Level density and γ strength function in 118,119Sn

Heidi Kristine Toft, PhD student

Department of Physics, University of Oslo
Outline

1. Motivation
2. Experimental setup
3. Preliminary analysis
4. Further investigations
Motivation

- E_γ: Energy of γ from disintegration of excited product nucleus.
- **Energy level density**: Number of energy levels of excited nucleus per MeV.
- **γ strength function**: Probability function for E_γ independent of level density.
- Earlier found: New, small resonance in γ strength function for 116,117Sn.
 - Enhanced γ emission.
 - Resonances are interesting because they indicate collective oscillations in the nucleus.
New resonance in $^{116,117}\text{Sn}$

- Detects $E_\gamma < S_n$.
- Small enhancement. “Pygmy”.
- $E_\gamma \approx 8 \text{ MeV}$.
- On the tail of GEDR (Giant Electric Dipole Resonance).
Resonances’ origins

- **GEDR**: Out of phase oscillation of clouds of all (?) protons and neutrons.
 - Many nucleons involved ⇒ High γ strength.
 - Variation of a large charge distribution along an axis.
 - Emission of electric dipole radiation (E1 mode).
 - High frequency oscillation ⇒ Centroid $\hbar \omega \approx 15$ MeV.
- **Pygmy**: Origin unknown.
 - Theory prediction of small resonances at 8 MeV: M1 (GMDR) or E1 (neutron skin oscillations).
 - **Neutron skin oscillations**: Non-moving core of Z protons and $N \approx Z$ neutrons, while excessive neutrons ($\approx A-2Z$) oscillate in nucleus’ skin.
Motivation for 118,119Sn

- Confirm pygmy.
- More excess neutrons in skin.
- Expect stronger pygmy, if skin oscillations.
 - Possibly scaled to number of excess neutrons.
Oslo cyclotron laboratory

- Norway’s only nuclear particle research accelerator.
- Makes radioactivity for research and industry.

Cyclotron
Cactus
Control room
Experimental setup

- **28 NaI(Tl), 1 Ge** detectors
- **^3He** (38 MeV)
- **^{119}Sn** target
- **8 Si ΔE-E telescope** (Particle detectors)
Analysis overview

- Interested in particle and γ coincidences.
 - Pick-up reaction: $^{119}\text{Sn}(^{3}\text{He},^{4}\text{He} \gamma)^{118}\text{Sn}$.
 - Inelastic scattering: $^{119}\text{Sn}(^{3}\text{He},^{3}\text{He}' \gamma)^{119}\text{Sn}$.

- Particle detectors:
 - Measure particle energy \Rightarrow Estimate E_x.
 - Particle identification.

- γ detectors: Measure E_γ.

- Keep only first generation γ. Matrix (E_x, E_γ).

- Estimate level density and γ strength function.
 - Nucleus properties.
ΔE and E energy distribution depend on charge (Z), mass (A) and particle velocity.

- Distinguish ^4He, ^3He, t, d and p.

ΔE vs. E
Spectrum of added $\Delta E + E$

- ΔE detects some particle energy, E detects remainder.
 - Add up to total energy.
- Better resolution than partial energy in each telescope.
 - Statistical fluctuations.
- High-energetic p and d do not stop in E.
 - Increasing particle energy \Rightarrow Less total energy detection.
 - Sharp cut-off in right flank.
- Particle overlap.

Counts vs. total energy
Spectrum of ^4He area (zoomed)

- Energy difference of ^4He peaks ⇒ Must match ^{118}Sn energy difference in excitation levels (literature).
- Identify: Most energetic ^4He peak ⇔ ^{118}Sn ground state.
- Low cross section for ^{118}Sn ground state.
 - Favour of high I neutron pick-ups.
 - High Q value.
Spectrum ΔE telesc. thickness

- 4He and 3He overlap in total energy. How to easily gate reactions?
- Function range $R(E)$ for 4He in Si is known.
- Calculate ΔE thickness for 4He: $t = R(E+\Delta E) - R(E)$.
- Thickness:
 - Separates particles.
 - Criterion for gating on 4He or 3He particles.
Time spectrum

- **Δt:** Time from particle detection to γ detection.
- Gated on: 4He particles.
- Peak: γ's from 4He reactions.
- Narrow. (FWHM: 15-20 ns)
- Rest: Background of random coincidences.
 - For subtraction.

Counts vs. Δt (ns)
Future work

- Estimate γ strength function and energy level density.
- Compare results to earlier work on 116,117Sn.
- Neutron skin oscillations?
Further investigations

- Matrix of E_x vs. E_γ.
- Unfolding of NaI spectra with NaI response functions.
- Spectra of first γ emission from excited nucleus (first generation method).
- Decompose matrix $P = \rho \times T$.
- Normalisation of ρ and T.
- Make γ strength function.
Spectrum ΔE

- ^3He elastic peak.
- Også inelastic område???
- No ^4He peak since high-energetic.
- Hvorfor ikke ^4He her?
- Er dette noe å vise?

^3He elastic peak

vs energy
Spectrum E

- E telescope stops particles.
- Lower-energy peak: Elastic 3He.
- Higher-energy peaks: 4He.