transfer cross sections given by the average of
Eqs. (60) and (61). The thin solid blue line is an example of asymmetric DM that primarily scatters in the classical regime with
momentum-transfer cross sections given by Eq. (61). The dashed cyan curve is an example of an asymmetric DM model similar to the
model put forward in Ref. [25]. This model primarily scatters in the nonperturbative regime (mχv ≲mϕ) and we refer the reader to the
Appendix of Ref. [23] for an explicit analytical formula that is valid in this regime. In all cases, the colored points show the average
values hσTivM=mχ [as defined in Eq. (56)] for the three typical velocity ranges shown here by the gray bands. Note that the width of the
gray bands is for illustration purposes only. Right panel: Similar to the left panel but for atomic DM models [12,43–46,49,56,57]. Here,
the models are labeled by the value of R, which is the mass ratio of the two particles forming the dark atom. We show the approximate
fitting formula for the momentum-transfer cross section given in Eq. (10) of Ref. [56] with a dark fine-structure constant value of
αD ¼ 0.05. For all the cases shown, the DM mass is determined from the relation mχ ¼ ðR=αDÞ2=3 GeV [57]. The colored points show
the values of hσTivM=mχ for each typical velocities vM.

6See the dashed cyan line of the left panel of Fig. 4.
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simulation of the effective ETHOS model with observations
at no extra computational cost.
In Appendix A (and summarized in Sec. II), we have

performed a detailed analysis of the Boltzmann equation
governing the evolution of DM (including DM dark
radiation interactions and DR self-interactions), and have
determined that the structure of the linear matter power
spectrum can be entirely determined (up to second-order
effects) by a set of opacity and angular coefficients given by

fωDR; fan; αlg; fbn; βlg; fdn;mχ ; ξgg: ð63Þ

Moreover, we have seen that, to a good approximation, the
subset fωDR; fan; αlgg is largely responsible for setting the
broad structure of the linear matter power spectrum, with
the other parameters providing relatively small corrections.
The set of l-dependent coefficients αl encompasses infor-
mation about the angular dependence of the DM-DR
scattering cross section, whereas an are the coefficients
of the power-law expansion in temperature (redshift) of the
DM drag opacity caused by the DM-DR interaction. In
Sec. III, we have introduced a simple parametrization for
the DM self-interaction cross section based on averages of
the transfer cross section evaluated at a few velocities vM
relevant to key astrophysical objects (dwarf galaxies,
Milky-Way-size galaxies, and galaxy clusters). Taken
together, the effective parameters describing a given
ETHOS model are then

ΞETHOS ¼
!
ωDR; fan; αlg;

!hσTivMi

mχ

""
; ð64Þ

where we have allowed an arbitrary number of velocity
reference points vMi

. From the perspective of the structure
formation theory, two models having identical effective
parameters in ETHOS would yield universes populated by
statistically identical DM structures. The above ETHOS
parametrization thus allows the classification of DM
theories with respect to their structure formation properties,
instead of their intrinsic particle properties. One might
object that the mapping between particle theories and
ETHOS scenarios is never exact since distinct DM models
will always make slightly different predictions. However,
the nonlinear nature of the evolution of small-scale struc-
tures is very effective at erasing the memory of small
differences in the linear power spectrum [76,101], hence
making the mapping quite effective at classifying DM
models in broad categories.
As a first application of the ETHOS framework, we

present in a companion paper [76] high-resolution simu-
lations of a few ETHOS models characterized by non-
vanishing values of a4 and αl≥2 ¼ 3=2, corresponding
to the particle physics model described in Sec. II B 1 (a
massive DM particle interacting with a massless neutrino-
like fermion via a new massive mediator). This application

has the objective of using ETHOS to address at least two of
the main challenges of the cold DM model regarding the
DM distribution in the Milky Way, namely the missing
satellite problem and the too big to fail problem. We stress,
however, that the scope of ETHOS goes beyond the cold
DM challenges. It is a framework that generalizes structure
formation to include viable DM phenomenology, offering a
new and powerful tool to explore new DM physics.

V. CONCLUSION

In this work we have described an effective theory of
structure formation (ETHOS), a framework that makes it
possible to compute cosmological structure formation in a
wide range of models in which nongravitational dark matter
physics can have important effects on galactic and sub-
galactic scales. Within the ETHOS framework, dark matter
models can be classified according to a small set of
parameters describing their structure formation properties
rather than their intrinsic particle properties. This allows
nonlinear structure formation to be studied in a model-
independent and computationally efficient fashion. Rather
than running different structure formation simulations to
explore the parameter spaces of individual particle models,
simulations that cover phenomenologically interesting
regions of the ETHOS parameter space can be used to
simultaneously explore many microphysical models of
dark matter physics.
Starting from the general Boltzmann equations describ-

ing the evolution of the dark matter and dark radiation
phase-space densities, we have determined a standard
procedure for mapping the detailed microphysics of particle
dark matter models into a set of parameters that define
the form of the linear power spectrum of matter density
perturbations. We have also described a similar mapping
from microphysics to an astrophysically motivated para-
metrization of the dark matter self-interaction cross section
that captures the main effects of self-interactions on dark
matter halos at different mass scales. Taken together, these
ETHOS parameters fully describe the dark matter physics
required to simulate cosmological structure formation and
we have explicitly demonstrated this procedure by giving
several examples of well-motivated particle models that
have been discussed in the literature.
We note that as nonlinear evolution of small-scale

structures is effective at erasing the memory of small
differences in the linear power spectrum our parametriza-
tion may be more broadly applicable to dark matter physics
beyond the types we discuss in detail here. For instance,
while the current ETHOS implementation focuses on
nonrelativistic dark matter models interacting with a
relativistic species it would be natural to extend this
framework to include models where dark matter is warm
rather than cold. We note, however, that the current
framework can already approximately capture the physics
of warm dark matter at the level of producing an equivalent
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Figure 1. Characteristics of effective models. Left: Linear initial matter power spectra ( (�linear(k)2 = k3Plinear(k)/(2⇡2))) for the different models
(CDM and ETSF models M1 to M3) as a function of comoving wavenumber k. The ETSF models M1 to M3 differ in the strength of the damping and the dark
acoustic oscillations present at large k. Right: Velocity dependence of the cross-section for the different models. All ETSF models M1 to M3 have velocity
dependent cross sections which decrease as v�4

rel for large relative velocities. For low velocities the cross sections can reach up to 100 cm2 g�1

.

els discussed above can be mapped to the same effective lin-
ear power spectrum and effective velocity-dependent DM self-
interaction cross section (see Cyr-Racine et al. 2015, for details).
The models discussed in this study are benchmark cases of such
a mapping, which result in specific combinations of linear power
spectra and interaction cross-sections. Various particle models can
therefore be described by an effective theory specified by an ini-
tial power spectrum and a self-interaction cross section. We call
the resulting framework “effective theory for structure formation”
(ETSF), which aims at generalising the theory of DM structure for-
mation to include a wide range of allowed DM phenomenology.

This paper has the following structure. We present the models
discussed in this work in Section 2. Section 3 then discusses the
different simulations carried out to explore these models. Results
are then presented in Section 4. In this section we will also try to
construct a model which solves some of the outstanding small-scale
problems of the MW satellites. Finally, we present our summary
and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are
are summarised in 1. For all simulations we use the following
cosmological parameters: ⌦m = 0.301712, ⌦⇤ = 0.698288,
⌦b = 0.046026, h = 0.6909, �8 = 0.839 and ns = 0.9671,
which are consistent with Planck (Planck Collaboration et al. 2014;
Spergel et al. 2013). We study four different DM models, which
we label CDM and M1 to M3 for the ETSF models. M1 to M3
are models that in our effective structure formation theory space
can be represented by a specific transfer function (see left panel
of Fig. 1 for the resulting linear non-dimensional power spectra),
and a specific velocity-dependent cross-section for DM (see right

Name ↵� ↵⌫ m� m� rDAO rSD
[MeV c�2] [GeV c�2] [h�1Mpc] [h�1Mpc]

CDM – – – – – –
M1 0.071 0.041 0.723 2000 0.362 0.225
M2 0.016 0.01 0.83 500 0.217 0.113
M3 0.006 0.006 1.15 178 0.141 0.063

Table 1. Parameters of the effective models considered in this paper. We
study in total four different scenarios (CDM and ETSF models M1 to M3).
CDM corresponds to the vanilla CDM case. We also provide two character-
istic comoving length scales: the DM sound horizon (rDAO), and the Silk
damping scale (rSD). The ETSF models are characterised by their linear
power spectra (transfer function) and the DM-DM cross sections, which we
present in Fig. 1.

panel of Fig. 1 for the resulting cross-sections). The underlying
particle physics model for those assumes a massive DM particle
(�) interacting with a massless “neutrino” (⌫) via a massive vector
mediator (�). These models are characterised by an interaction be-
tween DM and dark radiation (DR) and DM-DM self-interactions.
The DM-DR interaction give rise to the features in the power spec-
trum, which are absent in ordinary CDM transfer functions. Ta-
ble 1 specifies the relevant scales in the initial power spectrum:
the comoving diffusion (Silk) damping scale (rSD) and the DM
comoving sound horizon rDAO). These are generic scales which
occur in many models where DM is coupled to relativistic parti-
cles until relatively late times. There are two interesting regimes:
rSD ⌧ rDAO and rSD ⇠ rDAO. For the first case, the power
spectrum shows significant oscillations on small scales since dif-
fusion is ineffective around the sound horizon. The other case, on
the other hand, only shows a few oscillations since the damping is
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particle physics model for those assumes a massive DM particle
(�) interacting with a massless “neutrino” (⌫) via a massive vector
mediator (�). These models are characterised by an interaction be-
tween DM and dark radiation (DR) and DM-DM self-interactions.
The DM-DR interaction give rise to the features in the power spec-
trum, which are absent in ordinary CDM transfer functions. Ta-
ble 1 specifies the relevant scales in the initial power spectrum:
the comoving diffusion (Silk) damping scale (rSD) and the DM
comoving sound horizon rDAO). These are generic scales which
occur in many models where DM is coupled to relativistic parti-
cles until relatively late times. There are two interesting regimes:
rSD ⌧ rDAO and rSD ⇠ rDAO. For the first case, the power
spectrum shows significant oscillations on small scales since dif-
fusion is ineffective around the sound horizon. The other case, on
the other hand, only shows a few oscillations since the damping is
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Figure 7. DM density projections of the selected MW-like halo for the four different models. The suppression of substructure can clearly be seen for M1 to
M3 compared to the CDM model, which does include power down to small scales without a resolved cutoff, which is present in the ETSF models M1 to M3.
The projection has a side length and depth of 500 kpc.

true although the self-interaction cross-section is smallest for this
model. This trend continues up to MW masses. Those halo masses
are not so strongly affected by the damping so the self-interactions
take offer such that the reduction of the central density is following
the strength of the cross section.

4.2 Galactic halo

NOTE: All results are based on level-2. Level-1 is still running
(those are expensive and running around 1-2 months).

We will now consider the galactic scales by studying the
zoom-in simulation of the selected MW-sized halo. We start by
looking at the density distribution on these scales. Fig. 7 shows

density projections of the halo for CDM simulations and compares
to models M1-M3. At these scales, the suppression of small scale
structure is clearly visible, which is largely driven by the resolved
cutoff scale in the linear power spectra of M1-M3 compared to
CDM. This cutoff reduces the number of resolved subhaloes very
strongly for model M1, which has the largest damping scale. We
stress that self-interactions of the order discussed here largely af-
fect only the internal structure of haloes, but do not significantly
alter the number of subhaloes within MW-like haloes. This would
only happen for cross sections of the order of 10 cm2 g�1 on full
galactic scales, which is prevented in the the models discussed here
prevents due to the strong velocity-dependence. Fig. 7 also demon-
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in the following. ETHOS provides a mapping between the intrinsic
parameters (couplings, masses, etc.) defining a given DM particle
physics model, and (i) the effective parameters controlling the shape
of the linear matter power spectrum, and (ii) the effective DM
transfer cross-section (⟨σ T⟩/mχ ); both at the relevant scales for
structure formation. Schematically:
{
mχ , {gi}, {hi}, ξ

}
→

{
ωDR, {an, αl}, {bn, βl}, {dn, mχ , ξ}

}

→ Plin,matter(k)

{
mχ , {hi}, {gi}

}
→

{ ⟨σT ⟩30

mχ

,
⟨σT ⟩220

mχ

,
⟨σT ⟩1000

mχ

}
, (1)

where the parameters on the left are the intrinsic parameters of the
DM model: mχ is the mass of the DM particle, {gi} represents the
set of coupling constants, {hi} is a set of other internal parameters
such as mediator mass and number of degrees of freedom, and
ξ = (TDR/TCMB)|z = 0 is the present-day DR to CMB temperature
ratio.

The effective parameters of the framework are on the right of
equation (1), which in all generality include the cosmological den-
sity of DR ωDR ≡ 'DRh2, the set {an, αl} characterizing the DM-
DR interaction, the {bn, β l} set characterizing the presence of DR
self-interaction (relevant, for instance, to non-abelian DR), and the
parameter set {dn, mχ , ξ} determining the evolution of the DM
temperature and adiabatic sound speed. This latter quantity is very
small for non-relativistic DM, and it has thus little impact on the
evolution of linear DM perturbations (except on very small scales,
irrelevant for galaxy formation/evolution). In this work, we focus
our attention on the effect of DM-DR interaction on the evolution
of DM perturbations. The physics of these effects are captured by
the parameters {an, αl}, where the set of l-dependent coefficients αl

encompasses information about the angular dependence of the DM-
DR scattering cross-section, whereas the an are the coefficients of
the power-law expansion in temperature (redshift) of the DM drag
opacity caused by the DM-DR interaction (see section II E of Cyr-
Racine et al. 2015). Physically, a single non-vanishing an implies
that the squared matrix element for the DM-DR scattering process
scales as |M|2 ∝ (pDR/mχ )n−2, where pDR is the DR momentum.
We leave the impact of DR self-interactions on the matter power
spectrum to a future study. We note that DR self-interaction as
parametrized by {bn, β l} can actually have a non-negligible effect
on the linear matter power spectrum through its influence on the
gravitational shear stress. However, this latter effect is generally
subdominant compared to the DM-DR interactions studied in this
work.

The other set of effective parameters in ETHOS are related to
DM self-scattering. Although each particle physics model would
have a specific transfer cross-section, in ETHOS we classify (char-
acterize) a given model based on the values of its cross-section
at three relative velocities, those characteristic of dwarf galaxies
(∼30 km s−1), the MW-size galaxies (∼220 km s−1) and galaxy
clusters (∼1000 km s−1).1 The choice of these three characteristic
velocities is arbitrary but it allows us at a glance to (i) check whether
a given model is compatible with observations, and (ii) have a re-
liable estimate at what the outcome of the simulation of a given
model would be based on the results of models already simulated,
which have similar values of the transfer cross-section. For instance,
if two models have the same values of ⟨σ T⟩30/mχ , full simulations

1 Note that in some cases one needs to go beyond the transfer cross-section
to describe the effect of self-interactions, see e.g. Kahlhoefer et al. (2014).

of isolated dwarfs in each model are likely to yield similar results,
even though they might have very different values of ⟨σ T⟩1000/mχ .
Furthermore, these characteristic velocities mark also three rele-
vant regimes for any model containing DM self-interactions: (i)
the dwarf-scale regime where the CDM model is being challenged,
and where the transfer cross-section is largely unconstrained, (ii) the
intermediate-scale regime where a large cross-section can lead to the
evaporation of subhaloes in MW-size galaxies, and (iii) the cluster-
scale regime where observations put the strongest constraints to the
cross-section.

The ETHOS framework described above is general, but for the
purpose of this work we restrict ourselves to an underlying parti-
cle physics model which assumes, like in Van den Aarssen et al.
(2012), a massive fermionic DM particle (χ ) interacting with a
massless neutrino-like fermion (ν) via a massive vector mediator
(φ). This model is characterized by an interaction between DM and
DR and DM-DM self-interactions (see section II F.1 of Cyr-Racine
et al. 2015, for details). The former gives rise to the features in the
power spectrum, which are absent in ordinary CDM transfer func-
tions, while the latter alters the evolution of DM haloes across time.
This model is characterized by a squared matrix element scaling as
(pDR/mχ )2, which immediately implies that the impact of DM-DR
scattering on the linear matter power spectrum is entirely captured
by a non-vanishing a4 coefficient. For DM-DR interactions leading
to late kinetic decoupling, this is indeed a very commonly encoun-
tered situation according to a recent comprehensive classification
of such scenarios Bringmann et al. (2016); note, however, that in
the presence of scalar mediators it is sometimes rather a2 that is
the only non-vanishing coefficient an (depending on the spin of DM
and DR).

In our case, the ETHOS mapping is reduced to
{
mχ , mφ, gχ , gν, ηχ , ην, ξ

}

−→
{

ωDR, a4,αl≥2 = 3
2
,
⟨σT ⟩30

mχ

,
⟨σT ⟩220

mχ

,
⟨σT ⟩1000

mχ

}
. (2)

The model is characterized by six intrinsic particle physics parame-
ters: the mass of the DM particle (mχ ), the mediator mass (mφ), the
coupling between the mediator and DM (gχ ), the coupling between
the mediator and neutrino-like fermions (gν), the number of DM
spin states (ηχ ), and the number of spin states of the neutrino-like
fermion (ην). In principle, the ratio of neutrino-like fermion and
photon temperature ξ constitutes another parameter that follows
from the underlying particle physics framework; for definiteness,
we will set it throughout to 0.5 in this work. The effective ETHOS
parameters that fully characterize the linear power spectrum are then
reduced to three: the abundance of DR ωDR, the opacity parameter
a4 (an ̸= 4 = 0), and a set of constant αl ≥ 2 values. It is possible to
calculate these parameters analytically (Cyr-Racine et al. 2015)

a4 = (1 + zD)4 πg2
χg2

ν

m4
φ

ρ̃crit

mχ

(
310
441

)
ξ 2T 2

CMB,0,

αl≥2 = 3
2
, (3)

where ρ̃crit ≡ ρcrit/h
2 with ρcrit the critical density of the Universe,

and TCMB, 0 is the temperature of the CMB today. The normaliza-
tion redshift zD is arbitrary, but choosing it to be the redshift of
DM kinetic decoupling ensures that the an coefficients are gener-
ally of order unity. For models that modify the linear matter power
spectrum on subgalactic scales, we usually have zD ! 107. The
generic form of the a4 coefficient is easy to understand: the com-
bination g2

χg2
ν/m

4
φ is the leading factor in the squared scattering
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Figure 5. Stacked density profiles for different halo mass ranges (M200, crit) as indicated in each panel for our different DM models. We show the profiles
starting at 2 kpc out to the virial radius. One can clearly see that the different non-CDM models affect the profiles in rather different ways depending on the
mass scale.
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Table 4. Overview of reduced DM models. These models are similar
to ETHOS-1 to ETHOS-3, but they only include self-interactions with-
out the damping of the power spectrum (‘sidm’), or they do not include
self-interactions, but have the damping of the primordial power spectrum
(‘power’). The reduced models help us to disentangle these two effects
present in our full models.

Name Reduced model

ETHOS-1-sidm ETHOS-1, only self-int. w/CDM transfer fct.
ETHOS-1-power ETHOS-1, no self-int.

ETHOS-2-sidm ETHOS-2, only self-int. w/CDM transfer fct.
ETHOS-2-power ETHOS-2, no self-int.

ETHOS-3-sidm ETHOS-3, only self-int. w/CDM transfer fct.
ETHOS-3-power ETHOS-3, no self-int.

of ETHOS-4 compared to ETHOS-3. We note that despite hav-
ing considerably lower cross-sections than the other models we
explored, self-interactions are still relevant in ETHOS-4. We have
verified that the central densities in subhaloes are lower (albeit the
effect is relatively small) in ETHOS-4 than in a setting with the
same features but with the self-interactions turned off.

We note that ETHOS-4 alleviates the tension between theory and
observations for the TBTF and MS problems, but our MW-size sim-
ulations cannot be used to study directly if such a model could also
produce the large cores seemingly inferred in low surface brightness
galaxies (e.g. Kuzio de Naray, McGaugh & de Blok 2008), which
might require large cross-sections in an interpretation based on DM
collisions (see fig. 1 of Kaplinghat et al. 2016). However, besides
pure DM self-interactions, ETHOS-4 also includes a relevant effect
due to the damping of the power spectrum. Both effects could com-
bine to reduce densities sufficiently to be consistent with observation
of LSB galaxies. Furthermore, the character of this interplay could

Figure 12. DM density projections of the zoom MW-like halo simulations
for the tuned model ETHOS-4. The projection has a side length and depth of
500 kpc. The initial power spectrum is essentially the same as in ETHOS-3.
The amount of substructure and the general DM density distribution looks
very similar to ETHOS-3. Remaining differences are driven by the very
different self-scattering cross-section between ETHOS-3 and ETHOS-4.

be adjusted relative to ETHOS-4 parameters by increasing the nor-
malization of the cross-section and increasing slightly the scale for
the power spectrum cut off. This would enhance the SIDM-driven
core creation, while retaining significant deviations from CDM in

Figure 11. Subhalo population for the tuned model ETHOS-4. This model was specifically set up to address the MS and TBTF problems. Left-hand panel:
the number of satellite galaxies as a function of their maximal circular velocity for the four different models with a comparison to observed satellites of the
MW including a sky coverage correction (Polisensky & Ricotti 2011). We show all subhaloes with a halocentric distance less than 300 kpc. Right-hand panel:
circular velocity profiles of the same haloes. The data points show MW dSphs taken from Wolf et al. (2010). The ETHOS-4 model provides a reasonable fit to
the subhalo population of the MW.
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(‘power’). The reduced models help us to disentangle these two effects
present in our full models.

Name Reduced model

ETHOS-1-sidm ETHOS-1, only self-int. w/CDM transfer fct.
ETHOS-1-power ETHOS-1, no self-int.

ETHOS-2-sidm ETHOS-2, only self-int. w/CDM transfer fct.
ETHOS-2-power ETHOS-2, no self-int.

ETHOS-3-sidm ETHOS-3, only self-int. w/CDM transfer fct.
ETHOS-3-power ETHOS-3, no self-int.

of ETHOS-4 compared to ETHOS-3. We note that despite hav-
ing considerably lower cross-sections than the other models we
explored, self-interactions are still relevant in ETHOS-4. We have
verified that the central densities in subhaloes are lower (albeit the
effect is relatively small) in ETHOS-4 than in a setting with the
same features but with the self-interactions turned off.

We note that ETHOS-4 alleviates the tension between theory and
observations for the TBTF and MS problems, but our MW-size sim-
ulations cannot be used to study directly if such a model could also
produce the large cores seemingly inferred in low surface brightness
galaxies (e.g. Kuzio de Naray, McGaugh & de Blok 2008), which
might require large cross-sections in an interpretation based on DM
collisions (see fig. 1 of Kaplinghat et al. 2016). However, besides
pure DM self-interactions, ETHOS-4 also includes a relevant effect
due to the damping of the power spectrum. Both effects could com-
bine to reduce densities sufficiently to be consistent with observation
of LSB galaxies. Furthermore, the character of this interplay could

Figure 12. DM density projections of the zoom MW-like halo simulations
for the tuned model ETHOS-4. The projection has a side length and depth of
500 kpc. The initial power spectrum is essentially the same as in ETHOS-3.
The amount of substructure and the general DM density distribution looks
very similar to ETHOS-3. Remaining differences are driven by the very
different self-scattering cross-section between ETHOS-3 and ETHOS-4.

be adjusted relative to ETHOS-4 parameters by increasing the nor-
malization of the cross-section and increasing slightly the scale for
the power spectrum cut off. This would enhance the SIDM-driven
core creation, while retaining significant deviations from CDM in

Figure 11. Subhalo population for the tuned model ETHOS-4. This model was specifically set up to address the MS and TBTF problems. Left-hand panel:
the number of satellite galaxies as a function of their maximal circular velocity for the four different models with a comparison to observed satellites of the
MW including a sky coverage correction (Polisensky & Ricotti 2011). We show all subhaloes with a halocentric distance less than 300 kpc. Right-hand panel:
circular velocity profiles of the same haloes. The data points show MW dSphs taken from Wolf et al. (2010). The ETHOS-4 model provides a reasonable fit to
the subhalo population of the MW.
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ΛCDM problems can indeed be alleviated
for the first time demonstrated in a fully consistent 
framework
non-linear interference between modified power 
spectrum and self-interaction
  some fine-tuning needed    constraining power+‒
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Cost Benefit(new theory d.o.f.) (issues addressed)

Thanks for your attention!

+ SIDM w/ �T ⇠ 1 cm2/g cusp-core
too-big-to-fail
diversity

3
3

3

Vanilla CDM particle ΛCDM (above ~Mpc scales) 3�

+ light mediator velocity dependence
(cluster constraints + core “measurements”)

relic density
(predictivity!)

3
3

�

+ DR/HDM coupled to 
(e.g. sterile neutrino)

evade CMB bounds
missing satellites
            discrepancy�8/H0

3
3

3

�
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Kinetic decoupling in detail
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Evolution of phase-space density    given by the full 
Boltzmann equation in FRW spacetime:

E(�t �Hp ·⇥p)f� = C[f�]

f�

        recovers the familiar 
�

d3p
dn�

dt
+ 3Hn� = �⇥�v⇤

�
n2

� � n2
�eq

⇥
...

�
d3pp2Idea: consider instead the 2nd moment (            ) 

and introduce 

analytic treatment possible
no assumptions about           necessary
Allows highly accurate treatment, to order

f�(p)
O(T/m�) � 10�3

Bertschinger, PRD ’06; TB & Hofmann,  JCAP ’07; TB, NJP ’09
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T�Resulting ODE for      :

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 T. Bringmann, 2009

log10 (x = mχ/T )
lo

g 1
0

( y
=

m
χ
g−

1
/
2

eff
T

χ
/T

2
)

Tχ ∝ a−2

Tχ
= T

xkd =mχ/Tkd

(T < Tkd)

(T > Tkd)

Example:
m� = 100GeV
|M|2 � g4

Y (E�/m�)2

Fast transition allows straight-forward definition of       Tkd
TB & Hofmann,  JCAP ’07; TB, NJP ’09

T� =

⇢
T
Tkd (akd/a)

2
for T & Tkd

for T . Tkd

NB: different definitions of Tkd exist (e.g.  Visinelli & Gondolo, 1501.02233), but 
they result in a different normalisation of the scaling after kinetic decoupling!

1

y

dy

dx
/ c(T )

Hx

✓
1� yeq

y

◆

4

Rather than the first moment of the Boltzmann equa-
tion, as in Eq. (4) for the determination of the chemi-
cal freeze-out temperature, one may consider its second
moment to get an accurate description of when the DM
particles leave thermal equilibrium with the heat bath
[9, 10]. To this end, it is very convenient to introduce
the parameter

T
�

⌘ g
�

3m
�

n
�

Z

d3p

(2⇡)3
p2f(p) , (15)

which would correspond to the temperature of a nonrel-

ativistic WIMP if f were a thermal distribution. The
di↵erence between T

�

and T thus indicates how well the
WIMPs are kept in thermal equilibrium with the heat
bath. In analogy to Eq. (10), we further introduce the
dimensionless quantity

y ⌘ m
�

T
�

s2/3
. (16)

Multiplying Eq. (1) by g
�

p2/E, integrating it over p
and keeping only the leading order terms in p2/m2

�

then
leads, after a somewhat lengthy calculation, to

y0

y
= �Y 0
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1� x

3
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◆

, (17)

with

h�v
rel

i
2

⌘ g2
�

3Tm
�

n2

�

Z

d3p

(2⇡)3

Z

d3p̃
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p2

�

v
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XX

�
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f/e
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' 2x3/2

p
⇡

Z

1

0

(�v
rel

) v2
✓

1 +
2

3
xv2

◆

e�v

2
xdv , (20)

and [10]

c(T ) =
1

12(2⇡)3m4

�

T

X

X

Z

dk k5!�1 g±
�

1⌥ g±
� |M|2

t=0

s=m

2
�+2m�!+m

2
X

. (21)

In arriving at Eq. (17)3, we have assumed that Y
eq

⌧ Y

and Eq. (19) is valid if f(E) / e�E/T (s̃ is the dimen-
sionless version of the Mandelstam variable s ⌘ 4m2

�

s̃).
The approximation given in Eq. (20) takes a form very
similar to Eq. (6) and also exhibits an accuracy that is
very similar, i.e. much better than at the percent-level
for the values of x that we are interested in here. For a
scaling like in Eq. (7), �v

rel

/ v2n, in particular, we find

h�v
rel

i
2

h�v
rel

i = 1 +
n

3
. (22)

Note that, for Y 0 = 0, Eq. (17) is the exact analogue of
Eq. (11): as long as the scattering processes are frequent
enough, y follows the heat-bath value y

eq

⌘ m
�

Ts�2/3,
i.e. we have T

�

= T as expected. At very late times, on

3
This expression improves the corresponding Eq. (10) in Ref. [10]

by using a more suitable definition of y; more importantly, we

allow here explicitly for the case that DM annihilation has not

ended yet (i.e. dY/dx 6= 0).

the other hand, the factor in front of
�

1�y
eq

/y
�

becomes
vanishingly small and y stays constant, i.e. T

�

/ a�2,
which simply reflects the redshift of the WIMP momenta
due to the expansion of the universe. The fact that the
transition between these two regimes happens on a rather
short timescale [9, 10] allows to conveniently define the
temperature of kinetic decoupling as

x
kd

=
m

�

T
kd

⌘ y|Y 0 !
=0

x!1 ⇥ s2/3

T 2

�

�

�

�

T=Tkd

. (23)

As expected, kinetic decoupling happens considerably
later than chemical decoupling; in the case of neutralino
DM, e.g., one finds x

kd

/x
cd

⇠ 10 � 4000 (or T
kd

⇠
5MeV � 5GeV) [10].
As we will see, things may change considerably in situ-

ations where we cannot actually neglect Y 0. We therefore
advocate, as indicated, to use the above definition of x

kd

only after setting Y 0/Y ⌘ 0 by hand in Eq. (17). This
definition then accurately reflects the intuitive meaning
of kinetic decoupling even in the case where we cannot
neglect Y 0, i.e. the point where scattering processes with
heat bath particles are no longer e↵ective.
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Very large cross sections!
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Dirac DM
mχ =1TeV

s-wave
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Use Hulthén potential to approximate Yukawa
analytical solutions for both s-wave and p-wave annihilation

Iengo,, JHEP ’09
Cassel, JPG ’10
Slatyer, JCAP ‘10

S(v) =
⇡↵/v

1� e�⇡↵/v
/

v!0

1

v

Coulomb 
regime

resonant 
regime: S(v) / v�2

[same as for scattering!]

saturation 
for v . m�

2m�
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Dirac DM
mχ =1TeV

s-wave

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
10-26

10-25

10-24

10-23

10-22

10-21

10-20

10-19

relative velocity

S
(v
)(
σv

) 0
[c
m
3 s

-1
]

Use Hulthén potential to approximate Yukawa
analytical solutions for both s-wave and p-wave annihilation

Iengo,, JHEP ’09
Cassel, JPG ’10
Slatyer, JCAP ‘10

Dirac DM
mχ =1TeV
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two important differences for p-wave case
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How cold is CDM ?
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After structure formation:     
dominated by gravitational potential
Dwarf galaxies: 

MW (local neighbourhood):  

Galaxy clusters: 

Before: depends on DM production mechanism!
chemical decoupling:                     , then 

after kinetic decoupling: 

T� ⇠ m�/20 T� = T�

hv2�i = 3 (T�/m�)(z/zkd)
2

e.g. TB, NJP ‘09

vrec . 2⇥ 10�7
⇣ m�

100GeV

⌘� 1
2

Vogelsberger+, MNRAS ‘16Tkd . 100 eVrequirement from Ly-alpha (c.f. WDM):

NB: 

[for Maxwellian distribution]

hv2i = 2 hv2�i

v� ⇠ vc =

r
GM(r)

r

v ⇠ (0.5� 1.3)⇥ 10�4
(compiled from  Martinez, MNRAS ‘15)

v ⇠ (1.2� 1.7)⇥ 10�3
(, vrot� = 200� 300 km/s)

v . 10�2
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Smaller DM temperature
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Tdark/Tvis = 0.3

Conclusions qualitatively unchanged !

Choose              as extreme case⇠ = 0.3

m� = 1TeV  g⇤, dark(Tdec)

g⇤, dark(Tcd)
⇠ 40e.g. 

!

Rescale to correct relic density 
by ↵� !

p
⇠↵�

e.g. TB, Ihle, Kersten & Walia, PRD ‘16

Simplest option: thermal contact until Tdec

⌘ ⌘ g⇤,dark/g⇤,vis ⇠ ⌘ Tdark

Tvis
=


⌘(Tdec)

⌘(T )

�1/3


