Short Introduction to Geant4

- principle: step by step and particle by particle
- geometries: rebuilding a setup in the computer
- particles: from Geantinos to heavy ions
- processes: and the winner is ... random
- visualization: blue ions and green γ-rays
Step by Step – For Each Particle

- produce particle with a particle gun
 - fix particle type, E_{kin}, momentum direction, ...

- go through the world in steps
 - step size determined by cross sections
 - steps end at volume borders
 - apply processes
 - may create, change, destroy particles

- continue until no particles are left
 - or all outside the world volume
Geometries

- Geant4 handles geometrical, logical, and “physical” volumes separately
 - geometrical volumes specify shapes
 - logical volumes specify materials
 - physical volumes specify placements in the setup
- organization in a tree
 - world volume → mother volume → ... → volume
“solids” in Geant4 parlance

- construction from simple shapes
 - many simple shapes available
 - see Geant4 Documentation
 - shapes may be combined: intersection, union, ...
- construction from CAD data is also possible
 (I never tried this)
Logical Volumes

- association of shape and material
- grouping of child volumes
 - must be completely inside the mother volume
- allows for repeated placement
 - e.g. 8 Si detectors, but only one logical volume
- assignment of visualization attributes
 - e.g. color, transparency
- “sensitive detector” for data readout (later)
Physical Volumes

- placement of logical volumes
- each “replica” has its number for identification in data read-out
G4VSolid* s = new
G4Tubs("s_nai_crystal", 0, r,
1/2, 0, 360*deg);

G4LogicalVolume* l = new
G4LogicalVolume(s,GetMat("NaI"),
"l_nai_crystal");

new G4PVPlacement(TranslateZ3D(l/2),
l, "nai_crystal", mother,
false, 0);
Sensitive Detectors

- need to get information from interaction of particles with detector material
- done using a “sensitive detector”
- for each particle passing, some information may be collected and stored
 - e.g. energy loss of a single particle
 - e.g. A, Z of an ion (i.e. information not accessible in an experiment)
- data storage not directly included in Geant4
 (I use ROOT)
many predefined particles:

- ions by A, Z with mass, ...
- photons
- ...
- “Geantino” for testing purposes
Physics = Processes

- each particle has a list of processes that apply
- list has to be made for each particle in the simulation program
 - best to look at examples provided with Geant4
- different types of processes
 - AlongStep, PostStep, AtRest
- many processes already implemented
AlongStep Processes

- apply for all steps of the particle
- continuous processes
 - also those where a microscopic model is not feasible or too slow
- example
 - energy loss of ions in matter
AtRest Processes

- apply if the particle is at rest
- selection by remaining lifetime

example

- radioactive decay

(seems to be implemented only for particles at rest in present Geant4 versions)
PostStep Processes

- apply for moving particles
- selection by interaction length
- examples:
 - elastic scattering
 - already implemented in Geant4
 - knock-out, in-flight γ-ray emission, ...
 - processes may be added by the user
Process Selection (PostStep)

- choose n.o. interaction lengths (IL)
 - randomly, e^{-x} distribution
- current IL depends on material of volume
 - here is the cross section
 - angular distributions etc. defined by the process
- process with shortest remaining IL wins
 - this length is the step length
 - new step, subtract from n.o. ILs left
- reaching the volume border is also a “process”
Visualization

- several types of viewers
 - DAWN – PostScript, non-interactive
 - VRML, HepRep – 3D, interactive
- most viewers not included in Geant4
- display of geometries, but also of events
Some (Partial) Examples

- program structure
- script for viewing the geometry
- script for running a simulation
need to define user classes:

- MyConstruction – create the detector geometry
- MyPhysicsList – assign processes to particles
- MyPrimaryGeneratorAction – create particles
- MyEventAction – read out data for each event
Visualization script

- switch off debug messages

 /run/verbose 0
 /event/verbose 0
 /tracking/verbose 0

- initialize run manager

 /run/initialize

- test for overlapping volumes

 /geometry/test/grid_test
 \textarrow{true}

- draw to VRML2

 /vis/scene/create
 /vis/scene/add/volume
 \textarrow{world}
 /vis/scene/add/axes
 /vis/open VRML2FILE
 /vis/viewer/flush

- viewer: e.g. freewrl
Visualization Example

screenshot of
- CACTUS
- SiRi
- target
- support structures

with freewrl viewer
Simulation script

- set detector parameters
 - /GamSim/cactus/enable true
 - /GamSim/beamtube/enable true
 - /GamSim/beamtube/diameter 12.7 cm
 - /GamSim/target/enable true
 - /GamSim/target/material Cobalt
 - /GamSim/target/size 14 mm
 - /GamSim/target/thickness 0.5 mm

- initialize run manager
 - /run/initialize

- select output file
 - /E450/rootTree/filename cactus_60Co.root

- select primaries
 - 60Co, 2 γ rays

- run (i.e. wait 😊)
 - /E450/gun/ion 0 0
 - /E450/gun/eKin 0 MeV
 - /E450/gun/product 0 0
 - /E450/gun/beamDiameter 1 cm
 - /E450/gun/beamUniform true
 - /E450/gun/zRange 0.5 mm
 - /E450/gun/addEnergy 1173 1
 - /E450/gun/addEnergy 1332 1
 - /run/beamOn 20000000
Simulation Example 1

- 60Co source
- 200,000 γ rays
 - 50% 1173 keV
 - 50% 1332 keV
- gaussian resolution
 - preliminary
 - artificial (while storing)
Simulation Example 2

- 4He beam, 30 MeV
- 100 ions
- drawing trajectories
 - ions
 - γ rays
 - electrons
Other Topics

- biasing
 - often it is necessary to enhance the desired process
 - e.g. reaction in the target, most particles would just go through
- examples
 - Geant4 includes a lot of examples, also for “physics lists” (i.e. process assignments to particles)
- problems
 - Geant4 does not like some geometries (intersections) – trial and error